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Abstract
We study the following computational problem: for which values of k, the majority of n bits
MAJn can be computed with a depth two formula whose each gate computes a majority func-
tion of at most k bits? The corresponding computational model is denoted by MAJk ◦MAJk.
We observe that the minimum value of k for which there exists a MAJk ◦MAJk circuit that
has high correlation with the majority of n bits is equal to Θ(n1/2). We then show that for a
randomized MAJk ◦MAJk circuit computing the majority of n input bits with high probability
for every input, the minimum value of k is equal to n2/3+o(1). We show a worst case lower
bound: if a MAJk ◦MAJk circuit computes the majority of n bits correctly on all inputs, then
k ≥ n13/19+o(1). This lower bound exceeds the optimal value for randomized circuits and thus
is unreachable for pure randomized techniques. For depth 3 circuits we show that a circuit with
k = O(n2/3) can compute MAJn correctly on all inputs.
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1 Introduction

In this paper we study majority functions and circuits consisting of them. These functions
and circuits arise for various reasons in many areas of Computational Complexity (see
e.g. [13, 15, 8]). In particular, the iterated majority function (or recursive majority) consisting
of iterated application of majority of small number of variables to itself, turns out to be of
great importance, helps in various constructions and provides an example of the function
with interesting complexity properties in various models [9, 12, 14, 10].

One of the most prominent examples to illustrate this is the proof by Valiant [19] that
the majority MAJn of n variables can be computed by a boolean circuit of depth 5.3 logn.
The construction of Valiant is randomized and there is no deterministic construction known
achieving the same (or even reasonably close) depth parameter. The construction works as
follows. Consider a uniform boolean formula (that is, tree-like circuit) consisting of 5.3 logn
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interchanging layers of AND and OR gates of fan-in 2. For each input to the circuit substitute
a random variable of the function MAJn. Valiant showed that this circuit computes MAJn
with positive probability. Note that AND and OR gates are precisely MAJ2 functions with
different threshold values. Thus this construction can be viewed as a computation of MAJn
by a circuit consisting of MAJ2 gates. There are versions of this construction with the
circuits consisting of MAJ3 gates (see, e.g., [5]).

In this paper we study what happens with this setting if we restrict the depth of the circuit
to a small constant. That is, we study for which k the function MAJn can be computed
by small depth circuit consisting of MAJk gates. We mostly concentrate on depth 2 and
denote the corresponding model by MAJk ◦MAJk. For example, the majority of n = 7 bits
x1, x2, . . . , x7 can be computed with the following MAJk ◦MAJk circuit for k = 5:

MAJ5

MAJ5

x1 x2 x3 x4 x5

MAJ5

x1 x2 x5 x6 x7

MAJ5

x1 x3 x4 x6 x6

MAJ5

x2 x3 x3 x5 x6

MAJ5

x2 x4 x5 x7 x7

We study which upper and lower bounds on k can be shown.
More context to the problem under consideration comes from the studies of boolean

circuits of constant depth. The class T̂C0 of boolean functions computable by polynomial
size constant depth circuits consisting of MAJ gates plays one of the central roles in this
area. Its natural generalization is the class TC0 in which instead of MAJ gates one can
use arbitrary linear threshold gates, that is analogs of the majorities in which variables
are summed up with arbitrary integer coefficients and are compared with arbitrary integer
threshold. It is known that to express any threshold function it is enough to use exponential
size coefficients. To show that TC0 is actually the same class as T̂C0 it is enough to show
that any linear threshold function can be computed by constant depth circuit consisting
of threshold functions with polynomial-size coefficients (polynomial size can be simulated
in T̂C0 by repetition of variables). It was shown by Siu and Bruck in [18] that any linear
threshold function can be computed by polynomial size depth-3 majority circuit. This result
was improved to depth-2 by Goldmann, Håstad and Razborov in [4]. More generally, it was
shown in [4] that depth-d polynomial size threshold circuit can be computed by depth-(d+ 1)
polynomial size majority circuit, in particular establishing the class of depth-2 threshold
circuits as one of the weakest classes for which we currently do not know superpolynomial size
lower bounds. The best lower bound known so far is Ω( n3/2

log3 n
) by Kane and Williams [11].

