Лекция 7

IP = PSPACE. Лемма Вэлианта-Вазирани

(Конспект: С. Николенко)

7.1 IP = PSPACE

Интерактивные протоколы. IP (Interactive Protocol) — это класс языков, полиномиально распознаваемых при помощи так называемого интерактивного протокола. Интерактивный протокол — это алгоритм, описывающий процесс передачи данных между двумя вычислительными устройствами: P (Prover) и V (Verifier). P обладает неограниченными вычислительными возможностями, V — полиномиальную по времени вероятностная машина Тьюринга (P не имеет доступа к лентам V; в частности, к используемым V случайным числам). P пытается убедить V принять вход алгоритма, а V хочет принять его тогда и только тогда, когда этот вход принадлежит языку, для которого и составлен протокол. То есть P передает V некоторую информацию, а V ее проверяет в меру своих полиномиальных способностей. Язык L принадлежит IP, если существует такой полиномиальный по времени (и размеру передаваемых данных) протокол, что

- если $x \in L$, то P всегда может убедить V в том, что вход надо принять;
- если $x \notin L$, то P может убедить V с вероятностью не более $\frac{1}{2}$.

Пример 7.1. Язык, состоящий из пар неизоморфных графов, принадлежит IP: V берет выбирает случайным образом граф из пары, применяет к его вершинам случайную перестановку, отправляет полученный граф P и просит его отгадать, какой же граф он выбрал.
Ясно, что IP содержится в PSPACE: переберем все возможные ответы Prover'a; если для какого-то из них при моделировании Verifier'a (с перебором возможных значений случайных битов) все ветви будут принимающими, то \(x \in L \). Значит, для доказательства равенства достаточно показать, что некоторый PSPACE-полный язык разпознаем IP-протоколом. Мы будем использовать язык булевых формул с кванторами (QBF), то есть формулу вида \(Q_1 x_1 \ldots Q_n x_n B(x_1 \ldots x_n) \), где \(B(x_1 \ldots x_n) \) — булева формула без кванторов, и \(Q_1 \ldots Q_n \in \{ \forall, \exists \} \).

Арифметизация. Бескванторную булеву формулу \(B(x_1 \ldots x_n) \) можно «арифметизовать»: поставить ей в соответствие многочлен \(b(x_1 \ldots x_n) \), значение которого на 0 и 1 совпадает с соответствующим значением формулы \(B \) (где 0 соответствует false, 1 соответствует true). Именно, \(\alpha \land \beta \) заменяется на \(\alpha \cdot \beta \), \(\neg \alpha \) — на \(1 - \alpha \), и \(\alpha \lor \beta \) — как \(\neg(\neg \alpha \land \neg \beta) \) (т.е. на \(1 - (1 - \alpha)(1 - \beta) \) — эту формулу обозначим \(\alpha * \beta \)). Очевидно, что значение многочлена \(b \), записанного согласно этим правилам в виде формулы (скобки не раскрываем!), вычислить просто — но для этого должны быть заданы значения (свободных) переменных.

Арифметизируем теперь всю формулу с кванторами. Пусть теперь \(P(x_1, \ldots) \) — некоторый многочлен (по смыслу — каким-то образом полученный на-ми из булевой формулы). Определим операторы «раскрытия» кванторов

\[
(A_x P)(\ldots) = P(0, \ldots) \cdot P(1, \ldots),
\]

\[
(E_x P)(\ldots) = P(0, \ldots) \ast P(1, \ldots),
\]

и оператор понижения степени (линейизации)

\[
(L_x P)(x, \ldots) = P \mod (x^2 - x)
\]

(то есть все \(x^n \) при \(n > 1 \) заменяется на \(x \)).

Многочлен \(L_x P \) имеет те же переменные, что и \(P \); в \(A_x P \) и \(E_x P \) переменная \(x \) отсутствует. Отметим, что \(P \) и \(L_x P \) совпадают при значениях переменных из \(\{ 0, 1 \} \). Ясно, что исходная булева формула с кванторами

\[
Q_1 x_1 \ldots Q_n x_n B(x_1 \ldots x_n)
\]

имеет то же самое значение, что и

\[
q^{(1)} x_1 \quad q^{(2)} x_2 \quad L_{x_1} L_{x_2} q^{(3)} x_3 \ldots q^{(n)} x_n L_{x_1} \ldots L_{x_n} b(x_1 \ldots x_n), \quad (7.1)
\]

где \(q^{(i)} = A \), если \(Q_i = \forall \), \(q^{(i)} = E \), если \(Q_i = \exists \). Можно было бы обойтись и без операторов \(L_x \); они применяются, чтобы степень промежуточных многочленов (при вычислении (7.1) справа налево) была не слишком велика.
Протокол. Наша задача — вычислить значение (7.1). Сделать это трудно (при раскрытии скобок будет получаться экспоненциально много мономов). Поэтому мы (Verifier) воспользуемся Prover’ом. При описании протокола заодно будем доказывать и его корректность, выделяя это курсивом.

