Average case lower bounds for threshold circuits

Ruiwen Chen, Rahul Santhanam and Srikanth Srinivasan

Oxford University and Department of Mathematics, IIT Bombay

Low-depth complexity workshop, St. Petersburg May 25, 2016.

- Circuit computing function $f: \{0,1\}^n \to \{0,1\}.$
- Computation proceeds through "simple" operations.

• • = • • = •

- Circuit computing function $f: \{0,1\}^n \to \{0,1\}.$
- Computation proceeds through "simple" operations.
- $g_i \in$ "basic" operations.

A B A A B A

- Circuit computing function $f: \{0,1\}^n \to \{0,1\}.$
- Computation proceeds through "simple" operations.
- $g_i \in$ "basic" operations.
- Designated output gate computes function *f*.

-∢ ∃ ▶

• Size *s* of the circuit: time taken by algorithm.

► < Ξ ►</p>

- Size s of the circuit: time taken by algorithm.
- Could be # edges/wires or # gates.

-

- A 🖃

- Size s of the circuit: time taken by algorithm.
- Could be # edges/wires or # gates.
- # wires $\leq (n + \#$ gates). # gates.

- Size *s* of the circuit: time taken by algorithm.
- Could be # edges/wires or # gates.
- # wires ≤ (n+ # gates)· # gates.
- Depth *d* of the circuit: parallelism of the algorithm.

wires = 8, # gates = 3

May 25, 2016 3 / 27

- Size *s* of the circuit: time taken by algorithm.
- Could be # edges/wires or # gates.
- # wires ≤ (n+ # gates)· # gates.
- Depth *d* of the circuit: parallelism of the algorithm.

•
$$s = s(n), d = O(1).$$

wires = 8, # gates = 3

May 25, 2016 3 / 27

• A threshold operation: g(x) = 1 iff $\sum_i w_i x_i \ge \theta$ for $w_i, \theta \in \mathbb{R}$.

・ロト ・回ト ・ヨト ・ヨ

- A threshold operation: g(x) = 1 iff $\sum_i w_i x_i \ge \theta$ for $w_i, \theta \in \mathbb{R}$. Some examples:
- OR function: OR(x) = 1 iff $\sum_i x_i \ge 1$.

イロト イヨト イヨト

- A threshold operation: g(x) = 1 iff $\sum_i w_i x_i \ge \theta$ for $w_i, \theta \in \mathbb{R}$. Some examples:
- OR function: OR(x) = 1 iff $\sum_i x_i \ge 1$.
- AND function: $AND(x) = \llbracket \sum_i x_i \ge n \rrbracket$.

くほと くほと くほと

- A threshold operation: g(x) = 1 iff $\sum_i w_i x_i \ge \theta$ for $w_i, \theta \in \mathbb{R}$. Some examples:
- OR function: OR(x) = 1 iff $\sum_i x_i \ge 1$.
- AND function: $AND(x) = \llbracket \sum_i x_i \ge n \rrbracket$.
- MAJ function: $MAJ(x) = \llbracket \sum_i x_i \ge n/2 \rrbracket$.

- A threshold operation: g(x) = 1 iff $\sum_i w_i x_i \ge \theta$ for $w_i, \theta \in \mathbb{R}$. Some examples:
- OR function: OR(x) = 1 iff $\sum_i x_i \ge 1$.
- AND function: $AND(x) = \llbracket \sum_i x_i \ge n \rrbracket$.
- MAJ function: $MAJ(x) = \llbracket \sum_i x_i \ge n/2 \rrbracket$.
- GEQ function: $\operatorname{GEQ}(x, y) = \llbracket \sum_i 2^i (x_i y_i) \ge 0 \rrbracket$.

- A threshold operation: g(x) = 1 iff $\sum_i w_i x_i \ge \theta$ for $w_i, \theta \in \mathbb{R}$. Some examples:
- OR function: OR(x) = 1 iff $\sum_i x_i \ge 1$.
- AND function: $AND(x) = \llbracket \sum_i x_i \ge n \rrbracket$.
- MAJ function: $MAJ(x) = \llbracket \sum_i x_i \ge n/2 \rrbracket$.
- GEQ function: $\operatorname{GEQ}(x, y) = \llbracket \sum_i 2^i (x_i y_i) \ge 0 \rrbracket$.
- $TC_q^0(s, d)$: threshold circuits with s gates and depth d.

- A threshold operation: g(x) = 1 iff $\sum_i w_i x_i \ge \theta$ for $w_i, \theta \in \mathbb{R}$. Some examples:
- OR function: OR(x) = 1 iff $\sum_i x_i \ge 1$.
- AND function: $AND(x) = \llbracket \sum_i x_i \ge n \rrbracket$.
- MAJ function: $MAJ(x) = \llbracket \sum_i x_i \ge n/2 \rrbracket$.
- GEQ function: $\operatorname{GEQ}(x, y) = \llbracket \sum_i 2^i (x_i y_i) \ge 0 \rrbracket$.
- $TC_g^0(s, d)$: threshold circuits with s gates and depth d.
- $TC_w^0(s, d)$: threshold circuits with s wires and depth d.

- A threshold operation: g(x) = 1 iff $\sum_i w_i x_i \ge \theta$ for $w_i, \theta \in \mathbb{R}$. Some examples:
- OR function: OR(x) = 1 iff $\sum_i x_i \ge 1$.
- AND function: $AND(x) = \llbracket \sum_i x_i \ge n \rrbracket$.
- MAJ function: $MAJ(x) = \llbracket \sum_i x_i \ge n/2 \rrbracket$.
- GEQ function: $\operatorname{GEQ}(x, y) = \llbracket \sum_i 2^i (x_i y_i) \ge 0 \rrbracket$.
- $TC_g^0(s, d)$: threshold circuits with s gates and depth d.
- $TC_w^0(s, d)$: threshold circuits with s wires and depth d.
- $\bullet\,$ Generalize AC^0 circuits made up of AND and OR gates.