Note, however, that the result of [4] does not translate to monotone setting. Hofmeister
in [6] showed that there is a monotone linear threshold function requiring exponential size
depth-2 monotone majority circuit. Recently this result was extended by Chen, Oliveira and
Servedio [2] to monotone majority circuits of arbitrary constant depth.

Our setting can be viewed as a scale down of the setting of [4] and [6]. In [4, 6] exponential
weight threshold functions are compared to depth-2 threshold circuits with polynomial weights.
In our setting we compare weight-n threshold functions with depth-2 threshold circuits with
weights k. In this paper we consider monotone setting.

Another context to our studies comes from the studies of lower bounds against T̂C0.
Allender and Koucký in [1] showed that to prove that some function is not in T̂C0 it is enough
to show that some self-reducible function requires circuit-size at least n1+ε when computed
by constant depth majority circuit. As an intermediate result they show that MAJn can
be computed by O(1)-depth circuit consisting of MAJnε gates and of size O(n logn). This
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setting is similar to ours, however in this paper we are interested in the precise depth and we
do not pose additional bounds on the size of the circuit (however note that the bound on the
fan-in k of the gates and the bound on the depth d of the circuit naturally imply the bound
of O(kd) on the size of the circuit).

We consider three models of computation of the majority function: computation on most
of the inputs (that is, high correlation with the function), randomized computation with
small error probability on all inputs, and deterministic computation with no errors. We
prove the following lower and upper bounds for our setting.

Circuits with high correlation. We observe that the minimum value of k for which there
exists a MAJk ◦MAJk circuit that computes MAJn correctly on 2/3 fraction of all the inputs,
is equal to Θ(n1/2). A lower bound is proved by observing that a circuit with k = αn1/2

does not even have a possibility to read a large fraction of input bits when the constant
α is small enough. We show that in this case the circuit errs on many inputs. An upper
bound is proved for the following natural circuit: pick k = Θ(n1/2) random subsets of the n
inputs bits of size k, compute the majority for each of them, and then compute the majority
of results. Such a circuit computes MAJn correctly with high probability on inputs whose
weight is not too close to n/2. By tuning the parameters appropriately, we ensure that the
middle layers of the boolean hypercube (containing inputs where the circuits errs with high
probability) constitute only a small fraction of all the inputs.

Randomized circuits. We prove that for a probabilistic distribution C of MAJk ◦MAJk
circuits with a property that for every input A ∈ {0, 1}n the probability that C(A) = MAJn(A)
is 1− ε for a constant ε > 0, the minimum value of k is n2/3, up to polylogarithmic factors.
A lower bound is proved by showing that a small circuit must err on a large fraction of
minterms/maxterms of MAJn. Roughly, the majority function have many inputs A ∈ {0, 1}n
with a property that changing a single bit in A changes the value of the function (these are
precisely minterms and maxterms of MAJn). If k is small enough, a MAJk ◦MAJk circuit
can reflect such a change in the value only for a small fraction of inputs. To show an upper
bound, we split the n input bits into blocks and for each block compute several middle layers
values of the bits of this block in sorted order. We then compute the majority of all the
resulting values. We show that by tuning the parameters appropriately, one can ensure that
this circuit err only on a polynomially small fraction of inputs.

Deterministic circuits. The trivial upper bound on k is k ≤ n. We do not have any
nontrivial upper bound on k for depth 2 circuits. We however have examples for n = 7, 9, 11
of circuits with k = n−2. For depth 3 we have an upper bound O(n2/3) which coincides with
the optimal value for depth 2 randomized circuits up to polylogarithmic factor. We prove
this upper bound by extending the construction of upper bound for depth 2 randomized
circuits. We use an extra layer of the circuit to preorder the inputs. Regarding the lower
bound for depth 2 we observe that the following simple special case cannot compute MAJn:
each gate is a standard majority (that is, with threshold k/2) of exactly k = n− 2 distinct
variables. Next, we proceed to the main result of the paper. We show that the minimum
value of k for which there is a depth 2 circuit computing MAJn on all inputs is at least
n13/19 up to a polylogarithmic factor.

