
Name: Alexander Knop

Pid: _____

1. (10 points) Write the truth table of the proposition $\neg(p \land q) \lor (r \land \neg p)$.

Solution:							
	p	q	r	$(p \wedge q)$	$(r \land \neg p)$	$\neg (p \land q) \lor (r \land \neg p)$	
	0	0	0	0	0	1	
	0	0	1	0	1	1	
	0	1	0	0	0	1	
	0	1	1	0	1	1	
	1	0	0	0	0	1	
	1	0	1	0	0	1	
	1	1	0	1	0	0	
	1	1	1	1	0	0	

- 2. (10 points) Let us consider four-lines geometry, it is a theory with undefined terms: point, line, is on, and axioms:
 - 1. there exist exactly four lines,
 - 2. any two distinct lines have exactly one point on both of them, and
 - 3. each point is on exactly two lines.

Show that every line has exactly three points on it.

Solution: Lets denote the lines as l_1, \ldots, l_4 (all of them exist and different by Axiom 1). Due to symmetry of the problem it is enough to prove that l_4 has exactly three points on it.

Let p_i $(1 \le i \le 3)$ be the point that is on l_i and l_4 (they exist by Axiom 2). Let us now prove that p_1, p_2 , and p_3 are all different. Assume that $p_i = p_j$ for $i \ne j$ $(1 \le i, j \le 3)$ for the sake of contradiction. In this case p_i is on l_i, l_j , and l_4 which contradicts Axiom 3.

Let us now prove that there are no other points on l_4 . Assume that it is not true and there is p_4 in additon to p_1 , p_2 , and p_3 on l_4 . By Axiom 3, there is $i \ (1 \le i \le 3)$ such that p_4 is on l_i . Hence, p_i and p_4 are on l_i which contradicts to Axiom 2.

3. (10 points) In Euclidean (standard) geometry, prove: If two lines share a common perpendicular, then the lines are parallel.

Solution: Let us denote by AB the common perpendicular. Assume that the lines are not parallel (note that these lines are different) i.e. that there is an intersection C of these lines.

Note that the angles CAB and CBA are right, hence, the angle ACB is equal to 0 degrees. So the lines are the same, which is a contradiction.

Hence, the assumption was incorrect i.e. the lines are parallel.