•
$$f = PARITY(x_1, \ldots, x_n) = x_1 \oplus x_2 \oplus \cdots \oplus x_n$$
.

- K 🖻

・ロト ・回ト ・ヨト

•
$$f = PARITY(x_1, \ldots, x_n) = x_1 \oplus x_2 \oplus \cdots \oplus x_n.$$

• $d \ge 2$: $f \in TC_g^0(dn^{1/(d-1)}, d)$ (Siu-Roychowdhury-Kailath 1991)

- $f = \text{PARITY}(x_1, \dots, x_n) = x_1 \oplus x_2 \oplus \dots \oplus x_n.$
- $d \ge 2$: $f \in \mathrm{TC}_g^0(dn^{1/(d-1)}, d)$ (Siu-Roychowdhury-Kailath 1991)
- d = 2: $f(x) = [[\sum_i x_i \ge 1]]$

- $f = PARITY(x_1, \ldots, x_n) = x_1 \oplus x_2 \oplus \cdots \oplus x_n.$
- $d \ge 2$: $f \in TC_g^0(dn^{1/(d-1)}, d)$ (Siu-Roychowdhury-Kailath 1991)
- d = 2: $f(x) = [[\sum_i x_i \ge 1]] [[\sum_i x_i \ge 2]]$

- $f = PARITY(x_1, \ldots, x_n) = x_1 \oplus x_2 \oplus \cdots \oplus x_n.$
- $d \ge 2$: $f \in TC_g^0(dn^{1/(d-1)}, d)$ (Siu-Roychowdhury-Kailath 1991)
- d = 2: $f(x) = [[\sum_i x_i \ge 1]] [[\sum_i x_i \ge 2]] + [[\sum_i x_i \ge 3]] \cdots$

- $f = \text{PARITY}(x_1, \dots, x_n) = x_1 \oplus x_2 \oplus \dots \oplus x_n$. • $d \ge 2$: $f \in \text{TC}_g^0(dn^{1/(d-1)}, d)$ (Siu-Roychowdhury-Kailath 1991)
- d = 2: $f(x) = [[\sum_i x_i \ge 1]] [[\sum_i x_i \ge 2]] + [[\sum_i x_i \ge 3]] \cdots$

•
$$f = \text{PARITY} \in \text{TC}_g^0(dn^{1/(d-1)}, d).$$

• $d = 2$: $f(x) = [\![\sum_i x_i \ge 1]\!] - [\![\sum_i x_i \ge 2]\!] + [\![\sum_i x_i \ge 3]\!] \cdots$.

- K 🕀

・ロト ・回ト ・ヨト

•
$$f = \text{PARITY} \in \text{TC}_g^0(dn^{1/(d-1)}, d).$$

• $d = 2$: $f(x) = [\![\sum_i x_i \ge 1]\!] - [\![\sum_i x_i \ge 2]\!] + [\![\sum_i x_i \ge 3]\!] \cdots .$
• $d = \log n.$

・ロト ・回ト ・ヨト ・ヨ

•
$$f = \text{PARITY} \in \text{TC}_g^0(dn^{1/(d-1)}, d).$$

• $d = 2$: $f(x) = [\![\sum_i x_i \ge 1]\!] - [\![\sum_i x_i \ge 2]\!] + [\![\sum_i x_i \ge 3]\!] \cdots .$
• $d = \log n.$

• $g_1 = [\![\sum_i x_i \ge n/2]\!].$

▲ 同 ▶ → 三 ▶

∃ →

•
$$f = \text{PARITY} \in \text{TC}_g^0(dn^{1/(d-1)}, d).$$

• $d = 2$: $f(x) = [\![\sum_i x_i \ge 1]\!] - [\![\sum_i x_i \ge 2]\!] + [\![\sum_i x_i \ge 3]\!] \cdots .$
• $d = \log n.$

• $g_1 = [\![\sum_i x_i \ge n/2]\!].$ • $g_2 = \left[\sum_i x_i - \frac{n}{2} g_1 \ge n/4 \right].$

- ∢ ≣ →

•
$$f = \text{PARITY} \in \text{TC}_g^0(dn^{1/(d-1)}, d).$$

• $d = 2$: $f(x) = [\![\sum_i x_i \ge 1]\!] - [\![\sum_i x_i \ge 2]\!] + [\![\sum_i x_i \ge 3]\!] \cdots .$
• $d = \log n.$

• $g_1 = [\![\sum_i x_i \ge n/2]\!].$ • $g_2 = \left[\sum_i x_i - \frac{n}{2} g_1 \ge n/4 \right].$ ÷

•
$$g_{\ell} = \left[\left[\sum_{i} x_{i} - \frac{n}{2} g_{1} - \frac{n}{4} g_{2} \cdots \ge 1 \right] \right]$$

→ < Ξ →</p>

•
$$f = \text{PARITY} \in \text{TC}_g^0(dn^{1/(d-1)}, d).$$

• $d = 2$: $f(x) = [\![\sum_i x_i \ge 1]\!] - [\![\sum_i x_i \ge 2]\!] + [\![\sum_i x_i \ge 3]\!] \cdots .$
• $d = \log n.$

- $g_1 = [\![\sum_i x_i \ge n/2]\!].$ • $g_2 = [\![\sum_i x_i - \frac{n}{2}g_1 \ge n/4]\!].$ • \vdots
- $g_{\ell} = \left[\left[\sum_{i} x_{i} \frac{n}{2} g_{1} \frac{n}{4} g_{2} \cdots \ge 1 \right] \right]$

• General d: interpolate between the above two strategies.