Note that this lower bound exceeds the optimal value of k for randomized circuits. Thus,
despite the fact that randomized techniques is extensively used for studying majority and
circuits constructed from it and proves to be very powerful (recall for example Valiant’s
result [19]), in our setting using combinatorial methods we prove a lower bound that is
unreachable for a pure probabilistic approach. The proof of this result however is still
probabilistic: in essence we consider a circuit with k smaller than n13/19 and build a

CVIT 2016
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distribution on inputs that fools this circuit. The catch is that the distribution is tailored to
fool this particular circuit: it is constructed via a non-trivial process that involves the values
of the gates of the circuit on various inputs.

The rest of the paper is organized as follows. In Section 2 we give necessary definitions
and collect technical statements. In Section 3 we study circuits computing the function with
high correlation. In Section 4 we give bounds for randomized circuits. In Section 5 we study
deterministic circuits. Finally, in Section 6 we give concluding remarks and state several
open problems. Most of the proofs are moved from the main text to Appendix.

2 Definitions and Preliminaries

In this section we will give necessary definitions and collect technical statements that we will
use throughout the paper.

We are going to study circuits computing the well known boolean majority function
defined as follows: MAJn(x1, x2, . . . , xn) = [

∑n
i=1 xi ≥ n/2]. Here, [·] denotes the standard

Iverson bracket: for a predicate P , [P ] = 1 if P is true, and [P ] = 0 is P is false. To abuse
notation, we will also use [m] to denote the set {1, 2, . . . ,m}.

It will be convenient to use X = {x1, x2, . . . , xn} for the set of n input bits. For an
assignment A : X → {0, 1}, by w(A) we denote the weight of A, that is,

∑
x∈X A(x). For

a subset of input variables S ⊆ X, by wS(A) we denote the weight of A on X: wS(A) =∑
x∈S A(x). By MAJS(X) we denote the majority function on S: MAJS(X) = [

∑
x∈S x ≥

|S|/2]. In particular, MAJX is just MAJn.
An assignment A : X → {0, 1} is called a minterm of MAJn if MAJn(A) = 1, but flipping

any 1 to 0 in A results in an assignment A′ such that MAJn(A′) = 0. A maxterm is defined
similarly with the roles of 0 and 1 interchanged.

The majority function is a special case of a threshold function: f(X) = [
∑n
i=1 aixi ≥ t].

For such a function f and an assignment A : X → {0, 1}, let difference of f w.r.t. A be
diff(f,A) =

∑n
i=1 aiA(xi)− t. In particular, f(A) = 1 iff diff(f,A) ≥ 0.

The MAJk ◦MAJk computational model that we study in this paper is defined as a depth
two formula (we will call it a circuit also) consisting of arbitrary threshold gates of the form
[
∑
cixi ≥ t] where ci’s are positive integers (this, in particular, means that the model is

monotone) and
∑
ci ≤ k. At the same time, abusing notation, by MAJn and MAJX we

always mean the standard majority function. We note that the coefficients in ci can be
simulated by repetition of variables (note that k upper bounds the sum of the coefficients).
So the generalization of the MAJk in the circuit compared to MAJn is that we allow arbitrary
threshold. We note however, that if we are interested in the value of k up to a constant
factor (which we usually do), it is not an actual generalization since any threshold can be
simulated by substituting constants 0 and 1 as inputs to the circuit.

For a gate G at the bottom level of a MAJk ◦MAJk circuit, by X(G) we denote the set
of its input bits.

2.1 Tail Bounds and Binomial Coefficients Estimates

We will use the following versions of Chernoff–Hoeffding bound (see, e.g., [3]).

I Lemma 1 (Chernoff–Hoeffding bound). Let Y =
∑m
i=1 Yi, where Yi, i ∈ [m], are independ-

ently distributed in [0, 1]. Then for all t > 0, Pr[Y > E[Y ] + t],Pr[Y < E[Y ]− t] ≤ e−2t2/m.

