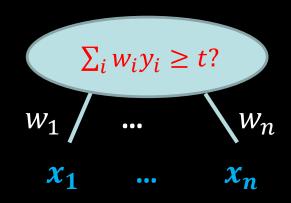
Some Depth Two (and Three) Threshold Circuit Lower Bounds

Ryan WilliamsStanfordJoint work with Daniel Kane (UCSD)

Introduction

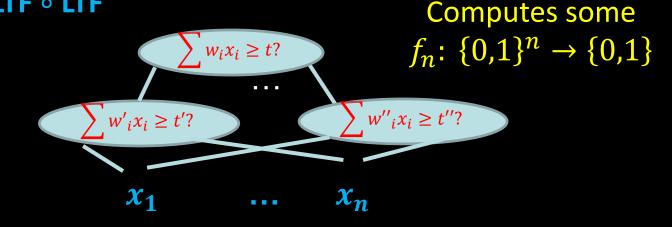
Def. $f_n: \{0,1\}^n \to \{0,1\}$ is a linear threshold function (LTF) if there are $w_1, \dots, w_n, t \in \mathbb{R}$ such that $\forall (x_1, \dots, x_n) \in \{0, 1\}^n, f(x_1, \dots, x_n) = 1$ iff $\sum_i w_i x_i \ge t$.



[McCulloch-Pitts '40s, Minsky-Papert '60s]

Depth-Two LTF Circuits

"Multilayer perceptron with one hidden layer" This talk: "LTF • LTF"



[MP'60s] Every $f_n: \{0,1\}^n \rightarrow \{0,1\}$ is computable by a LTF \circ LTF But the circuit could have $2^{\Omega(n)}$ gates/wires...!

> Question: Which functions $f = \{f_n\}$ have a LTF \circ LTF circuit family with $n^{O(1)}$ gates? Which do not? What about O(n) gates?

Depth-Two LTF Circuits

"Multilayer perceptron with one hidden layer"

This talk: "LTF \circ LTF" $\sum_{w_i x_i \ge t?} \qquad Computes some f_n: \{0,1\}^n \to \{0,1\}$ $\sum_{w'_i x_i \ge t'?} \qquad \sum_{w''_i x_i \ge t''?} \qquad x_1 \qquad \dots \qquad x_n$

- [IPS'93] PARITY of n bits needs $\Omega(n^{1.5})$ wires
- [ROS'93] Inner Prod Mod 2 on *n*-bit vectors needs $\Omega(n)$ gates
- If the weights in one layer are restricted to the set {-1,0,1}, get exp(n) lower bounds [HMPST'93], [Nisan'94], [FKLMSS'01] "TC0 depth-2 lower bounds"

OPEN: $E^{NP} \subset (LTF \circ LTF \text{ of } O(n) \text{ gates and } O(n^{1.6}) \text{ wires})?$ TC0 depth-3 circuits of O(n) gates and O($n^{1.6}$) wires?

This Work: Some Lower Bounds

Theorem 1 There's a function $A : \{0,1\}^* \rightarrow \{0,1\}$ such that 1. $A \in P$ (in fact, A is in uniform **TCO depth-3** of O(n) gates, and A has LTF \circ LTF circuits with $O(n^3)$ gates) 2. For all n, A_n does not have LTF \circ LTF circuits with $n^{1.5}/polylog(n)$ gates, nor with $n^{2.5}/polylog(n)$ wires

(even for a $\frac{1}{2}$ +o(1) fraction of inputs!)

Theorem 2 There's a function $B : \{0,1\}^* \rightarrow \{0,1\}$ such that

- **1.** *B* ∈ P
- For all n, B_n does not have TCO depth-3 circuits of n^{1.5}/polylog(n) gates, nor with n^{2.5}/polylog(n) wires

Remainder of the Talk: Size \equiv Gates

Outline

- Intuition Behind Theorem 1
- LTF-LTF Lower Bound for *Random* Functions
- Random Restriction Lemma for LTFs
- Theorem 2 (Briefly)
- Conclusion

Andreev's Function [A'87]

The *k*-bit multiplexer function is defined as:

 $M_{2^{k}}(x_{1}, \dots, x_{2^{k}}, a_{1}, \dots, a_{k}) \coloneqq x_{bin(a_{1} \cdots a_{k})}$ Let k be a power of two. And reev's function on $n = 2^{k+1}$ bits: $A_{n}(x_{1}, \dots, x_{2^{k}}, a_{1,1}, \dots, a_{1,2^{k}/k}, \dots, a_{k,1}, \dots, a_{k,2^{k}/k})$ $\coloneqq M_{2^{k}}(x_{1}, \dots, x_{2^{k}}, \bigoplus_{j} a_{1,j}, \dots, \bigoplus_{j} a_{k,j})$

Theorem [A'87, H'98]

 A_n requires DeMorgan formulas of size $\Omega\left(rac{n^3}{polylogn}
ight)$

Our proof of Theorem 1 will mimic aspects of this theorem. So let's look at the intuition for it...

n^3 Formula Lower Bound for Andreev

 $\begin{array}{ll} M_{2^{k}}(x_{1},\ldots,x_{2^{k}},a_{1},\ldots,a_{k}) & A_{n}(x_{1},\ldots,x_{2^{k}},a_{1,1},\ldots,a_{1,2^{k}/k},\ldots,a_{k,1},\ldots,a_{k,2^{k}/k}) \\ & \coloneqq x_{bin(a_{1}\cdots a_{k})} & \coloneqq M_{2^{k}}(x_{1},\ldots,x_{2^{k}},\bigoplus_{j}a_{1,j},\ldots,\bigoplus_{j}a_{k,j}) \end{array}$

Define a random process R on Boolean functions f with n inputs:

R(f): Randomly choose all but 100 log n inputs to f. Set all other inputs uniformly at random. Output the (100 log n)-input function g.

n^3 Formula Lower Bound for Andreev

$$\begin{array}{ll} M_{2^{k}}(x_{1}, \dots, x_{2^{k}}, a_{1}, \dots, a_{k}) & A_{n}(x_{1}, \dots, x_{2^{k}}, a_{1,1}, \dots, a_{1,2^{k}/k}, \dots, a_{k,1}, \dots, a_{k,2^{k}/k}) \\ & \coloneqq x_{bin(a_{1}\cdots a_{k})} & \coloneqq M_{2^{k}}(x_{1}, \dots, x_{2^{k}}, \bigoplus_{j} a_{1,j}, \dots, \bigoplus_{j} a_{k,j}) \end{array}$$

R(f): Randomly choose all but 100 log n inputs to f. Set all other inputs uniformly at random. Output the (100 log n)-input function g.

IDEA 1: On a DeMorgan formula *F* of size *s*, process R(F) outputs function *g* of expected size $< s \cdot \frac{polylog n}{n^2} + \sqrt{s} \cdot \frac{1}{n}$ [H'98]

IDEA 2: $R(A_n) = g$ needs $\ge \frac{n}{polylog n}$ size formulas, whp [A'87]

IDEA 2a: A random function $f: \{0,1\}^k \to \{0,1\}$ needs $\geq \frac{2^k}{\log k}$ size, whp

IDEA 2b: As $R(A_n)$ assigns $x_1, ..., x_n$ random 0/1 values, the output g needs $\ge \frac{n}{\log \log n}$ size, whp. (whp for all *i*, some $a_{i,j}$ is unset)

n³ Formula Lower Bound for Andreev

$$\begin{array}{ll} M_{2^{k}}(x_{1}, \dots, x_{2^{k}}, a_{1}, \dots, a_{k}) & A_{n}(x_{1}, \dots, x_{2^{k}}, a_{1,1}, \dots, a_{1,2^{k}/k}, \dots, a_{k,1}, \dots, a_{k,2^{k}/k}) \\ & \coloneqq x_{bin(a_{1}\cdots a_{k})} & \coloneqq M_{2^{k}}(x_{1}, \dots, x_{2^{k}}, \bigoplus_{j} a_{1,j}, \dots, \bigoplus_{j} a_{k,j}) \end{array}$$

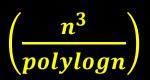
R(f): Randomly choose all but 100 log n inputs to f. Set all other inputs uniformly at random. Output the (100 log n)-input function g.

