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Definitions

SAMPLABLE DISTRIBUTIONS

Ensemble of distributions D ∈ Samp(nk) iff there is a randomized O(nk)-time
algorithm A such that Dn and A(1n) are equally distributed.
We also denote PSamp =

∪
k
Samp(nk).

HEURISTIC COMPUTATIONS

Distributional problem (L,D) ∈ HeurδDTime(nk) iff there is O(nk)-time
algorithm A such that

∀n ∈ N Pr
x←Dn

[A(x) = L(x)] > 1− δ.

Additionally denote HeurδP =
∪
k
HeurδDTime(nk).
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Hamiltonian Path

GUREVICH AND SHELAH, 1987

Let HP denote the language of Hamiltonian graphs. Then
(HP,U) ∈ Heur 1

2O(
√n)

DTime(n).

OPEN PROBLEM

Find polynomial-time algorithm for HP.
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Graph Isomorphism

BABAI, ERDOS AND SELKOW, 1980

Let GI denote the language of pairs of isomorphic graphs. Then
(GI,U) ∈ Heur 1

7√n
DTime(n).
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Goal and Result

GOAL

For every k there are a language L,
ensemble D and small δ such that
1 D ∈ PSamp;
2 (L,D) ̸∈ Heur1−δP;
3 for every R ∈ Samp(nk) we have

that (L,R) ∈ HeurδDTime(n).

RESULT

There are a language L and ensemble D
such that
1 D ∈ Samp(nlog n);
2 (L,D) ̸∈ Heur1− 1

2log log log n
P;

3 for every R ∈ PSamp we have
that
(L,R) ∈ Heur 1

2log log log n
DTime(n).
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Equivalent reformulations

DISTRIBUTIONAL PROBLEMS

Functions f and g satisfy CD property with parameters α(n) > 0 and β(n) > 0
(CDα(n),β(n)(f(n), g(n))) if there are D ∈ Samp(f(n)) and L such that
1 (L,F) ∈ Heurα(n)P for every F ∈ Samp(g(n)).
2 (L,D) ̸∈ Heur1−β(n)P.

SAMPLING DISTRIBUTIONS

Functions f and g satisfy SD property with parameter λ(n) (SDλ(n)(f(n), g(n)))
if there is D ∈ Samp(f(n)) such that for every F ∈ Samp(g(n)), for infinitely
many n the statistical distance between Dn and Fn is at least 1−λ(n).
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Equivalent reformulations

1 → 2

If CDα(n),β(n)(f(n), g(n)) then SDα(n)+β(n)(f(n), g(n)).

2 → 1

If SDλ(n)(f(n), g(n) log g(n)) then CDω(λ(n)),λ(n)(f(n), g(n)).
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Samplable distributions hierarchy

WATSON, 2013

For any a > 0, k > 0 and ϵ > 0 there is D ∈ PSamp such that for every
F ∈ Samp(na), for infinitely many n the statistical distance between Dn and Fn
is at least 1− 1

k − ϵ.
In previous notation: SD 1

k +ϵ(poly(n), nk).

ITSYKSON, KNOP, SOKOLOV, 2015

For every a, b, c such that 0 < a < b and c > 0 there is D ∈ Samp(nlogb n)
such that for every F ∈ Samp(nloga n), for infinitely many n the statistical
distance between Dn and Fn is at least 1− 1

2(log log log n)c .
In previous notation: SD 1

2(log log log n)c
(nlogb n, nloga n).
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Proof of the Watson theorem for k = 2

1 Let A1, …, An, …is an enumeration of all algorithms such that
each algorithm occurred infinitely many times.

2 Consider sequences ni, n∗i such that n1 = 1, ni+1 = n∗i + 1 and
n∗i = 2na+1

i

3 Consider the following algorithm (on input 1n):
▶ find i such that ni ≤ n ≤ n∗

i ;
▶ if n = n∗

i return b ∈ {0, 1} such that Pr[Ai(1ni) = b] ≤ 1
2 ;

▶ else run Ai(1n+1) 8 log ϵ
ϵ2 times and return majority of answers.
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Proof of the samplable distributions hierarchy

LIST DECODING

There is polynomial-time algorithm C•(n, i, λ, δ) such that if
supp(γ) = {0, . . . , 2n − 1} and there is t such that Pr[γ = t] ≥ λ then there is
i ≤ (1 + 1

λ
)2 such that Pr[Cγ(n, i, δ, λ) = t] ≥ 1− δ.

Let us consider the following algorithm Cγ(n, i, λ, δ):
1 Let k = ⌈ 1

λ + 1⌉ and ϵ = λ3

10k ;
2 We interpret i as a pair (a, b), where a, b ∈ [k];

3 Request the oracle for N = ⌈2(n+1+log 1
δ
)

ϵ2
⌉ samples of γ;

4 Consider the list y1, …, ys of all elements with frequency at
least λ− ϵa;

5 Return yb if b ≤ s or 0 otherwise.
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Magic tree

There exists a family of trees Ti such that
1 The set of vertices of Ti is a subset of {ni, ni + 1, . . . , n∗i }.
2 n∗i is the root of Ti.
3 All leaves of Ti have numbers at most mi = 2ni.
4 The depth of Ti is di = 2⌈log log ni⌉.
5 If p is a parent of n then p ≤ nlog n.
6 There is an algorithm that for any vertex n of Ti outputs the

parent p of n and the number of children of p that are less
than n in poly(n) steps.

7 For every inner vertex v of Ti, v has k = ⌈ 1
λ(n∗i )

+ 1⌉2 children.
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