For all ε > 0, Pr[Y > (1 + ε)E[Y ]],Pr[Y < (1− ε)E[Y ]] ≤ e− ε2
3 E[Y ].
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We will also need the following well known estimates for the binomial coefficients (see,
e.g., [16, Section 4.2]):

I Lemma 2. The middle binomial coefficient is about n1/2 times smaller than 2n. To make
it smaller than 2n by arbitrary polynomial factor, it is enough to step away from the middle
by about Θ(

√
n lnn) (0 < c < 1 is a constant below):(

n

n/2

)
= Θ(1) · 2n · n−1/2 and

(
n

n
2 + c

√
n lnn
2

)
= Θ(2nn− 1

2n−
c2
2 ) . (1)

2.2 Hypergeometric Distribution
The hypergeometric distribution is defined in the following way. Consider a set S of size
m and its subset S′ of size k. Select (uniformly) a random subset T of size t in S. Then
a random variable |T ∩ S′| has a hypergeometric distribution. The values m, k and t are
parameters here. We will need the following basic properties of this distribution. For the
sake of completeness their proofs can be found in the Appendix (Section 7.1).

I Lemma 3. Suppose in hypergeometric distribution k = k(m) ≤ m/2 (that is, k may depend
on m). Let t = t(m) be a function with εm < t < (1 − ε)m for some constant 0 < ε < 1.
Then, for any integer l, Prob(|T ∩ S′| = l) = O(k−1/2), where O(·) is for m → ∞ and
the constant inside O(·) depends on ε, but does not depend on m, k and t. Moreover, if
|l − tk

m | = O(1), then this probability is in fact Θ(k−1/2).

I Lemma 4. Suppose in hypergeometric distribution k = k(m) ≤ m/2 (that is, k may depend
on m). Let t = t(m) be a function with εm < t < (1 − ε)m for some constant 0 < ε < 1.
Consider an arbitrary antichain A on S′ (that is, a family of subsets of S′ none of which is
a subset of some other). Then the probability Pr[T ∩ S′ ⊆ A] = O(k−1/2), where O(·) is for
m→∞ and the constant inside O(·) depends on ε, but does not depend on m, k and t.

I Lemma 5. For S, S′ and T as above we have Prob{|T ∩ S′| ≥ l} ≤ (tk/m)l .

3 Circuits with High Correlation

In this section, we prove that the minimum value of k for which there exists a MAJk ◦MAJk
circuit that computes MAJn correctly on, say, 2/3 fraction of all the inputs, is equal to
Θ(n1/2).

3.1 Upper Bound
I Theorem 6. For any ε > 0, there exists a circuit C in MAJk ◦MAJk, where k = Oε(n1/2),
that agrees with MAJn on at least (1− ε) fraction of the boolean hypercube {0, 1}n.

Proof Sketch. The required circuit is straightforward: we just pick k random subsets
S1, S2, . . . , Sk of X of size k, compute the majority for each of them, and then compute
the majority of the results: C(X) = MAJk(MAJS1(X),MAJS2(X), . . . ,MAJSk

(X)) . The
resulting circuit has a high probability of error on middle layers of the boolean hypercube. We
however select the parameters so that all the inputs from these middle layers constitute only
a small ε/2 fraction. We then show that among all the remaining inputs (not belonging to
middle layers) there is only a fraction ε/2 (of all the inputs) where MAJn may be computed
incorrectly. Overall, this gives a circuit that errs on at most ε fraction of the inputs. A detailed
proof is provided in Section 7.2 in the Appendix. J

CVIT 2016



23:6 Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates

3.2 Lower Bound
I Theorem 7. Let C be a MAJk ◦MAJk circuit that computes MAJn correctly on a fraction
1− ε of all 2n inputs for a constant ε ≤ 1/3. Then k = Ωε(n1/2).