IDEA 1: On a DeMorgan formula F of size s, process R(F) outputs function g of expected size $< s \cdot \frac{polylog}{n^2} + \sqrt{s} \cdot \frac{1}{n}$ [H'98]

IDEA 2: $R(A_n) = g$ needs $\geq \frac{n}{polylog n}$ size formulas, whp [A'87]

Combining 1 and 2: If *F* computes A_n , then $s \ge \frac{n^3}{polylog n}$

Theorem A_n requires DeMorgan formulas of size $\Omega\left(\frac{n^3}{nolyloan}\right)$



n^3 Formula Lower Bound for Andreev

$$\begin{array}{ll} M_{2^{k}}(x_{1}, \dots, x_{2^{k}}, a_{1}, \dots, a_{k}) & A_{n}(x_{1}, \dots, x_{2^{k}}, a_{1,1}, \dots, a_{1,2^{k}/k}, \dots, a_{k,1}, \dots, a_{k,2^{k}/k}) \\ & \coloneqq x_{bin(a_{1}\cdots a_{k})} & \coloneqq M_{2^{k}}(x_{1}, \dots, x_{2^{k}}, \bigoplus_{j} a_{1,j}, \dots, \bigoplus_{j} a_{k,j}) \end{array}$$

R(f): Randomly choose all but 100 log n inputs to f. Set all other inputs uniformly at random. Output the (100 log n)-input function g.

IDEA 1: On a DeMorgan formula *F* of size *s*, process *R*(*F*) outputs function *g* of expected size $< s \cdot \frac{polylog n}{n^2} + \sqrt{s} \cdot \frac{1}{n}$ [H'98]

IDEA 2: $R(A_n) = g$ needs $\ge \frac{n}{polylog n}$ size formulas, whp [A'87]

Analogues of Ideas 1 and 2 for depth-2 LTF circuits?

LTF-LTF Lower Bound for Andreev?

$$M_{2^{k}}(x_{1}, \dots, x_{2^{k}}, a_{1}, \dots, a_{k}) \qquad A_{n}(x_{1}, \dots, x_{2^{k}}, a_{1,1}, \dots, a_{1,2^{k}/k}, \dots, a_{k,1}, \dots, a_{k,2^{k}/k}) \\ \coloneqq x_{bin(a_{1}\cdots a_{k})} \qquad \qquad \coloneqq M_{2^{k}}(x_{1}, \dots, x_{2^{k}}, \bigoplus_{j} a_{1,j}, \dots, \bigoplus_{j} a_{k,j})$$

R(f): Randomly choose all but 100 log n inputs to f. Set all other inputs uniformly at random. Output the (100 log n)-input function g.

Lemma 1: On a LTF-LTF circuit *C* of *s* size (gates), R(C) outputs a function *g* of expected LTF-LTF size $< s \cdot \frac{O(\log n)}{n^{1/2}}$

Lemma 2: $R(A_n) = g$ needs $\geq \frac{n}{polylog n}$ size LTF-LTF circuits, whp

Combining 1 and 2: If *C* computes A_n , then $s \ge \frac{n^{1.5}}{polylog n}$

Theorem 1 A_n requires LTF-LTF circuits of size $\Omegaig(n^{1.5-o(1)}ig)$

Outline

- Intuition Behind Theorem 1
- LTF-LTF Lower Bound for *Random* Functions
- Random Restriction Lemma for LTFs
- Theorem 2 (Briefly)
- Conclusion

$$\begin{array}{ll} M_{2^{k}}(x_{1}, \dots, x_{2^{k}}, a_{1}, \dots, a_{k}) & A_{n}(x_{1}, \dots, x_{2^{k}}, a_{1,1}, \dots, a_{1,2^{k}/k}, \dots, a_{k,1}, \dots, a_{k,2^{k}/k}) \\ & \coloneqq x_{bin(a_{1}\cdots a_{k})} & \coloneqq M_{2^{k}}(x_{1}, \dots, x_{2^{k}}, \bigoplus_{j} a_{1,j}, \dots, \bigoplus_{j} a_{k,j}) \end{array}$$

R(f): Randomly choose all but 100 log n inputs to f. Set all other inputs uniformly at random. Output the (100 log n)-input function g.

