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Boolean Circuits

Circuit computing function
f : {0, 1}n → {0, 1}.
Computation proceeds
through “simple”
operations.

gi ∈ “basic” operations.

Designated output gate
computes function f .
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Boolean Circuits

Size s of the circuit: time
taken by algorithm.

Could be # edges/wires or
# gates.

# wires ≤ (n+ # gates)·
# gates.

Depth d of the circuit:
parallelism of the
algorithm.

s = s(n), d = O(1).

depth = 3

# wires = 8, # gates = 3
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Threshold circuits

A threshold operation: g(x) = 1 iff
∑

iwixi ≥ θ for wi, θ ∈ R.

Some
examples:

OR function: OR(x) = 1 iff
∑

i xi ≥ 1.

AND function: AND(x) = J
∑

i xi ≥ nK.

MAJ function: MAJ(x) = J
∑

i xi ≥ n/2K.

GEQ function: GEQ(x, y) = J
∑

i 2i(xi − yi) ≥ 0K.

TC0
g(s, d): threshold circuits with s gates and depth d.

TC0
w(s, d): threshold circuits with s wires and depth d.

Generalize AC0 circuits made up of AND and OR gates.
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The power of threshold circuits

f = PARITY(x1, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn.

d ≥ 2: f ∈ TC0
g(dn

1/(d−1), d) (Siu-Roychowdhury-Kailath 1991)

d = 2: f(x) = J
∑

i xi ≥ 1K− J
∑

i xi ≥ 2K + J
∑

i xi ≥ 3K · · ·

g

g1 g2 gn

x1 x2 x3 xn· · ·

· · ·
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The power of threshold circuits

f = PARITY ∈ TC0
g(dn

1/(d−1), d).

d = 2: f(x) = J
∑

i xi ≥ 1K− J
∑

i xi ≥ 2K + J
∑

i xi ≥ 3K · · · .

d = log n.

g1 = J
∑

i xi ≥ n/2K.

g2 = J
∑

i xi −
n
2 g1 ≥ n/4K.

...

g` = J
∑

i xi −
n
2 g1 − n

4 g2 · · · ≥ 1K

General d: interpolate between the above two strategies.
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The power of threshold circuits

PARITY ∈ TC0
g(dn

1/(d−1), d).

Wire complexity of PARITY?

Gate upper bound ⇒ PARITY ∈ TC0
w(dn1+1/(d−1), d).

Can do better (Beame-Brisson-Ladner, Paturi-Saks).

PARITY ∈ TC0
w(n1+εd , d).

Trick:

x1 ⊕ · · · ⊕ xn = (x1 ⊕ · · · ⊕ xm)⊕ (xm+1 ⊕ · · · ⊕ x2m)⊕ · · ·
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Circuit lower bounds

How efficient are threshold circuits for computing general functions?

Depth-2 circuits can compute every function with size ≈ 2n.

Random f : {0, 1}n → {0, 1} has no threshold circuit with fewer than
20.99n wires w.h.p..

Problem: Find explicit family of functions (say in NP) that have no
TC0 circuits of poly(n) size. Even open for depth 2.
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Work on threshold circuits

Hajnal Maass Pudlák Turan Szegedy 1987

(Polynomial Approximations) Paturi Saks 1991, Siu Roychowdhury
Kailath 1992; Beigel 1994; Aspnes, Beigel, Furst and Rudich 1994;
Podolskii 2012

(Combinatorial restrictions) Impagliazzo Paturi Saks 1991

(Communication complexity) Nisan 1992; Hansen and Miltersen 2004;
Chattopadhyay and Hansen 2005; Lovett, S. 2012

(Analytic techniques) Gopalan and Servedio 2010
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State-of-the-art lower bounds

(Furst-Saxe-Sipser, Ajtai, Yao, Håstad 80s) PARITY not in

AC0(2n
1/(d−1)

, d).

(Impagliazzo-Paturi-Saks 1991) PARITY not in TC0
g(n

1/2(d−1), d) and

TC0
w(n1+εd , d).