Proof Sketch. Let k = αn1/2 for a small enough constant α = α(ε). Note that such a circuit
can read at most k2 = α2n of the input bits. This means that the circuit errs on a large
number of inputs. All formal estimates are given in Section 7.2 in the Appendix. J

4 Randomized Circuits

The upper bound from the previous section, however, is not enough to obtain a randomized
circuit since the construction in Theorem 6 has a very high error probability on the middle
layers of the boolean cube. By a randomized circuit here we mean a probabilistic distribution
on deterministic circuits computing the function correctly on every input with high probability.

It is not difficult to see that the existence of a randomized circuit is equivalent to an
existence of a deterministic circuit computing the function correctly on most of minterms and
maxterms (the proof of the following lemma can be found in Section 7.3 in the Appendix).

I Lemma 8. If there exists a randomized circuit C in MAJk ◦MAJk computing MAJn with
error probability ε, then there exists a deterministic circuit C in MAJk ◦MAJk computing
MAJn incorrectly on at most ε fraction of minterms and maxterms. Conversely, if there
exists a deterministic circuit C in MAJk ◦MAJk computing MAJn incorrectly on at most ε
fraction of minterms and maxterms, then there exists a randomized circuit C in MAJk ◦MAJk
computing MAJn with error probability at most 2ε.

From now on instead of probabilistic circuits we study deterministic circuits with high
accuracy on two middle layers of {0, 1}n.

4.1 Upper Bound
I Theorem 9. There exists a randomized MAJk ◦MAJk circuit computing MAJn incorrectly
on each input with probability at most 1/ poly(n) for k = O(n2/3 log1/2 n).

Proof Sketch. Partition the set of n input bits into n1/3 blocks of size p = n2/3: X =
X1 tX2 t . . . tXn

p
. For each block Xi, compute [

∑
x∈Xi

x ≥ m] for all m ∈ [ p2 −
t
2 ,

p
2 + t

2 ]
for t ≈ n1/3 log1/2 n, and return the majority of results. By selecting the right value of t,
this gives a circuit that computes MAJn incorrectly only on a fraction 1

poly(n) of inputs. The
detailed proof is given in Section 7.3 in Appendix. J

4.2 Lower Bound
In this subsection we show that the upper bound of the previous subsection is essentially
tight.

I Theorem 10. If a MAJk ◦MAJk circuit computes MAJn on a 1− ε fraction of minterms
and maxterms for ε < 1/10, then k = Ω(n2/3).

Proof Sketch. The majority function have many inputs A ∈ {0, 1}n with a property that
changing a single bit in A changes the value of the function (these are precisely minterms and
maxterms of MAJn). If k = αn2/3 for a small enough constant α, a MAJk ◦MAJk circuit
can reflect such a change in the value only for a small fraction of inputs. A detailed proof is
given in Section 7.3 in the Appendix. J
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5 Deterministic Circuits

In this section, we consider MAJk ◦MAJk circuits that compute MAJn correctly on all 2n
inputs.

5.1 Upper Bounds

5.1.1 Depth Two
In this section, we present MAJk ◦MAJk circuits computing MAJn on all inputs for k = n−2
when n = 7, 9, 11. These circuits were found by extensive computer experiments (with the
help of SAT-solvers). Though the examples below look quite “structured”, currently, we
do not know how to generalize them to all values of n (not to say about constructing such
circuits for sublinear values of k). In the examples below, we provide k = n− 2 sequences
consisting of k = n− 2 integers from [n]. These are exactly the input bits of the k majority
gates at the lower level of the circuit. That is, each gate computes the standard MAJk
function (whose threshold value is k/2).

n = 7:

1 2 3 4 5
1 2 3 6 7
1 4 5 6 7
2 2 4 5 6
3 4 5 7 7

n = 9:

1 2 3 4 5 6 7
1 2 3 4 5 8 9
1 2 3 6 7 8 9
1 4 5 6 7 8 9
1 3 5 5 7 9 9
1 2 4 6 6 8 8
2 3 4 5 6 7 8

n = 11:

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 10 11
1 2 3 4 5 8 9 10 11
1 2 3 6 7 8 9 10 11
1 4 5 6 7 8 9 10 11
1 2 2 4 6 6 8 10 10
2 4 4 5 6 7 8 10 11
3 3 5 5 7 7 8 9 11
3 3 6 8 9 9 9 10 10

Note that in the examples above there is always a gate in the circuit having one variable
repeated more than once. Next we observe that this is unavoidable for k = n− 2.

