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Quick Recap

I f : {0, 1}n → {0, 1}.
I Model : Bounded fan-in Boolean circuits over {∧,∨,¬}.

I Depth Ω(log n) for any function that depends on all input
variables.

I Ω(s(n)) size =⇒ Ω(log s(n)) depth.
I Known circuit lower bounds for general circuits are

depressingly weak (3.011n on size and (3− ε) log n on
depth).
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Lower bounds for Monotone Circuits

I (1985 Razborov ...)
There exist explicit monotone functions for which any
monotone circuit requires size 2Ω(

√
n).

I Non-monotonicity does help in reducing circuit size !!.
I (1988 Raz-Wigderson) s-t connectivity requires Ω(log2 n)

depth for any monotone circuit.
I (1989 Raz-Wigderson) Perfect matching and Clique

requires Ω(
√

n) monotone depth.
I Non-monotonicity does help in reducing circuit depth !!.
I (2014 Göös-Pitassi) Function in Monotone NP requiring

Ω(n/ log n) monotone depth.
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Against Non-monotone Circuits : Size
Limiting non-monotonicity : Number of negations.

I (1976 Fischer)

{
Size : s
Depth : d

}
=⇒


# of Negations : O(log n)
Size : 2s + O(n log n)
Depth : d + O(log n)


I (1998 Amano-Maruoka) Clique requires nlog n size even

when 1
6 log log n negations are allowed.

I (2004 Jukna) Multi-output function such that nlog n size is
required even when log n−O(log log n) negations are
allowed.

I (2015 Rossman) A function using s-t connectivity cannot be
in NC1 using only (1

2 − ε) log n negations.
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Against Non-monotone Circuits : Depth

I (1998 Amano-Maruoka) Clique requires depth
Ω((log n)

√
log n) even when 1

6 log log n negations are
allowed. (follows from size lower bounds).

I (1989 Raz-Wigderson) s-t connectivity requires Ω(log2 n)
depth when we allow n

c negations allowed at the input.

This work :
I Restriction (high-level idea) : Circuits where every internal

gate computes a function which is not “far” from
monotone.

I Main Result (high-level view) : A trade-off between
“far”-ness and circuit depth lower bound.
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Orientation of Boolean Functions

I Let C be a DeMorgan circuit computing f with minimum
number of negations.

I Orientation of f : Characteristic vector β ∈ {0, 1}n of the set
of negated variables.

Orientation of a function f : {0, 1}n → {0, 1} is a β ∈ {0, 1}n

such that there is a monotone function h : {0, 1}2n → {0, 1}with
∀x, f (x) = h(x, x ⊕ β).

Property : For a function f the minimal orientation is unique.
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Depth Lower Bounds vs Weight

A circuit C is weight w-restricted if at each gate g the sub-circuit
rooted at that gate computes a function fg whose weight of
orientation is at most w.

Theorem
Let C be a weight w-restricted circuit computing Clique, then

Depth(C) = Ω

( √
n

4w + 1

)

For w =
√

n
(log n)1+ε , Depth(C) = Ω((log n)1+ε).

Weight n orientation is sufficient to compute any function.
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How many Non-trivially Oriented Gates?

I Weak Bounds from negations :
Size : s
Depth : d
# Negations : t

 =⇒


Size : s
Depth : d + O(t)
# of Non-zero Orient. : t2t−1


I Target : O(n log n) densely oriented gates.

I Can we handle higher weight β’s if we restrict the number
of non-trivially oriented gates?

I No. There exists a (non-explicit) monotone function f
which cannot be computed by ω(

√
n) depth monotone

circuits, but it is a computed by a O(log2 n) depth circuit
having only two gates with non-zero orientation.

12 / 21



Known Lower Bounds Orientation Depth Lower Bounds vs Weight Barriers and Structure Proof Sketch Open Problems

How many Non-trivially Oriented Gates?

I Weak Bounds from negations :
Size : s
Depth : d
# Negations : t

 =⇒


Size : s
Depth : d + O(t)
# of Non-zero Orient. : t2t−1


I Target : O(n log n) densely oriented gates.

I Can we handle higher weight β’s if we restrict the number
of non-trivially oriented gates?