Reminder of Lemma 2:

 $R(A_n) = g \text{ needs} \ge \frac{n}{polylog n}$ size LTF-LTF circuits, whp

Lemma 2 follows from:

Theorem: Random $f: \{0,1\}^k \to \{0,1\}$ need $\geq \frac{2^k}{poly(k)}$ gates to be computed by LTF-LTF circuits, whp

Want to show an exponential lower bound for random functions

Theorem: Random $f: \{0,1\}^k \to \{0,1\}$ need $> \frac{2^k}{k^3}$ gates to be computed by LTF-LTF circuits, whp

Key Claim: The number of distinct Boolean functions $f: \{0,1\}^n \rightarrow \{0,1\}$ computable by LTF-LTF circuits of *s* gates is $2^{O(n^2s)}$

Proof of Theorem (Assuming Claim): The number of functions $f: \{0,1\}^n \to \{0,1\}$ computable by LTF-LTF circuits of $\mathbf{s} = \frac{2^n}{n^3}$ gates is only $2^{O\left(n^2 \cdot \left(\frac{2^n}{n^3}\right)\right)} \le 2^{\frac{2^n}{n}}$. But there are 2^{2^n} Boolean functions. So, $\Pr[f$ has size s LTF-LTF circuits] = o(1). QED

Key Claim: The number of distinct Boolean functions $f: \{0,1\}^n \rightarrow \{0,1\}$ computable by LTF-LTF circuits of <u>s</u> gates is $2^{O(n^2s)}$

First consider the case s = 1. We'll use: **Chow's Theorem [FOCS'61]** Every LTF f is uniquely determined by the Fourier coefficients $\hat{f}(\emptyset), \hat{f}(\{1\}), ..., \hat{f}(\{n\})$

How do we use this? Well, what *is* a Fourier coefficient? For $f: \{-1,1\}^n \rightarrow \{-1,1\}$ and $S \subseteq [n]$, $\hat{f}(S) = E_x[f(x) \cdot PARITY_S(x)]$ So $\hat{f}(S) = j/2^n$, where $j \in \{-2^n, ..., -1, 0, 1, ..., 2^n\}$

Thus there are $(2^{n+1}+1)^{n+1} \le 2^{O(n^2)}$ choices for the Fourier coefficients, so $2^{O(n^2)}$ LTFs on n variables

Key Claim: The number of distinct Boolean functions $f: \{0,1\}^n \rightarrow \{0,1\}$ computable by LTF-LTF circuits of *s* gates is $2^{O(n^2s)}$

Theorem (see also [ROS'94]) Fix $f_1, ..., f_s: \{0,1\}^n \rightarrow \{0,1\}$. There are $2^{O(ns)}$ functions of the form $h(x) = g(f_1(x), ..., f_s(x))$, where g is an LTF on s bits.

Proof Idea. Show that every such *h* is uniquely determined by: 1. The *number* of distinct vectors $y \in \{0,1\}^s$ such that $y = (f_1(x), ..., f_s(x))$ and g(y) = 1

2. The *component-wise sum* of all such *y*'s

Total number of possibilities is $2^{O(ns)}$

Total number of LTF-LTF functions is $(2^{0(n^2)})^s \cdot 2^{0(n s)}$

Outline

- Intuition Behind Theorem 1
- LTF-LTF Lower Bound for *Random* Functions
- Random Restriction Lemma for LTFs
- Theorem 2 (Briefly)
- Conclusion

Random Restrictions to LTFs

R(f): Randomly choose all but 100 log n inputs to f. Set all other inputs uniformly at random. Output the (100 log n)-input function g.

Reminder of Lemma 1: On a LTF-LTF circuit *C* of *s* size (gates), R(C) outputs a function *g* of expected LTF-LTF size < $s \cdot \frac{O(\log n)}{n^{1/2}}$

(Weak) Random Restriction Lemma: Let f be an LTF on n vars.
Let k << n. Randomly choose all but k inputs to f and assign all other inputs randomly, obtaining g on k vars. Then</p>

Pr[g is a constant function] $\geq 1 - \frac{O(k)}{\sqrt{n}}$

Proof of Lemma 1 (Assuming RR Lemma):

Set $k = 100 \log n$. After applying R to circuit C, the expected number of *non-constant* gates on the bottom layer is $s \cdot \frac{O(\log n)}{n^{1/2}}$

(Weak) Random Restriction Lemma: Let f be an LTF on n vars. Let $k \ll n$. Randomly choose all but k inputs to f and assign all other inputs randomly, obtaining g on k vars. Then

 $\Pr[g \text{ is a constant function}] \geq 1 - \frac{O(k)}{\sqrt{n}}$

Remark: The lemma is already tight for f = MAJORITY. Randomly assign 0/1 to all but one input of f.