Chen, Santhanam, S

• PARITY $\in \mathrm{TC}_{g}^{0}(dn^{1/(d-1)}, d).$

A⊒ ▶ < ∃

- PARITY $\in \mathrm{TC}^0_q(dn^{1/(d-1)}, d).$
- Wire complexity of PARITY?

- PARITY $\in \mathrm{TC}^0_q(dn^{1/(d-1)}, d).$
- Wire complexity of PARITY?
- Gate upper bound \Rightarrow PARITY $\in TC_w^0(dn^{1+1/(d-1)}, d)$.

- PARITY $\in \mathrm{TC}_g^0(dn^{1/(d-1)}, d).$
- Wire complexity of PARITY?
- Gate upper bound \Rightarrow PARITY $\in TC_w^0(dn^{1+1/(d-1)}, d)$.
- Can do better (Beame-Brisson-Ladner, Paturi-Saks).

- PARITY $\in \mathrm{TC}_g^0(dn^{1/(d-1)}, d).$
- Wire complexity of PARITY?
- Gate upper bound \Rightarrow PARITY $\in TC_w^0(dn^{1+1/(d-1)}, d)$.
- Can do better (Beame-Brisson-Ladner, Paturi-Saks).
- PARITY $\in \mathrm{TC}^0_w(n^{1+\varepsilon^d}, d).$

- PARITY $\in \mathrm{TC}_g^0(dn^{1/(d-1)}, d).$
- Wire complexity of PARITY?
- Gate upper bound \Rightarrow PARITY $\in TC_w^0(dn^{1+1/(d-1)}, d)$.
- Can do better (Beame-Brisson-Ladner, Paturi-Saks).
- PARITY $\in TC_w^0(n^{1+\varepsilon^d}, d)$.

Trick:

$$x_1 \oplus \cdots \oplus x_n = (x_1 \oplus \cdots \oplus x_m) \oplus (x_{m+1} \oplus \cdots \oplus x_{2m}) \oplus \cdots$$

Circuit lower bounds

• How efficient are threshold circuits for computing general functions?
- How efficient are threshold circuits for computing general functions?
- Depth-2 circuits can compute every function with size $\approx 2^n$.

- How efficient are threshold circuits for computing general functions?
- Depth-2 circuits can compute every function with size $\approx 2^n$.
- Random $f: \{0,1\}^n \to \{0,1\}$ has no threshold circuit with fewer than $2^{0.99n}$ wires w.h.p..

- How efficient are threshold circuits for computing general functions?
- Depth-2 circuits can compute every function with size $\approx 2^n$.
- Random $f:\{0,1\}^n\to \{0,1\}$ has no threshold circuit with fewer than $2^{0.99n}$ wires w.h.p..
- Problem: Find explicit family of functions (say in NP) that have no TC^0 circuits of poly(n) size.

- How efficient are threshold circuits for computing general functions?
- Depth-2 circuits can compute every function with size $\approx 2^n$.
- Random $f:\{0,1\}^n\to \{0,1\}$ has no threshold circuit with fewer than $2^{0.99n}$ wires w.h.p..
- Problem: Find explicit family of functions (say in NP) that have no TC^0 circuits of poly(n) size. Even open for depth 2.

Work on threshold circuits

- Hajnal Maass Pudlák Turan Szegedy 1987
- (Polynomial Approximations) Paturi Saks 1991, Siu Roychowdhury Kailath 1992; Beigel 1994; Aspnes, Beigel, Furst and Rudich 1994; Podolskii 2012
- (Combinatorial restrictions) Impagliazzo Paturi Saks 1991
- (Communication complexity) Nisan 1992; Hansen and Miltersen 2004; Chattopadhyay and Hansen 2005; Lovett, S. 2012
- (Analytic techniques) Gopalan and Servedio 2010

• (Furst-Saxe-Sipser, Ajtai, Yao, Håstad 80s) PARITY not in $AC^0(2^{n^{1/(d-1)}}, d)$.

- (Furst-Saxe-Sipser, Ajtai, Yao, Håstad 80s) PARITY not in $AC^0(2^{n^{1/(d-1)}}, d)$.
- (Impagliazzo-Paturi-Saks 1991) PARITY not in $TC_g^0(n^{1/2(d-1)}, d)$ and $TC_w^0(n^{1+\varepsilon^d}, d)$.

- (Furst-Saxe-Sipser, Ajtai, Yao, Håstad 80s) PARITY not in $AC^0(2^{n^{1/(d-1)}}, d)$.
- (Impagliazzo-Paturi-Saks 1991) PARITY not in $TC_g^0(n^{1/2(d-1)}, d)$ and $TC_w^0(n^{1+\varepsilon^d}, d)$.
- (Kane-Williams 2015) Explicit functions not in $TC_g^0(n^{1.5-o(1)}, 2)$ and $TC_w^0(n^{2.5-o(1)}, 2)$.

- (Furst-Saxe-Sipser, Ajtai, Yao, Håstad 80s) PARITY not in $AC^0(2^{n^{1/(d-1)}}, d)$.
- (Impagliazzo-Paturi-Saks 1991) PARITY not in $TC_g^0(n^{1/2(d-1)}, d)$ and $TC_w^0(n^{1+\epsilon^d}, d)$.
- (Kane-Williams 2015) Explicit functions not in $\mathrm{TC}_g^0(n^{1.5-o(1)}, 2)$ and $\mathrm{TC}_w^0(n^{2.5-o(1)}, 2)$. Also extends to a special case of depth-3.

• Want to show a function $f: \{0,1\}^n \to \{0,1\}$ hard on *average*.

► < ∃ ►</p>

- Want to show a function $f: \{0,1\}^n \to \{0,1\}$ hard on *average*.
- Trivial to compute *f* on half the inputs.