I No. There exists a (non-explicit) monotone function f
which cannot be computed by ω(

√
n) depth monotone

circuits, but it is a computed by a O(log2 n) depth circuit
having only two gates with non-zero orientation.

12 / 21



Known Lower Bounds Orientation Depth Lower Bounds vs Weight Barriers and Structure Proof Sketch Open Problems

How many Non-trivially Oriented Gates?

I Weak Bounds from negations :
Size : s
Depth : d
# Negations : t

 =⇒


Size : s
Depth : d + O(t)
# of Non-zero Orient. : t2t−1


I Target : O(n log n) densely oriented gates.

I Can we handle higher weight β’s if we restrict the number
of non-trivially oriented gates?

I No. There exists a (non-explicit) monotone function f
which cannot be computed by ω(

√
n) depth monotone

circuits, but it is a computed by a O(log2 n) depth circuit
having only two gates with non-zero orientation.

12 / 21



Known Lower Bounds Orientation Depth Lower Bounds vs Weight Barriers and Structure Proof Sketch Open Problems

Uniform orientation
If all gates have same orientation β ∈ {0, 1}n, this is equivalent
to allowing w leaf negations.

For Clique, consider β as a
√

n×
√

n matrix.

A ”symmetric square” is a rectangle indexed by the same set of
vertices.
Structure Based Lower Bound: Case of Clique

If C computes Clique :{
β-matrix has a 0-symm-sq.
of order O(log1+ε n)

}
=⇒

{
Depth must be ω(log n)

}
In contrast : Let U be symmetric square of order O(log n).
If C computes Clique:{

Depth d
}

=⇒
{

Depth d + c(log n)
U is all 0s in the β-matrix.

}
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Proof Sketch : KW Games

Alice is given x ∈ f−1(1) and Bob is given y ∈ f−1(0).

KW(f ) : Goal : Find i ∈ [n] such that xi 6= yi.
KW(f ) = Depth(f ).

If f is montone :
KW+(f ) : Goal : Find i ∈ [n] such that xi = 1 and yi = 0

KW+(f ) = Monotone Depth(f )

Known Lower Bounds :
I KW+(Clique) = Ω(

√
n).

I KW+(s-t connectivity ) = Ω(log2 n).
I KW+(Perf. Match) = Ω(

√
n).
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Tradeoff : Depth Lower Bound vs Weight

Tradeoff : Weight vs Depth Lower Bound
Let C be a weight w-restricted circuit computing a monotone
function f : {0, 1}n → {0, 1}, then

Depth(C) = Ω

(
KW+(f )

4w + 1

)
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Proof Sketch

From Circuits to KW games: Let C be a monotone circuit
computing f .
Alice is given x ∈ f−1(1) and Bob is given y ∈ f−1(0) for a
monotone function f . Goal : Find i ∈ [n] such that xi = 1 and
yi = 0.

I Protocol : Top-down. Current gate g with inputs g1 and g2.
I Invariant at a gate g : g(x) = 1 and g(y) = 0.
I if g is ∨ gate, Alice sends 0 if g1(x) = 1 else 1.
I if g is ∧ gate, Bob sends 0 if g1(x) = 0 else 1.

17 / 21
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Proof Sketch
At a gate g whose orientation is β ∈ {0, 1}n
Subcube-Monotonicity Invariant : Restricted to the sub-cube
outside the current β, the function g is monotone. Be within
such a subcube.

Procotol : By using 2w bits of communication :
I Either conclude that there is an index i (where βi = 1) such

that xi = 1 and yi = 0, OR
I Change x and y to new pair x′ and y′ such that on bits

indexed by β they agree, and g(x′) = 1 and g(y′) = 0.
How do we do the second step? Construct y′ by setting yβ = xβ .

Since we know that xβ ≤ yβ , ”decreasing” y to y′ will not make
the function value of g as 1.

Handling negation gates : Observe that negation gates can
depend on at most 2w inputs.
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Future Work and Open problems

I Can we push the boundary beyond O(
√

n
log1+ε n)?

I Can we reduce ”weight of orientation” in general (when
we know the function computed is a monotone function)?

I Is there a structure vs weight trade-off?
I Can this new measure help in learning restricted

non-monotone circuits?
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Thanks !!
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