What's the probability the remaining bit influences the output?

Pr[½ of the other bits are set 0, ½ are set to 1] $\sim \frac{1}{\sqrt{n}}$

Intuition: When does an LTF become a constant function? When its threshold value becomes "too high" or "too low" after a partial assignment to the variables

Consider LTF defined by linear form L(x) and threshold value t. Let $B \subseteq [n]$ be the index set of the k unassigned vars. Randomly assign $x_i \coloneqq v_i$ for all $i \notin B$. Let $L'(v) = \sum_{j \notin B} a_j v_j$. If $L'(v) < t - \sum_{i \in B: a_i > 0} |a_i|$ then the remaining LTF $\equiv 0$. If $L'(v) > t + \sum_{i \in B: a_i < 0} |a_i|$ then the remaining LTF $\equiv 1$. [LO'43, E'45] Let $L(x_1, ..., x_n) = \sum_j a_j x_j$. Let I be an (open) interval of \mathbb{R} . Suppose there are k integers j such that $|a_j| \ge |I|$. Then $\Pr_{x \in \{0,1\}^n} [L(x) \in I] \le \frac{O(1)}{\sqrt{k}}$

Proof [Erdős'45]: Note WLOG, all a_i are positive. Fix 0/1 values for all x_i with $a_i < |I|$. For the remaining variables $(x_{i_1}, ..., x_{i_k}) \in \{0, 1\}^k$ with $a_{i_i} \ge |I|$, define $S_{x_{i_1},\ldots,x_{i_k}} \coloneqq \{j \mid x_{i_j} = 1\} \subseteq [k].$ Note if L(x) and L(y) are in I, then |L(x) - L(y)| < |I|. This implies the corresponding $S_{x_{i_1},...,x_{i_k}}$ and $S_{y_{i_1},...,y_{i_k}}$ are *incomparable*. Therefore $S' = \{S_{\chi_{i_1,\dots,\chi_{i_k}}} \mid L(\mathbf{x}) \in I\}$ is an anti-chain, so $|S'| \leq \binom{k}{k/2}$. There are 2^k total assignments to the $(x_{i_1}, \dots, x_{i_k})$. But this holds for all 0/1 choices of x_i with $a_i < |I|$, so $\Pr_{x \in \{0,1\}^n} [L(x) \in I] \leq \frac{\binom{k}{k/2}}{2^k} \leq \frac{O(1)}{\sqrt{k}}$

(Weak) Random Restriction Lemma: Let f be an LTF on n vars. Let $k \ll n$. Randomly choose all but k inputs to f and assign all other inputs randomly, obtaining g on k vars. Then

Pr[g is a constant function] $\geq 1 - \frac{O(k)}{\sqrt{n}}$

A simple case: Suppose all $a_i \in \{-1, 1\}$. Consider LTF defined by linear form L(x) and threshold value t. Let $B \subseteq [n]$ be *any* index set of *k unassigned* vars. Randomly assign $x_i \coloneqq v_i$ for all $i \notin B$. Let $L'(v) = \sum_{i \notin B} a_i v_i$. The remaining LTF on the vars in *B* is *not* a constant function \Leftrightarrow $L'(v) \in (t - P, t + Q),$ where $P = (\# i \in B: a_i = 1)$ and $Q = (\# i \in B: a_i = -1)$. Want to upper bound: $Pr_{v}[\sum_{i \notin B} a_{i}v_{i} \in (t - P, t + Q)]$ Idea: Divide (t - P, t + Q) into k intervals I_1, \dots, I_k of length 1.

For every *i*, we have $Pr_{v}[L'(v) \in I_{i}] \leq \frac{O(1)}{\sqrt{n-k}}$ by the L-O Lemma.