- Want to show a function $f: \{0,1\}^n \to \{0,1\}$ hard on *average*.
- Trivial to compute f on half the inputs.
- f has $\varepsilon\text{-correlation}$ with ckt C if

$$\operatorname{Corr}(C, f) := \Pr_{x}[C(x) = f(x)] - \frac{1}{2} \le \varepsilon.$$

- Want to show a function $f: \{0,1\}^n \to \{0,1\}$ hard on *average*.
- Trivial to compute f on half the inputs.
- f has ε -correlation with ckt C if

$$\operatorname{Corr}(C, f) := \Pr_{x}[C(x) = f(x)] - \frac{1}{2} \le \varepsilon.$$

• Want to show that f hard on average against $TC^0(s, d)$.

• Improves our understanding of limitations of circuits.

- Improves our understanding of limitations of circuits.
- Lower bounds against slightly stronger circuit classes

- Improves our understanding of limitations of circuits.
- Lower bounds against slightly stronger circuit classes (E.g Kane-Williams 2015).

- Improves our understanding of limitations of circuits.
- Lower bounds against slightly stronger circuit classes (E.g Kane-Williams 2015).
- Prerequisite for constructing Pseudorandom generators (PRGs) for the circuit class.

- Improves our understanding of limitations of circuits.
- Lower bounds against slightly stronger circuit classes (E.g Kane-Williams 2015).
- Prerequisite for constructing Pseudorandom generators (PRGs) for the circuit class.
- Increased understanding can lead to satisfiability algorithms, learning algorithms,...

• (Impagliazzo-Paturi-Saks 1991) PARITY not in $\mathrm{TC}_q^0(n^{1/2(d-1)},d)$ and $\mathrm{TC}^0_w(n^{1+\varepsilon^d}, d).$

→ Ξ →

→ < ∃ >

Results

- (Impagliazzo-Paturi-Saks 1991) PARITY not in $TC_g^0(n^{1/2(d-1)}, d)$ and $TC_w^0(n^{1+\varepsilon^d}, d)$.
- Result 1: PARITY has o(1)-correlation with ${\rm TC}_g^0(o(n^{1/2(d-1)}),d)$ and ${\rm TC}_w^0(n^{1+\delta^d},d).$

Results

- (Impagliazzo-Paturi-Saks 1991) PARITY not in $TC_g^0(n^{1/2(d-1)}, d)$ and $TC_w^0(n^{1+\varepsilon^d}, d)$.
- Result 1: PARITY has o(1)-correlation with $TC_g^0(o(n^{1/2(d-1)}), d)$ and $TC_w^0(n^{1+\delta^d}, d)$.
- Gates result weaker than Nisan (1992) if any explicit function allowed.

Results

- (Impagliazzo-Paturi-Saks 1991) PARITY not in $TC_g^0(n^{1/2(d-1)}, d)$ and $TC_w^0(n^{1+\varepsilon^d}, d)$.
- Result 1: PARITY has o(1)-correlation with $TC_g^0(o(n^{1/2(d-1)}), d)$ and $TC_w^0(n^{1+\delta^d}, d)$.
- Gates result weaker than Nisan (1992) if any explicit function allowed.
- Result 2: Different explicit function has exponentially small correlation with $TC_w^0(n^{1+\delta^d}, d)$.

Random restrictions

• Restriction: setting variables to constants. Helps simplify circuit.

► < ∃ ►</p>

Random restrictions

• Restriction: setting variables to constants. Helps simplify circuit. $\rho: \{x_1, \ldots, x_n\} \to \{0, 1, *\}.$

• • = • • = •

Random restrictions

- Restriction: setting variables to constants. Helps simplify circuit. $\rho: \{x_1, \ldots, x_n\} \rightarrow \{0, 1, *\}.$
- Random restriction $\rho \sim \mathcal{R}_p$:

$$\Pr_{\rho}[\rho(x_i) = *] = p$$
 $\Pr_{\rho}[\rho(x_i) = 0/1] = \frac{1-p}{2}$

-1

- - E 🕨

• Role of Random restriction: simplify circuit, while leaving hard function (rel.) unchanged.

- Role of Random restriction: simplify circuit, while leaving hard function (rel.) unchanged.
- Eg. with AC^0 and PARITY.

- Role of Random restriction: simplify circuit, while leaving hard function (rel.) unchanged.
- Eg. with AC^0 and PARITY.

 $f(x) = x_1 \oplus \cdots \oplus x_n$

- Role of Random restriction: simplify circuit, while leaving hard function (rel.) unchanged.
- Eg. with AC^0 and PARITY.

$$f(x) = x_1 \oplus \cdots \oplus x_n$$
 $f|_{\rho_1}(x) = \bigoplus_{i \in \rho_1^{-1}(*)} x_i$

- Role of Random restriction: simplify circuit, while leaving hard function (rel.) unchanged.
- Eg. with AC⁰ and PARITY.

 $f(x) = x_1 \oplus \dots \oplus x_n \qquad f|_{\rho_1}(x) = \oplus_{i \in \rho_1^{-1}(*)} x_i \qquad f|_{\rho_1 \rho_2}(x) \qquad f|_{\rho_1 \rho_2 \rho_3}(x)$

• How does the circuit simplify due to a random restriction?

Key lemma

- How does the circuit simplify due to a random restriction?
- Håstad's Switching lemma: If C is a small CNF (resp. DNF), then whp $C|_{\rho}$ is a small DNF (resp. CNF).

Key lemma

- How does the circuit simplify due to a random restriction?
- Håstad's Switching lemma: If C is a small CNF (resp. DNF), then whp $C|_{\rho}$ is a small DNF (resp. CNF).
- For threshold circuits: Peres' theorem.

Peres' theorem

• Informal: if f a threshold function and $\rho \sim \mathcal{R}_p$ (small p), then $f|_{\rho}$ is close to constant whp.