Протокол будет заключаться в том, что мы будем последовательно спрашивать P о полиномах, являющихся не до конца вычисленным (7.1), снимая кванторы слева направо. Пусть \(q \in \{E, A, L\} \), \(R \) — полином, записанный как в (7.1), т.е. при помощи операторов \(E, A, L \), а не в явном виде. Нашей промежуточной задачей будет убедиться в том, что

\[
q_x, R(x_1, \ldots, x_{i-1}, x_i) = c, \tag{7.2}
\]

для некоторых заданных числовых значений свободных переменных \(x_1 = r_1, \ldots, x_{i-1} = r_{i-1} \) (и \(x_i = r_i, \) если \(q = L \)). (Ясно, что исходная задача формулируется именно в таких терминах: \(i = 1, R \) — вся формула (7.1), кроме первого оператора \(q \).) Мы будем сводить нашу задачу к задаче для более короткого \(R \), т.е. наш протокол будет рекурсивным.

Благодаря операторам \(L \), степень по каждой переменной промежуточных многочленов при вычислении (7.1) справа налево не превосходит \(d \), где \(d \) — общее количество входящих переменных в исходную формулу \(\). Многочленами \(q_x, R \) в нашем алгоритме как раз будут эти промежуточные многочлены, поэтому мы будем требовать, чтобы степень \(R(r_1, \ldots, r_{i-1}) \) как многочлен от одной переменной не превосходила \(d \). Случайные числа будут выбираться из поля \(F = \mathbb{Z}/p\mathbb{Z} \) остатков по модулю простого числа \(p \), которое следует взять чуть большим, чем \(d^k \) (\(p \) может выбрать либо P, либо V, потому что проверка простоты для чисел такого размера тривиальна).

Строгое описание протокола (вернее, рекурсивной процедуры проверки того, что если произвести все действия в «многочлене» \(q_x, \ldots, q'_x, R(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n) \) с внешним оператором \(q \) [сам многочлен записан как в условии, только вместо первых \(i - 1 \) операторов к нему прилагаются значения для соответствующих переменных], то получится константа \(c \) таково. Имеется три случая:

\(q = A. \) P должен послать V коэффициенты многочлена от одной переменной \(s(x_i) = R(r_1, \ldots, r_{i-1}, x_i) \). Если \(\deg s > d \) или \(s(0)s(1) \neq c \), \(V \) отвергает вход алгоритма (и он прав — если действительно (7.2) верно и \(P \) прислал правильные коэффициенты \(s \), равенство \(s(0)s(1) = c \) было бы выполнено по определению оператора \(A \)).

1На самом деле, такой большой степени может быть только для самого внутреннего многочлена \(b \), а далее не превосходит 2.
В противном случае остается убедиться, что коэффициенты многочлена s — правильные (если это так, то задача выполнена). В выбирает случайное число $r_i \in F$. Теперь, рекурсивно используя тот же протокол, P должен убедить V, что $R(r_1 \ldots r_{i-1}, r_i) = s(r_i)$. Заметим, что вероятность того, что это равенство выполнено, но коэффициенты многочлена s — неправильные, не превосходит d/d^4 (мы случайно попали в корень многочлена степени не более d над полем размера $\geq d^2$). Этим исчерпывается возможность ошибиться на этом шаге — дальнейшее зависит только от рекурсивного вызова.

$q = E$. Полностью аналогично предыдущему пункту (только проверять надо, конечно, что $s(0) \neq s(1) = c$).

$q = L$. P должен послать V коэффициенты многочлена от одной переменной $s(x) = (R(r_1 \ldots r_{i-1}, x)$. Если $\deg s > d$ или $s(0) + (s(1) - s(0))r_i \neq c$, то V отвергает (отметим, что $s(0) + (s(1) - s(0))r_i$ — это значение $s(x) \mod (x^2 - x)$ при $x = r_i$ — так что он снова правильно делает, что отвергает).

Так мы убеждаемся, что линеаризация была произведена правильно. Снова остается убедиться, что коэффициенты многочлена s — правильные. Тогда V выбирает случайный элемент $r'_i \in F$. Теперь, рекурсивно используя тот же протокол, P должен убедить V, что $R(r_1, \ldots, r_{i-1}, r'_i) = s(r'_i)$. Вероятность ошибиться на этом шаге — снова d/d^4.

