Практика 3. Рекуррентные соотношения.

СОМВ 36. Докажите следующую формулу $B_{n+1} = \sum_{i=1}^{n} \binom{n}{k} B_k$.

COMB 37. Показать, что в случае, когда характеристическое уравнение последовательности, заданной соотношением $a_{n+2} = c_1 a_{n+1} + c_0 a_n$, имеет кратный корень ρ , то решение $\alpha_0 \rho^n + \alpha_1 n \rho^n$ является решением этого соотношения.

COMB 38. Найдите общий вид последовательности, удовлетворяющей рекуррентному соотношению: $a_{n+k} = \sum_{i=1}^{k} b_i a_{n+k-i}$.

СОМВ 39. Докажите, что если F_n — это последовательность чисел Фибоначчи, то $\gcd(F_n, F_m) = F_{\gcd(n,m)}$.

COMB 40. Назовем числами Люка элементы последовательности L_n такой, что она удовлетворяют рекуррентному соотношению $L_{n+2} = L_{n+1} + L_n$, $L_0 = 2$ и $L_1 = 1$. Найдите явную формулу для чисел Люка.