► < ∃ ►</p>

Peres' theorem

- Informal: if f a threshold function and $\rho \sim \mathcal{R}_p$ (small p), then $f|_{\rho}$ is close to constant whp.
- Measure bias using $\operatorname{Var}(g) = 2 \operatorname{Pr}_{x,y}[g(x) \neq g(y)] \in [0,1].$

Peres' theorem

- Informal: if f a threshold function and $\rho \sim \mathcal{R}_p$ (small p), then $f|_{\rho}$ is close to constant whp.
- Measure bias using $\operatorname{Var}(g) = 2 \operatorname{Pr}_{x,y}[g(x) \neq g(y)] \in [0,1].$
- g unbiased $\Leftrightarrow \operatorname{Var}(g) = 1$.
- Informal: if f a threshold function and $\rho \sim \mathcal{R}_p$ (small p), then $f|_{\rho}$ is close to constant whp.
- Measure bias using $\operatorname{Var}(g) = 2 \operatorname{Pr}_{x,y}[g(x) \neq g(y)] \in [0,1].$
- g unbiased $\Leftrightarrow \operatorname{Var}(g) = 1$. g constant $\Leftrightarrow \operatorname{Var}(g) = 0$.

- Informal: if f a threshold function and $\rho \sim \mathcal{R}_p$ (small p), then $f|_{\rho}$ is close to constant whp.
- Measure bias using $\operatorname{Var}(g) = 2 \operatorname{Pr}_{x,y}[g(x) \neq g(y)] \in [0,1].$
- g unbiased $\Leftrightarrow \operatorname{Var}(g) = 1$. g constant $\Leftrightarrow \operatorname{Var}(g) = 0$.

Theorem (Peres 2003)

f a threshold function. $\mathbf{E}_{\rho}[\operatorname{Var}(f|_{\rho})] = O(\sqrt{p}).$

- Informal: if f a threshold function and $\rho \sim \mathcal{R}_p$ (small p), then $f|_{\rho}$ is close to constant whp.
- Measure bias using $\operatorname{Var}(g) = 2 \operatorname{Pr}_{x,y}[g(x) \neq g(y)] \in [0,1].$
- g unbiased $\Leftrightarrow \operatorname{Var}(g) = 1$. g constant $\Leftrightarrow \operatorname{Var}(g) = 0$.

Theorem (Peres 2003)

- f a threshold function. $\mathbf{E}_{\rho}[\operatorname{Var}(f|_{\rho})] = O(\sqrt{p}).$
 - Compare with PARITY: $\mathbf{E}_{\rho}[Var(PARITY|_{\rho})] \approx 1$ unless $p \approx 1/n$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- Informal: if f a threshold function and $\rho \sim \mathcal{R}_p$ (small p), then $f|_{\rho}$ is close to constant whp.
- Measure bias using $\operatorname{Var}(g) = 2 \operatorname{Pr}_{x,y}[g(x) \neq g(y)] \in [0,1].$
- g unbiased $\Leftrightarrow \operatorname{Var}(g) = 1$. g constant $\Leftrightarrow \operatorname{Var}(g) = 0$.

Theorem (Peres 2003)

- f a threshold function. $\mathbf{E}_{\rho}[\operatorname{Var}(f|_{\rho})] = O(\sqrt{p}).$
 - Compare with PARITY: $\mathbf{E}_{\rho}[Var(PARITY|_{\rho})] \approx 1$ unless $p \approx 1/n$.

Corollary

f a threshold function. Corr $(f, \text{PARITY}) \leq O(\frac{1}{\sqrt{n}})$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem

$$C \in \mathrm{TC}_q^0(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Theorem

- $C \in \mathrm{TC}^0_a(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$
- $C \in \mathrm{TC}^0_a(k, d).$
- Bottom level gates: g_1, \ldots, g_k .

Theorem

- $C \in \mathrm{TC}^0_a(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$
- $C \in \mathrm{TC}^0_a(k, d).$
- Bottom level gates: g_1, \ldots, g_k .
- Apply $\rho \sim \mathcal{R}_p$. Use Peres.

Theorem

- $C \in \mathrm{TC}^0_a(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$
- $C \in \mathrm{TC}^0_a(k, d).$
- Bottom level gates: g_1, \ldots, g_k .
- Apply $\rho \sim \mathcal{R}_p$. Use Peres.
- $\mathbf{E}_{\rho}[\sum_{i} \operatorname{Var}(g_{i})] \leq O(k\sqrt{p}).$

Theorem

- $C \in \mathrm{TC}_q^0(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$
- $C \in \mathrm{TC}_g^0(k, d)$.
- Bottom level gates: g_1, \ldots, g_k .
- Apply $\rho \sim \mathcal{R}_p$. Use Peres.
- $\mathbf{E}_{\rho}[\sum_{i} \operatorname{Var}(g_i)] \le O(k\sqrt{p}).$
- Replace biased gates with constants. Depth is d-1.

Theorem

- $C \in \mathrm{TC}^0_a(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$
- $C \in \mathrm{TC}^0_a(k, d).$
- Bottom level gates: g_1, \ldots, g_k .
- Apply $\rho \sim \mathcal{R}_p$. Use Peres.
- $\mathbf{E}_{\rho}[\sum_{i} \operatorname{Var}(g_{i})] \leq O(k\sqrt{p}).$
- Replace biased gates with constants. Depth is d-1.
- Continue.

→

Theorem

$$C \in \mathrm{TC}_q^0(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$$

イロト イ団ト イヨト イヨト

Theorem

$$C \in \mathrm{TC}_q^0(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$$

• $C \in \mathrm{TC}_g^0(k, d)$.

э.

