Задание 9 (на 15.04).

СС 49. Покажите, что:

- (a) задача вычисления числа полных паросочетаний в двудольном графе сводится к вычислению перманента;
- (б) четность числа полных паросочетаний в двудольном графе можно узнать за полиномиальное время;
- (в) если граф представляет собой шахматную доску с выбитыми клетками (вершины клетки, ребра соединяют соседние клетки), то существует полиномиальный алгоритм, который считает число полных паросочетаний (подсказка: иногда вес ребра удобно взять комплексным).

 $|{\bf CC}|$ (повторяем лекцию, ${\bf IP}={\bf PSPACE}$ пользоваться нельзя) Докажите, что:

- (a) $AMA \subseteq PSPACE$;
- (б) **AMA** \subseteq **PSPACE** с приватными случайными битами.

СС 51. Существует вариант класса **MA** с односторонней ошибкой. $L \in \mathbf{MA}_1$, если существует такая полиномиальная вероятностная машина V и полином p, что если $x \in L$, то найдется такая строка $y \in \{0,1\}^{p(n)}$, что $\Pr[V(x,y)=1]=1$, а если $x \notin L$, то для любой строки $y \in \{0,1\}^{p(n)}$ выполняется $\Pr[V(x,y)=1]<\frac{1}{3}$. Покажите, что $\mathbf{MA} = \mathbf{MA}_1$.

 $\overline{\mathbf{CC} \ \mathbf{52.} }$ Покажите, что $\mathbf{MA} \subseteq \Sigma_2^P$.

СС 10. Докажите, что:

(a) что число n простое тогда и только тогда, когда для каждого простого делителя q числа n-1 существует $a\in 2,3,\ldots,n-1$ при котором $a^{n-1}\equiv 1\pmod n$, а $a^{\frac{n-1}{q}}\not\equiv 1\pmod n$;

CC 26. (подсказка: **NEXP**^{NP}vs.**NEXP**) Докажите, что если **P** = **NP**, то существует язык из **EXP**, схемная сложность которого не меньше $\frac{2^n}{10n}$.

СС 33. Докажите, что задача CircuitEval Р-полная.

СС 37. (подсказка: представьте формулу, как дерево и найдите "среднюю" вершину) Покажите, что язык можно разрешить булевой формулой размера s тогда и только тогда, когда этот язык можно разрешить булевой схемой глубина $O(\log(s))$.

СС 43. (подсказка: понизьте ошибку) Докажите, что $MA \subseteq AM$.

СС 44. Покажите, что:

- (а) если $\mathbf{BPTime}(f(n)) = \mathbf{BPTime}(g(n))$, то $\mathbf{BPTime}(f(h(n))) = \mathbf{BPTime}(g(h(n)))$, где f, g, h конструктивные по времени, $f(n), g(n) \ge \log n$, $h(n) \ge n$ возрастающая функция;
- (6) $\mathbf{DTime}(f(n)) \subseteq \mathbf{BPTime}(f(n)) \subseteq \mathbf{DTime}(2^{O(f(n))});$
- (B) $\mathbf{BPP} \subseteq \mathbf{BPTime}(n^{\log n}) \subsetneq \mathbf{BPTime}(2^n)$.

СС 45. Определим язык

QNR = $\{(y, m) \mid y$ не является квадратичным вычетом по модулю $m\}$.

Докажите, что $QNR \in \mathbf{IP}$.

[CC 46.] BPL_H — это класс языков, для которых существует вероятностная машина Тьюринга M, которая использует логарифмическую память, останавливается с

вероятностью 1, и для всех x выполняется, что $\Pr[M(x) = L(x)] \ge \frac{2}{3}$. Покажите, что $\Pr[M(x) = L(x)] \ge \frac{2}{3}$.

CC 47. Докажите, что $BPP = BPP^{BPP}$.

 $\fbox{CC 48.}$ Докажите, что $\textmd{BPP/poly} \subseteq \textmd{P/poly}$ (BPP/poly - класс языков, которые разрешаются вероятностными (есть специальные гейты, куда подаются случайные биты) схемами полиномиального размера).