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Cramer’s Rule
For any n × n matrix A and b ∈ Rn, let Ai(b) be a matrix
obtained form A by replacing column i of A by b.

THEOREM

Let A be an invertible n × n matrix. For any b ∈ Rn, the unique solution
x of Ax = b has entries defined by xi =

det Ai(b)
det A .

PROOF.

Let Ax = b. Note that
A · Ii(x) = A

[
e1 . . . x . . . en

]
=[

Ae1 . . . Ax . . . Aen
]
=[

a1 . . . b . . . an
]
= Ai(b).
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A Formula for A−1

Note that the equation Ax = ei gives us ith column of A−1.

By Cramer’s rule (i, j)-entry of A−1 is equal to det Aj(ei)
det A .

Also let us note that det Aj(ei) = Ci,j. Thus,

A−1 =
1

det A


C1,1 C2,1 . . . Cn,1
C1,2 C2,2 . . . Cn,2

... ... ...
C1,n C2,n . . . Cn,n

 .

DEFINITION

We call the matrix on the right side an adjugate of A and denote it
adj A.
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Determinants as Area

THEOREM

If A is a 2× 2 matrix, the area of the parallelagram determined by the
columns of A is equal to | det A|.

For example if A =
[
u v

]
, then area of the following

parallelepiped

u

v

u

v

is equal to | det A|.
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Determinants as Area

PROOF.

It is easy to see that if A is perpendicular, then the statement is true.

Note that every square matrix may be transformed into diagonal and the
determinant does not change when we use elementary row operations.
It is enough to prove that the area does not change if we use elementary
row operations.
Let us assume that we have tow vectors u and v, we want to prove that a
parallelepiped corresponding to u, v has the same area as a parallelepiped
u + cv, v

u

v

u

v

u
+

cv

v

v u
+

cv
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Determinants as Area

THEOREM

Let T : R2 → R2 be a linear transformation and A be its stadard matrix.
Then for any parallepiped S

{area of T(S)} = | det A| · {area of S}.
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Determinants as Area

PROOF.

Let A =
[
a1 a2

]
and

S = {s1b1 + s2b2 : 0 ≤ s1, s2 ≤ 1} .

The image of S under the transformation T consists of the points

T(s1b1 + s2b2) = s1T(b1) + s2T(b2) = s1Ab1 + s2Ab2,

where 0 ≤ s1, s2 ≤ 1. Hence the parallelogram T(S) is defined by the
columns of

[
Ab1 Ab2

]
= AB. Hence,

{area of T(S)} = | det AB| = | det A| · | det B| = | det A| · {area of S}.
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Eigenvectors

EXAMPLE

Let A =

[
3 −2
1 0

]
and v =

[
2
1

]
.

Note that Av =

[
4
2

]
= 2v.

DEFINITION

An eigenvector of an n × n matrix A is a nonzero vector x such that
Ax = λx for some scalar λ.
The scalar is called an eigenvalue of A.
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Eigenvectors

DEFINITION

An eigenvector of an n × n matrix A is a nonzero vector x such that
Ax = λx for some scalar λ.
The scalar is called an eigenvalue of A.

EXAMPLE

Let A =

[
1 6
5 2

]
, u =

[
6
−5

]
, and v =

[
3
−2

]
.

Au =

[
1 6
5 2

] [
6
−5

]
=

[
−24
20

]
= −4

[
6
−5

]
= −4u.

Av =

[
1 6
5 2

] [
3
−2

]
=

[
−9
11

]
̸= λ

[
3
−2

]
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Eigenvectors

Let us show that 7 is an eigenvalue of the matrix A =

[
1 6
5 2

]

In other words we need to show that Ax = 7x has nonzero
solution. It is equivalent to the statement that (A − 7I)x = 0
has nontrivial solution.

(A − 7I) =
[
1 6
5 2

]
−
[
7 0
0 7

]
=

[
−6 6
5 −5

]
∼

[
−1 −1
0 0

]

Hence,
[
1
1

]
is a nontrivial solution.
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Eigenvectors

DEFINITION

The set of all x such that (A − λI)x = 0 is called an eigenspace of A
corresponding to λ.
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Eigenvectors

EXAMPLE

Let A =

4 −1 6
2 1 6
2 −1 8

. An eigenvalue of A is 2.

Let us find an eigenspace of A corresponding to 2. Since

A − 2I =

2 −1 6
2 −1 6
2 −1 6


any eigenvector corresponding to 2 has the following form

x
[
1/2
10

]
+ y

−3
0
1
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Triangular Matrices

THEOREM

The eigenvalues of the triangular matrix are the entries of the main
diagonal.

PROOF.