I Lemma 11. For odd n there is no MAJk ◦MAJk circuit for k = n− 2 with all gates being
standard majorities (that is, with the threshold n/2) and having exactly k distinct variables
in each gate on the bottom level.

We provide a proof of this lemma in Section 7.4 in the Appendix.

5.1.2 Depth Three
In this section we extend the proof of the upper bound for randomized depth-2 circuits
(Theorem 9) to construct a circuit of depth 3 for k = O(n2/3) computing majority on all
inputs.

I Theorem 12. For k = O(n2/3) there is a circuit of depth 3 computing majority of n
variables on all inputs.

Proof Sketch. We adopt the strategy of the proof of Theorem 9. That is, we break inputs
into O(n1/3) blocks, compute majorities on each block on middle O(n1/3) layers and then
compute the majority of the results. We use the third layer of majority gates to induce
additional structure on the inputs. The full proof is given in Section 7.4 in the Appendix. J

CVIT 2016
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5.2 Lower Bound
In this section we will extend the lower bound on k above Ω(n2/3) for depth-2 circuits
computing MAJn on all inputs.

I Theorem 13. Suppose a MAJk ◦MAJk circuit computes MAJn on all inputs. Then
k = Ω

(
n13/19 · (logn)−2/19) .

We also show the following result for the special case of circuits with bounded weights.

I Theorem 14. Suppose a MAJk ◦MAJk circuit computes MAJn on all inputs and uses
only weights at most W in the gates. Then k = Ω(n7/10 · (logn)−1/5 ·W−3/10) .

In particular, we get the following corollary for circuits with unweighted gates.

I Corollary 15. Suppose a MAJk ◦MAJk circuit computes MAJn on all inputs and each
variable occurs in each gate of the bottom level at most once. Then k = Ω(n7/10 · (logn)−1/5) .

The rest of this section is devoted to the unified proof of these lower bounds. To follow this
proof it is convenient to think that k = n

2
3 +ε for some small ε > 0. In the end it will indeed

be the case up to a logarithmic factor. In the proof we will calculate everything precisely in
terms of parameters n and k, but we will provide estimates assuming that k = n2/3+ε. This
is done in order to help the reader to follow the proof.

Let F be a MAJk ◦MAJk formula computing MAJn on all inputs from {0, 1}n. Denote
by W the largest weight of a variable in gates of F .

5.2.1 Normalizing a formula
We start by “normalizing” F , that is, removing some pathological gates from F . We do this
in two consecutive stages.

Stage 1: removing AND-like gates. We will need that no gate can be fixed to 0 by
assigning a small number of variables to 0 (here and in what follows we consider gates from
the bottom level only). For this, assume that there is a gate that can be fixed to 0 by
assigning to 0 less than n/(100k) = n1/3−ε/100 variables. Take these variables and substitute
them by 0; this kills this gate (and might potentially introduce new gates with the property).
We repeat this process until there are no bad gates left. Recall that the number of gates
at the bottom level is at most k = n2/3+ε, so there are at most k = n2/3+ε steps in this
process and hence n is replaced by 99n/100. To simplify the presentation, we just assume
that |X| = n and that F has no bad gates.

Stage 2: removing other pathological gates and variables. The formula F contains at most
k2 = n

4
3 +2ε occurrences of variables (counting with multiplicities). Let x∗ ∈ X be a least

frequent variable at the leaves. The number of occurrences of x∗ is at most k2/n = n1/3+2ε.
In the following we consider only assignments A with diff(MAJn, A) = −1 setting x∗ to 0:

A∗ = {A : X → {0, 1} | diff(MAJn, A) = −1 and A(x∗) = 0} .