Theorem

$$C \in \mathrm{TC}_{g}^{0}(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$$

- $C \in \mathrm{TC}_g^0(k, d)$.
- Apply $\rho \sim \mathcal{R}_p d$ times.

3

- ∢ ∃ ▶

Theorem

$$C \in \mathrm{TC}_{g}^{0}(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$$

- $C \in \mathrm{TC}_g^0(k, d)$.
- Apply $\rho \sim \mathcal{R}_p d$ times.

3

- ∢ ∃ ▶

Theorem

$$C \in \mathrm{TC}^0_q(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$$

- $C \in \mathrm{TC}_g^0(k, d)$.
- Apply $\rho \sim \mathcal{R}_p d$ times.

-

-∢ ∃ ▶

Theorem

$$C \in \mathrm{TC}_{g}^{0}(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$$

- $C \in \mathrm{TC}_g^0(k, d)$.
- Apply $\rho \sim \mathcal{R}_p d$ times.

3

- ∢ ∃ ▶

Theorem

$$C \in \mathrm{TC}_{g}^{0}(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$$

- $C \in \mathrm{TC}^0_q(k, d).$
- Apply $\rho \sim \mathcal{R}_p \ d$ times.
- I.e. apply $\rho \sim \mathcal{R}_{p^d} = \mathcal{R}_q$.

Theorem

$$C \in \mathrm{TC}_{g}^{0}(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$$

- $C \in \mathrm{TC}^0_q(k, d).$
- Apply $\rho \sim \mathcal{R}_p d$ times.
- I.e. apply $\rho \sim \mathcal{R}_{p^d} = \mathcal{R}_q$.
- $\mathbf{E}_{\rho}[\operatorname{Var}(C|_{\rho})] \leq O(kq^{1/2d}).$

∃ →

- ∢ ∃ ▶

Theorem

$$C \in \mathrm{TC}_{g}^{0}(o(n^{1/2(d-1)}), d) \Rightarrow \mathrm{Corr}(C, \mathrm{PARITY}) = o(1).$$

- $C \in \mathrm{TC}^0_a(k, d)$.
- Apply $\rho \sim \mathcal{R}_p d$ times.
- I.e. apply $\rho \sim \mathcal{R}_{p^d} = \mathcal{R}_q$.
- $\mathbf{E}_{\rho}[\operatorname{Var}(C|_{\rho})] \leq O(kq^{1/2d}).$
- $\operatorname{Corr}(C, \operatorname{PARITY}) \leq o(1) = o(1)$ if $k \ll n^{1/2d}$

-

-∢ ∃ ▶

Chen, Santhanam, S.

<ロ> (日) (日) (日) (日) (日)

Theorem

For some $\delta > 0$, and $C \in TC_w^0(n^{1+\delta^d}, d)$, Corr(C, PARITY) = o(1).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem

For some $\delta > 0$, and $C \in TC_w^0(n^{1+\delta^d}, d)$, Corr(C, PARITY) = o(1).

• Why does the previous proof not work?

→ 3 → 4 3

Theorem

- Why does the previous proof not work?
- Probability of failure in Peres' theorem: $O(1/\sqrt{n})$.

Theorem

- Why does the previous proof not work?
- Probability of failure in Peres' theorem: $O(1/\sqrt{n})$.
- Cannot handle more than $O(\sqrt{n})$ gates.

Theorem

- Why does the previous proof not work?
- Probability of failure in Peres' theorem: $O(1/\sqrt{n})$.
- Cannot handle more than $O(\sqrt{n})$ gates.
- Even if O(n) wires, we could have up to O(n) gates.

Theorem

- Why does the previous proof not work?
- Probability of failure in Peres' theorem: $O(1/\sqrt{n})$.
- Cannot handle more than $O(\sqrt{n})$ gates.
- Even if O(n) wires, we could have up to O(n) gates.

Theorem (Peres)

f a threshold. $\mathbf{E}_{\rho \sim \mathcal{R}_p}[\operatorname{Var}(f|_{\rho})] = O(\sqrt{p}).$

• Why $O(\sqrt{p})?$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

Theorem (Peres)

f a threshold. $\mathbf{E}_{\rho \sim \mathcal{R}_p}[\operatorname{Var}(f|_{\rho})] = O(\sqrt{p}).$

- Why $O(\sqrt{p})$?
- Eg: $f(x) = [\![\sum_i x_i \ge n/2]\!]$.

Theorem (Peres)

f a threshold. $\mathbf{E}_{\rho \sim \mathcal{R}_p}[\operatorname{Var}(f|_{\rho})] = O(\sqrt{p}).$

- Why $O(\sqrt{p})$?
- Eg: $f(x) = [\![\sum_i x_i \ge n/2]\!].$
- $f|_{\rho}(x) = [\![\sum_{i \le m} x_i \ge n/2 \theta]\!].$

Theorem (Peres)

f a threshold. $\mathbf{E}_{\rho \sim \mathcal{R}_p}[\operatorname{Var}(f|_{\rho})] = O(\sqrt{p}).$

- Why $O(\sqrt{p})$?
- Eg: $f(x) = [\![\sum_i x_i \ge n/2]\!]$.
- $f|_{\rho}(x) = [\![\sum_{i \le m} x_i \ge n/2 \theta]\!].$

過 ト イヨ ト イヨト

Theorem (Peres)

f a threshold. $\mathbf{E}_{\rho \sim \mathcal{R}_p}[\operatorname{Var}(f|_{\rho})] = O(\sqrt{p}).$

- Why $O(\sqrt{p})$?
- Eg: $f(x) = \llbracket \sum_i x_i \ge n/2 \rrbracket$.

