Практика 9. Связность.

СОМВ 98. Пусть G есть простой связный граф, в котором $\delta(G) \ge n-2$, где n — количество вершин в графе. Доказать, что в этом случае $\kappa(G) = \delta(G)$. Предъявить для любого n>3 граф с $\delta(G) = n-3$, у которого $\kappa(G) < \delta(G)$.

СОМВ 99. Выразить количество n вершин односвязного графа G через количество n_i этих вершин в каждом из k блоков B_1, \ldots, B_k графа G.

СОМВ 100. Выразить количество остовных деревьев односвязного графа G через количество остовных деревьев в каждом из k блоков B_1 , ..., B_k графа G.

COMB 101. Доказать, что любая вершина односвязного графа G имеет четную степень тогда и только тогда, когда любой блок B_i такого графа эйлеров.

COMB 102. С помощью теоремы Менгера доказать вершинную k-связность k-мерного гиперкуба Q_k .

COMB 103. Построить минимально возможный такой граф G, что $\kappa(g) = 3$ и в котором имеется пара несмежных вершин, соединенных между собой четырьмя попарно непересекающимися по внутренним вершинам путями.

COMB 104. Пусть G есть k-связный граф, диаметр которого равен d. Доказать, что количество n вершин в таком графе больше или равно k(d-1)+2. Для любого $k\geq 1$ и $d\geq 2$ построить k-связный граф, в котором это неравенство превращается в равенство.

COMB 105. Пусть G есть 3-связный граф, не являющийся двудольным графом. Доказать, что в таком графе содержатся по меньшей мере четыре цикла нечетной длины.