(Kane-Williams 2015) Explicit functions not in TC0
g(n

1.5−o(1), 2) and

TC0
w(n2.5−o(1), 2). Also extends to a special case of depth-3.
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AC0(2n
1/(d−1)

, d).

(Impagliazzo-Paturi-Saks 1991) PARITY not in TC0
g(n

1/2(d−1), d) and

TC0
w(n1+εd , d).

(Kane-Williams 2015) Explicit functions not in TC0
g(n

1.5−o(1), 2) and

TC0
w(n2.5−o(1), 2). Also extends to a special case of depth-3.

Chen, Santhanam, S. Average case bounds for TC0 May 25, 2016 10 / 27



State-of-the-art lower bounds

(Furst-Saxe-Sipser, Ajtai, Yao, Håstad 80s) PARITY not in
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(Kane-Williams 2015) Explicit functions not in TC0
g(n

1.5−o(1), 2) and

TC0
w(n2.5−o(1), 2). Also extends to a special case of depth-3.
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Average case lower bounds

Want to show a function f : {0, 1}n → {0, 1} hard on average.

Trivial to compute f on half the inputs.

f has ε-correlation with ckt C if

Corr(C, f) := Pr
x

[C(x) = f(x)]− 1

2
≤ ε.

Want to show that f hard on average against TC0(s, d).
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Why average case lower bounds

Improves our understanding of limitations of circuits.

Lower bounds against slightly stronger circuit classes (E.g -
Kane-Williams 2015).

Prerequisite for constructing Pseudorandom generators (PRGs) for
the circuit class.

Increased understanding can lead to satisfiability algorithms, learning
algorithms,...
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Results

(Impagliazzo-Paturi-Saks 1991) PARITY not in TC0
g(n

1/2(d−1), d) and

TC0
w(n1+εd , d).

Result 1: PARITY has o(1)-correlation with TC0
g(o(n

1/2(d−1)), d) and

TC0
w(n1+δd , d).

Gates result weaker than Nisan (1992) if any explicit function allowed.

Result 2: Different explicit function has exponentially small
correlation with TC0

w(n1+δd , d).
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Random restrictions

Restriction: setting variables to constants. Helps simplify circuit.

ρ : {x1, . . . , xn} → {0, 1, ∗}.
Random restriction ρ ∼ Rp:

Pr
ρ

[ρ(xi) = ∗] = p Pr
ρ

[ρ(xi) = 0/1] =
1− p

2
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Random restrictions and lower bounds

Role of Random restriction: simplify circuit, while leaving hard
function (rel.) unchanged.

Eg. with AC0 and PARITY.
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Eg. with AC0 and PARITY.

C1

C4

f(x) = x1 ⊕ · · · ⊕ xn f |ρ1ρ2ρ3(x)
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Random restrictions and lower bounds

Role of Random restriction: simplify circuit, while leaving hard
function (rel.) unchanged.

Eg. with AC0 and PARITY.

C1 C2 C3

C4
ρ1 ρ2 ρ3

f(x) = x1 ⊕ · · · ⊕ xn f |ρ1(x) = ⊕i∈ρ−1
1 (∗)xi f |ρ1ρ2(x) f |ρ1ρ2ρ3(x)
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Key lemma

How does the circuit simplify due to a random restriction?

Håstad’s Switching lemma: If C is a small CNF (resp. DNF), then
whp C|ρ is a small DNF (resp. CNF).

For threshold circuits: Peres’ theorem.
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Peres’ theorem

Informal: if f a threshold function and ρ ∼ Rp (small p), then f |ρ is
close to constant whp.

Measure bias using Var(g) = 2 Prx,y[g(x) 6= g(y)] ∈ [0, 1].

g unbiased ⇔ Var(g) = 1. g constant ⇔ Var(g) = 0.

Theorem (Peres 2003)

f a threshold function. Eρ[Var(f |ρ)] = O(
√
p).

Compare with PARITY: Eρ[Var(PARITY|ρ)] ≈ 1 unless p ≈ 1/n.