•
$$f|_{\rho}(x) = [\![\sum_{i \le m} x_i \ge n/2 - \theta]\!].$$

•
$$\theta = \text{sum of } n - m \approx n \text{ random bits.}$$

Average case bounds for TC⁰

Theorem (Peres)

f a threshold. $\mathbf{E}_{\rho \sim \mathcal{R}_p}[\operatorname{Var}(f|_{\rho})] = O(\sqrt{p}).$

- Why $O(\sqrt{p})$?
- Eg: $f(x) = [\![\sum_i x_i \ge n/2]\!].$

•
$$f|_{\rho}(x) = [\![\sum_{i \le m} x_i \ge n/2 - \theta]\!].$$

• $\theta = \text{sum of } n - m \approx n \text{ random bits.}$

•
$$\theta = (n-m)/2$$
: $\operatorname{Var}(f|_{\rho}) = 1$.

Theorem (Peres)

f a threshold. $\mathbf{E}_{\rho \sim \mathcal{R}_p}[\operatorname{Var}(f|_{\rho})] = O(\sqrt{p}).$

• Why $O(\sqrt{p})$? • Eg: $f(x) = [\![\sum_i x_i \ge n/2]\!]$. • $f|_{\rho}(x) = [\![\sum_{i \le m} x_i \ge n/2 - \theta]\!]$. • $\theta = \text{sum of } n - m \approx n \text{ random bits.}$ • $\theta = (n - m)/2$: $\operatorname{Var}(f|_{\rho}) = 1$. • $\theta = (n - m)/2 \pm O(\sqrt{m})$: $\operatorname{Var}(f|_{\rho}) = \Omega(1)$.

Theorem (Peres)

f a threshold. $\mathbf{E}_{\rho \sim \mathcal{R}_p}[\operatorname{Var}(f|_{\rho})] = O(\sqrt{p}).$

• Why $O(\sqrt{p})$? • Eg: $f(x) = [\sum_{i} x_i \ge n/2].$ • $f|_{\rho}(x) = [\![\sum_{i < m} x_i \ge n/2 - \theta]\!].$ • $\theta = \text{sum of } n - m \approx n \text{ random bits.}$ • $\theta = (n-m)/2$: Var $(f|_{\rho}) = 1$. • $\theta = (n-m)/2 \pm O(\sqrt{m})$: $\operatorname{Var}(f|_{\rho}) = \Omega(1).$ • $\theta = (n-m)/2 \pm \omega(\sqrt{m})$: $Var(f|_{o}) = o(1).$

Refining Peres' theorem (contd.)

Theorem (Peres)

f a threshold. $\mathbf{E}_{\rho \sim \mathcal{R}_p}[\operatorname{Var}(f|_{\rho})] = O(\sqrt{p}).$

• Why
$$O(\sqrt{p})$$
?
• Eg: $f(x) = [\![\sum_i x_i \ge n/2]\!]$.
• $f|_{\rho}(x) = [\![\sum_{i \le m} x_i \ge n/2 - \theta]\!]$.
• $\theta = (n - m)/2 \pm \omega(\sqrt{m})$:
 $\operatorname{Var}(f|_{\rho}) = o(1)$.

 $\sum_{i < m} x_i$

Refining Peres' theorem (contd.)

Theorem (Peres)

C

f a threshold. $\mathbf{E}_{\rho \sim \mathcal{R}_p}[\operatorname{Var}(f|_{\rho})] = O(\sqrt{p}).$

• Why
$$O(\sqrt{p})$$
?
• Eg: $f(x) = \llbracket \sum_{i \le m} x_i \ge n/2 \rrbracket$.
• $f|_{\rho}(x) = \llbracket \sum_{i \le m} x_i \ge n/2 - \theta \rrbracket$.
• $\theta = (n - m)/2 \pm \omega(\sqrt{m})$:
Var $(f|_{\rho}) = o(1)$.
• $\mathbf{E}[\operatorname{Var}(f|_{\rho})] = \Omega(1)\sqrt{m}/\sqrt{n} = \Omega(\sqrt{p})$.

・ロン ・四 ・ ・ ヨン ・ ヨン
Refining Peres' theorem (contd.)

Lemma (Peres extension)

f a threshold. $\Pr_{\rho}[\operatorname{Var}(f|_{\rho}) \text{ noticeable}] \leq p^{0.1}.$

Chen, Santhanam, S.

Average case bounds for TC^0

May 25, 2016 23 / 27

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Refining Peres' theorem (contd.)

Lemma (Peres extension)

f a threshold. $\Pr_{\rho}[\operatorname{Var}(f|_{\rho}) \text{ noticeable}] \leq p^{0.1}.$

• $\operatorname{Var}(f)$ not noticeable $\Leftrightarrow \operatorname{Var}(f) = \exp(-n^{\Omega(1)}).$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Refining Peres' theorem (contd.)

Lemma (Peres extension)

f a threshold. $\Pr_{\rho}[\operatorname{Var}(f|_{\rho}) \text{ noticeable}] \leq p^{0.1}.$

- $\operatorname{Var}(f)$ not noticeable $\Leftrightarrow \operatorname{Var}(f) = \exp(-n^{\Omega(1)}).$
- Proof of lemma via standard CLT + critical index argument.

Theorem

For some
$$\delta > 0$$
, and $C \in TC_w^0(n^{1+\delta^d}, d)$, $Corr(C, PARITY) = o(1)$.

(日) (同) (三) (三)

Theorem

For some $\delta > 0$, and $C \in TC_w^0(n^{1+\delta^d}, d)$, Corr(C, PARITY) = o(1).

• $\sum_i \deg(g_i) \le n^{1+\alpha}$.

過下 イヨト イヨト ニヨ

Theorem

For some $\delta > 0$, and $C \in TC_w^0(n^{1+\delta^d}, d)$, Corr(C, PARITY) = o(1).

- $\sum_{i} \deg(g_i) \le n^{1+\alpha}$.
- Apply $\rho \sim \mathcal{R}_p$, $p = n^{-O(\alpha)}$.