Then $\Pr[...] \leq \sum_{i} Pr_{v}[L'(v) \in I_{i}] \leq \frac{O(k)}{\sqrt{n-k}}$ by the union bound

Outline

- Intuition Behind Theorem 1
- LTF-LTF Lower Bound for *Random* Functions
- Random Restriction Lemma for LTFs
- Theorem 2 (Briefly)
- Conclusion

Theorem 2 There's a function $B : \{0,1\}^* \rightarrow \{0,1\}$ such that **1.** $B \in P$

2. For all n, B_n does not have **TCO depth-3 circuits** of $n^{1.5}/polylog(n)$ gates nor with $n^{2.5}/polylog(n)$ wires

Observation: B_n CANNOT BE A_n

 A_n has TC0 depth-3 circuits of O(n) gates!

Let *D* be an $O\left(\frac{n}{\epsilon^2}\right) \times n$ matrix, whose rows are *n*-bit strings in an $\varepsilon = \frac{1}{n^7}$ -biased set. Think of $D: \mathbb{F}_2^n \to \mathbb{F}_2^{O\left(\frac{n}{\epsilon^2}\right)}$ as a linear code of distance $\frac{1}{2} - \Omega(\epsilon)$.

Define:

 $B_n(x_1, \dots, x_n, a_{1,1}, \dots, a_{1,n/(15 \log n)}, \dots, a_{k,1}, \dots, a_{k,n/(15 \log n)})$ $\coloneqq M_{n^{15}}(D(x_1, \dots, x_n), \bigoplus_j a_{1,j}, \dots, \bigoplus_j a_{k,j})$

Theorem 2 There's a function $B : \{0,1\}^* \rightarrow \{0,1\}$ such that **1.** $B \in P$

2. For all n, B_n does not have TC0 depth-3 circuits of $n^{1.5}/polylog(n)$ gates nor with $n^{2.5}/polylog(n)$ wires

Let D be an $O\left(\frac{n}{\epsilon^2}\right) \times n$ matrix, whose rows are n-bit strings in an $\varepsilon = \frac{1}{n^7}$ biased set. Think of $D: \mathbb{F}_2^n \to \mathbb{F}_2^{O\left(\frac{n}{\epsilon^2}\right)}$ as a linear code of distance $\frac{1}{2} - \Omega(\epsilon)$. $B_n(x_1, \dots, x_n, a_{1,1}, \dots, a_{1,n/(15 \log n)}, \dots, a_{k,1}, \dots, a_{k,n/(15 \log n)})$ $\coloneqq M_{n^{15}}(D(x_1, \dots, x_n), \bigoplus_j a_{1,j}, \dots, \bigoplus_j a_{k,j})$

KEY IDEA: For *random x*, think of the output y = D(x) as a (15 log n)-bit Boolean function f_y

Whp, every LTF-LTF circuit with 15 log n inputs and o(n/polylog n) gates *disagrees* with f_y on at least a $\left(\frac{1}{2} - \frac{1}{n^{2.6}}\right)$ -fraction of inputs! Therefore, after a random restriction to all but (15 log n) inputs, no Majority of $n^{2.5}$ LTF-LTFs of o(n/polylog n) size can compute B_n

Conclusion

- Tight upper and lower bounds? Currently $O(n^3)$ LTF-LTF circuits for Andreev, but have only $\Omega(n^{1.5})$ lower bound. Which is the truth?
- LTF-LTFs of poly(n) size for Inner Product Mod 2? Negative answer would separate TC0 depth-3 from LTF-LTF
- SAT algorithms for LTF-LTF circuits? [Chen-Santhanam-Srinivasan'16] $2^{n-n^{\delta}}$ time for SAT of LTF-LTF with $O(n^{1+\epsilon})$ wires

[Alman-Chan-W'??] $2^{n-n^{\delta}}$ time for ACC-LTF-LTF w/ $n^{2-\epsilon}$ gates

- Lower bounds for PTF-PTF circuits? Nothing superlinear (yet)
- Fast evaluation of LTF-LTF → Circuit LBs??
 [W'14] 2ⁿ poly(n) time algorithm for evaluating an LTF-LTF circuit of 2^{δn} gates on all possible inputs

Thank you!