Let us consider, for simplicity, the case when A is a 2× 2 matrix.

If λ is an eigenvalue of A, then the homoheneous system corresponding
to the following matrix has a nontrivial solution.

A − λI =
[
a1,1 − λ a1,2

0 a2,1 − λ

]
Hence, if λ ̸= a1,1 and λ ̸= a2,1, then this system does not have free
variables and does not have nontrivial solutions.
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Eigenvectors

THEOREM

If v1, …, vr are eigenvectors that corresponds to distinct eigenvalues λ1,
…, λr of n × n matrix A, then the set {v1, . . . , vr} is linearly independent.

PROOF.

Let us assume, for the sake of contradiction, that the set {v1, . . . , vr} is
linearly dependent. Let us considet minimal p such that v1, …, vp are
linearly dependant. It means that vp = c1v1 + . . . cp−1vp−1. Hence,

Avp = λpvp = c1Av1 + . . . crAvr = c1λ1v1 + . . . cp−1λp−1vp−1.But since vp = c1v1 + . . . cp−1vp−1 we may conclude that
0 = c1(λ1 − λp)v1 . . . cp−1(λp−1 − λp)vp−1. Hence v1, …, vp−1 are
linearly dependant, contradisction.

Alexander Knop 14



Eigenvectors

THEOREM

If v1, …, vr are eigenvectors that corresponds to distinct eigenvalues λ1,
…, λr of n × n matrix A, then the set {v1, . . . , vr} is linearly independent.

PROOF.

Let us assume, for the sake of contradiction, that the set {v1, . . . , vr} is
linearly dependent.

Let us considet minimal p such that v1, …, vp are
linearly dependant. It means that vp = c1v1 + . . . cp−1vp−1. Hence,

Avp = λpvp = c1Av1 + . . . crAvr = c1λ1v1 + . . . cp−1λp−1vp−1.But since vp = c1v1 + . . . cp−1vp−1 we may conclude that
0 = c1(λ1 − λp)v1 . . . cp−1(λp−1 − λp)vp−1. Hence v1, …, vp−1 are
linearly dependant, contradisction.

Alexander Knop 14



Eigenvectors

THEOREM

If v1, …, vr are eigenvectors that corresponds to distinct eigenvalues λ1,
…, λr of n × n matrix A, then the set {v1, . . . , vr} is linearly independent.

PROOF.

Let us assume, for the sake of contradiction, that the set {v1, . . . , vr} is
linearly dependent. Let us considet minimal p such that v1, …, vp are
linearly dependant.

It means that vp = c1v1 + . . . cp−1vp−1. Hence,
Avp = λpvp = c1Av1 + . . . crAvr = c1λ1v1 + . . . cp−1λp−1vp−1.But since vp = c1v1 + . . . cp−1vp−1 we may conclude that

0 = c1(λ1 − λp)v1 . . . cp−1(λp−1 − λp)vp−1. Hence v1, …, vp−1 are
linearly dependant, contradisction.

Alexander Knop 14



Eigenvectors

THEOREM

If v1, …, vr are eigenvectors that corresponds to distinct eigenvalues λ1,
…, λr of n × n matrix A, then the set {v1, . . . , vr} is linearly independent.

PROOF.

Let us assume, for the sake of contradiction, that the set {v1, . . . , vr} is
linearly dependent. Let us considet minimal p such that v1, …, vp are
linearly dependant. It means that vp = c1v1 + . . . cp−1vp−1.

Hence,
Avp = λpvp = c1Av1 + . . . crAvr = c1λ1v1 + . . . cp−1λp−1vp−1.But since vp = c1v1 + . . . cp−1vp−1 we may conclude that

0 = c1(λ1 − λp)v1 . . . cp−1(λp−1 − λp)vp−1. Hence v1, …, vp−1 are
linearly dependant, contradisction.

Alexander Knop 14



Eigenvectors

THEOREM

If v1, …, vr are eigenvectors that corresponds to distinct eigenvalues λ1,
…, λr of n × n matrix A, then the set {v1, . . . , vr} is linearly independent.

PROOF.

Let us assume, for the sake of contradiction, that the set {v1, . . . , vr} is
linearly dependent. Let us considet minimal p such that v1, …, vp are
linearly dependant. It means that vp = c1v1 + . . . cp−1vp−1. Hence,

Avp = λpvp = c1Av1 + . . . crAvr = c1λ1v1 + . . . cp−1λp−1vp−1.But since vp = c1v1 + . . . cp−1vp−1 we may conclude that
0 = c1(λ1 − λp)v1 . . . cp−1(λp−1 − λp)vp−1. Hence v1, …, vp−1 are
linearly dependant, contradisction.

Alexander Knop 14