過き イヨト イヨト ニヨ

Theorem

For some $\delta > 0$, and $C \in TC_w^0(n^{1+\delta^d}, d)$, Corr(C, PARITY) = o(1).

• $\sum_i \deg(g_i) \le n^{1+\alpha}$.

• Apply
$$ho \sim \mathcal{R}_p$$
, $p = n^{-O(lpha)}$

• New Peres: $(1-p^{0.1})$ gates highly biased.

過下 イヨト イヨト ニヨ

Theorem

For some $\delta > 0$, and $C \in TC_w^0(n^{1+\delta^d}, d)$, Corr(C, PARITY) = o(1).

• $\sum_i \deg(g_i) \le n^{1+\alpha}$.

• Apply
$$ho \sim \mathcal{R}_p$$
, $p = n^{-O(lpha)}$

- New Peres: $(1-p^{0.1})$ gates highly biased.
- Set to constants.

Theorem

For some $\delta > 0$, and $C \in TC_w^0(n^{1+\delta^d}, d)$, Corr(C, PARITY) = o(1).

• $\sum_i \deg(g_i) \le n^{1+\alpha}$.

• Apply
$$ho \sim \mathcal{R}_p$$
, $p = n^{-O(lpha)}$

- New Peres: $(1-p^{0.1})$ gates highly biased.
- Set to constants.
- $\sum_{\text{unbiased}} \deg(g_i) \le p^{1+0.1} \cdot n^{1+\alpha} \ll pn.$

伺下 イヨト イヨト ニヨ

Theorem

For some $\delta > 0$, and $C \in TC_w^0(n^{1+\delta^d}, d)$, Corr(C, PARITY) = o(1).

• $\sum_i \deg(g_i) \le n^{1+\alpha}$.

• Apply
$$ho \sim \mathcal{R}_p$$
, $p = n^{-O(lpha)}$

- New Peres: $(1-p^{0.1})$ gates highly biased.
- Set to constants.
- $\sum_{\text{unbiased}} \deg(g_i) \le p^{1+0.1} \cdot n^{1+\alpha} \ll pn.$
- Set all vars and continue.

超す イヨト イヨト ニヨ

Theorem

For some $\delta > 0$, and $C \in \mathrm{TC}^0_w(n^{1+\delta^d}, d)$, $\mathrm{Corr}(C, \mathrm{PARITY}) = o(1)$.

-

Image: A matrix and a matrix

Theorem

For some $\delta > 0$, and $C \in \mathrm{TC}^0_w(n^{1+\delta^d}, d)$, $\mathrm{Corr}(C, \mathrm{PARITY}) = o(1)$.

• Above $o(1) = n^{-\Omega_d(1)}$.

• • = • • = •

= 900

Theorem

For some $\delta > 0$, and $C \in \mathrm{TC}^0_w(n^{1+\delta^d}, d)$, $\mathrm{Corr}(C, \mathrm{PARITY}) = o(1)$.

• Above
$$o(1) = n^{-\Omega_d(1)}$$
.

• For a suitable other function f, $\operatorname{Corr}(f, C) \leq \exp(-n^{\Omega_d(1)})$.

Theorem

For some $\delta > 0$, and $C \in TC_w^0(n^{1+\delta^d}, d)$, Corr(C, PARITY) = o(1).

• Above
$$o(1) = n^{-\Omega_d(1)}$$
.

- For a suitable other function f, $\operatorname{Corr}(f, C) \leq \exp(-n^{\Omega_d(1)})$.
- Satisfiability algorithms for $C \in \mathrm{TC}^0_w(n^{1+\delta^d},d)$ running in time $2^{n-n^{\Omega_d(1)}}$.

Theorem

For some $\delta > 0$, and $C \in TC^0_w(n^{1+\delta^d}, d)$, Corr(C, PARITY) = o(1).

• Above
$$o(1) = n^{-\Omega_d(1)}$$
.

- For a suitable other function f, $\operatorname{Corr}(f, C) \leq \exp(-n^{\Omega_d(1)})$.
- Satisfiability algorithms for $C \in \mathrm{TC}^0_w(n^{1+\delta^d},d)$ running in time $2^{n-n^{\Omega_d(1)}}$.
- Better learning algorithms for AC⁰ augmented with a few threshold gates.

• Proved correlation bounds for threshold circuits for computing PARITY and other explicit functions.

Summary

- Proved correlation bounds for threshold circuits for computing PARITY and other explicit functions.
- Bounds are close to tight for PARITY.

Summary

- Proved correlation bounds for threshold circuits for computing PARITY and other explicit functions.
- Bounds are close to tight for PARITY.
- Refined version of Peres' theorem gives more insight into the workings of threshold gates.

Summary

- Proved correlation bounds for threshold circuits for computing PARITY and other explicit functions.
- Bounds are close to tight for PARITY.
- Refined version of Peres' theorem gives more insight into the workings of threshold gates.
- More applications?
- Better lower bounds?

Chen, Santhanam, S.

<ロ> (日) (日) (日) (日) (日)

• Optimal worst case depth 2 circuit for PARITY? Upper bound O(n)gates and lower bound $\Omega(\sqrt{n})$.

過 ト イヨ ト イヨト

- Optimal worst case depth 2 circuit for PARITY? Upper bound O(n) gates and lower bound $\Omega(\sqrt{n})$.
- Optimal version of Peres' theorem for threshold circuits with few gates? Two versions: ours and Gopalan-Servedio. Want a common generalization.

- Optimal worst case depth 2 circuit for PARITY? Upper bound O(n) gates and lower bound $\Omega(\sqrt{n})$.
- Optimal version of Peres' theorem for threshold circuits with few gates? Two versions: ours and Gopalan-Servedio. Want a common generalization.

Thank you