Таким образом, мы совершаем $O(d^2)$ рекурсивных вызовов, причем в каждом из них вероятность ошибиться не превосходит $1/d^3$. Таким образом, вероятность ошибки нашего протокола $\leq O(d^2) \cdot 1/d^3$.

7.2 Лемма Вэлианта-Вазирани.

Лемма Вэлианта-Вазирани является одним из первых нетривиальных результатов об отношениях между сложностными классами.

Лемма 7.1 (L. Valiant, V. Vazirani). Имеется вероятностное (с одной сторонней ошибкой) полиномиальное по времени свидетельение задачи выполнимости к ее индивидуальным задачам, имеющим не более одного выполняющего набора.

Иными словами, по заданной формуле F в КНФ можно построить формулы F_1, \ldots, F_m в КНФ, такие что
• если F выполним, то с вероятностью, большей $1/2$, по крайней мере одна из формул F_1, \ldots, F_m имеет в точности один выполняющий набор;

• если F невыполним, то все формулы F_1, \ldots, F_m невыполнимы.

Пусть F — формула, а набор A присваивает значения всем ее переменным. Отождествим A с n-битным числом $a = a_0 a_1 \ldots a_{n-1}$, таким что $a_j = 1$, если соответствующая переменная в наборе A имеет значение true, и $a_j = 0$ в противном случае. Выберем целые числа p_i и r_i следующим образом. Сначала выберем равновероятно случайным образом целое $i \in [0..n]$. Затем выберем равновероятно случайным образом $p_i \in [1..b_i]$ и $r_i \in [0..b_i]$, где $b_i = 4 \cdot 2^i n^2$. Заменим F на формулу

$$F \land (a \mod p_i = r_i).$$

Выражение $\langle (a \mod p_i = r_i) \rangle$ обозначает здесь булеву формулу в КНФ от переменных a_0, \ldots, a_{n-1} (возможно, также использующую дополнительные переменные, причем значения дополнительных переменных однозначно определяются по значениям остальных переменных), которая представляет соответствующее арифметическое сравнение. Например, эта формула может быть получена посредством кодирования обычного умножения «в столбик».

Очевидно, что это сведение полиномиально по времени и переводит невыполнимую формулу в выполненную формулу. Остается доказать, что если F выполним, то с большой вероятностью новая формула выполнима.

Пусть $a^{(1)} \ldots, a^{(D)}$ — все выполняющие наборы формулы F. Заметим, что $i = \lceil \log_2 D \rceil$ с вероятностью $1/(n+1)$. Предположим, что это событие имеет место. Заметим, что для данных $j, h (j \neq h)$ имеется не более n простых делителей разности $a^{(j)} - a^{(h)}$. С другой стороны, для достаточно больших n имеется, как минимум, $0.92129 \cdot b_i / \ln b_i > b_i / \log_2 b_i \geq 2^{i+1} n$ простых чисел, не превосходящих b_i. Таким образом, имеется, по крайней мере, $2^{i+1} n - 2^i n = 2^i n$ чисел p_i не превосходящих b_i, таких, что остаток выполняющего набора $a^{(j)}$ по модулю p отличается от остатков всех других выполняющих наборов по модулю p. Следовательно, по крайней мере $2^i n$ пар $0 \leq p_i, r_i \leq b_i$ «отличаются» набор $a^{(j)}$ от всех остальных. Заметим, что для различных выполняющих наборов множества «отличающихся» пар дизъюнктивы. Следовательно, имеется не менее $2^i n \cdot D \geq 2^{2i-1} n$ искомых пар. Таким образом, для достаточно больших n вероятность выбрать такую пару составляет, по крайней мере, $\frac{2^{2i-1} n}{16 \cdot 2^i n^2} = \frac{1}{32n}$.\footnote{Элементарные операции над битами кодируются так: чтобы определить новый бит $z = x \land y$, добавим дизъюнкцию $\neg x \lor \neg y \lor z$, $\neg z \lor x$, $\neg z \lor y$. Остальные операции можно закодировать при помощи этой и отрицания (а можно и напрямую).}
Домножая на вероятность выбрать «правильное» i, получаем, что вероятность ошибки в нашем сведении не превосходит $1 - \frac{1}{32n^4+32}$. Выбирая тройки (i, p_i, r_i) случайным образом $O(n^4)$ раз, получаем константную вероятность ошибки.