Corollary

f a threshold function. Corr(f,PARITY) ≤ O( 1√
n

).
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Gate lower bound

Theorem

C ∈ TC0
g(o(n

1/2(d−1)), d)⇒ Corr(C,PARITY) = o(1).

C ∈ TC0
g(k, d).

Bottom level gates: g1, . . . , gk.

Apply ρ ∼ Rp. Use Peres.

Eρ[
∑

i Var(gi)] ≤ O(k
√
p).

Replace biased gates with
constants. Depth is d− 1.

Continue.
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Gate lower bound (contd.)

Theorem

C ∈ TC0
g(o(n

1/2(d−1)), d)⇒ Corr(C,PARITY) = o(1).

C ∈ TC0
g(k, d).

Apply ρ ∼ Rp d times.

I.e. apply ρ ∼ Rpd = Rq.
Eρ[Var(C|ρ)] ≤ O(kq1/2d).

Corr(C,PARITY) ≤ o(1) = o(1)
if k � n1/2d.
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Wire lower bound

Theorem

For some δ > 0, and C ∈ TC0
w(n1+δd , d), Corr(C,PARITY) = o(1).

Why does the previous proof not work?

Probability of failure in Peres’ theorem: O(1/
√
n).

Cannot handle more than O(
√
n) gates.

Even if O(n) wires, we could have up to O(n) gates.

g

g1 g2 gn

x1 x2 x3 xn· · ·

· · ·
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Refining Peres’ theorem

Theorem (Peres)

f a threshold. Eρ∼Rp [Var(f |ρ)] = O(
√
p).

Why O(
√
p)?

Eg: f(x) = J
∑

i xi ≥ n/2K.

f |ρ(x) = J
∑

i≤m xi ≥ n/2− θK.

θ = sum of n−m ≈ n random bits.

θ = (n−m)/2: Var(f |ρ) = 1.

θ = (n−m)/2±O(
√
m):

Var(f |ρ) = Ω(1).

θ = (n−m)/2± ω(
√
m):

Var(f |ρ) = o(1).
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Refining Peres’ theorem (contd.)

Theorem (Peres)

f a threshold. Eρ∼Rp [Var(f |ρ)] = O(
√
p).

Why O(
√
p)?
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∑
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Refining Peres’ theorem (contd.)

Lemma (Peres extension)

f a threshold. Prρ[Var(f |ρ) noticeable] ≤ p0.1.

Var(f) not noticeable ⇔ Var(f) = exp(−nΩ(1)).

Proof of lemma via standard CLT + critical index argument.
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Back to the wires lower bound

Theorem

For some δ > 0, and C ∈ TC0
w(n1+δd , d), Corr(C,PARITY) = o(1).

∑
i deg(gi) ≤ n1+α.

Apply ρ ∼ Rp, p = n−O(α).

New Peres: (1− p0.1) gates highly biased.

Set to constants.∑
unbiased deg(gi) ≤ p1+0.1 · n1+α � pn.

Set all vars and continue.

g

g1 g2 gr

x1 x2 x3 xn· · ·

· · ·
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More results

Theorem

For some δ > 0, and C ∈ TC0
w(n1+δd , d), Corr(C,PARITY) = o(1).

Above o(1) = n−Ωd(1).

For a suitable other function f , Corr(f, C) ≤ exp(−nΩd(1)).

Satisfiability algorithms for C ∈ TC0
w(n1+δd , d) running in time

2n−n
Ωd(1)

.

Better learning algorithms for AC0 augmented with a few threshold
gates.
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Summary

Proved correlation bounds for threshold circuits for computing
PARITY and other explicit functions.

Bounds are close to tight for PARITY.

Refined version of Peres’ theorem gives more insight into the workings
of threshold gates.

More applications?

Better lower bounds?
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Open questions

Optimal worst case depth 2 circuit for PARITY? Upper bound O(n)
gates and lower bound Ω(

√
n).

Optimal version of Peres’ theorem for threshold circuits with few
gates? Two versions: ours and Gopalan-Servedio. Want a common
generalization.

Thank you
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