We also focus on the gates from the first level that depend on x∗, denote this set by G∗
(hence |G∗| ≤ k2/n = n1/3+2ε). The total number of variables in the gates from G∗ (counting
with multiplicities) is at most k|G∗| ≤ k3/n = n1+3ε.

We now additionally normalize the circuit. We get rid of the following bad gates and
variables:
1. gates in G∗ that can be assigned to 1 by fixing less than n2/(100k2) = n2/3−2ε/100

variables in X \ {x∗} to 1;
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2. gates in G∗ with the weight of the variable x∗ greater than 100k3/n2 = 100n3ε;
3. variables with total weight in all gates in G∗ greater than 100k3/n2 = 100n3ε.
We do this by the following iterative procedure. If on some step we have a gate violating
1 we fix less than n2/(100k2) = n2/3−2ε/100 variables of the gate among X \ {x∗} to 1 to
assign the gate to a constant. If we have a gate violating 2 we fix all the variables of the
gate among X \ {x∗} to 1 to assign the gate to a constant. If we have a variable violating 3,
we fix the violating variable to 1.

We note that if we fix all variables in G ∈ G∗ except x∗ to 1, then the gate becomes
constant. Indeed, if it is not constant, then the gate outputs 0 on the input with x∗ = 0 and
the rest of the variables equal to 1. Due to the monotonicity of the gate this means that the
gate can be assigned to 0 by assigning a single variable x∗ to 0 and we got rid of the gates
with this property on the first stage of the normalization.

Since there are at most k2/n = n1/3+2ε gates in G∗ we will fix at most n/100 variables
for case 1. Since the total weight of x∗ is at most k2/n = n1/3+2ε we will have case 2 at most
n/(100k) = n1/3−ε/100 times. Since each gate has at most k = n2/3+ε variables we will fix
at most n/100 variables for the second case. Since the total weight of all variables in G∗ is at
most k3/n = n1+3ε we will fix at most n/100 of them for the case 3.

In particular, we have fixed all variables having weight greater than 100k3/n2 = 100n3ε

in some gate of G∗, so from now on we can assume that W ≤ 100k3/n2.
Another important observation is that now in each gate there are at least n2/(100k2)

inputs. Otherwise the gate falls under condition of case 1 above.
After this normalization n is replaced by 97n/100. To simplify the presentation, again,

we assume that |X| = n and the circuit F is normalized. Note that after redefining n the
threshold of the function MAJn we are computing is no longer n/2, but rather is cn for some
constant c close to 1/2. This does not affect the computations in the further proof.

5.2.2 Analysis
The key idea is that if we have an assignment A ∈ A∗ with diff(MAJn, A) = −1, then there
is a gate G ∈ G∗ with −W ≤ diff(G,A) ≤ −1. Indeed, otherwise we can flip the variable x∗,
the value of MAJn changes, but none of the gates changes their value. The plan of the proof
is to construct an assignment that violates this condition. This will lead to a contradiction.

For an assignment A ∈ A∗ with diff(MAJn, A) = −1 and integer parameters s and d (to
be chosen later), consider the following process walk(A, s, d).

1: A0 ← A

2: for i = 1 to s do
3: if for each G ∈ G∗, diff(G,Ai−1) 6∈ {−d,−d+ 1, . . . ,−1} then
4: stop the process
5: else
6: Gi ← any gate from G∗ such that −d ≤ diff(G,Ai−1) < 0
7: Xi ← set of variables Gi depends on that are assigned 1 by Ai−1
8: yi ← a uniform random variable from Xi

9: Ai ← assignment to X resulting from flipping the value of yi in Ai−1
10: end if
11: end for
Clearly, this process decreases the weight of the initial assignment A by 1 at each iteration,
for at most s iterations. In particular, w(A)− w(Ai) = i. We now consider three cases.
Case 1. There exists an assignment A ∈ A∗ with diff(MAJn, A) = −1 such that walk(A, s, d)
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stops after less than s iterations for some choices of random bits. This means that after t < s

iterations, for all the gates G in G∗ we have that either diff(G,At) < −d, or diff(G,At) ≥ 0
We select randomly a subset T of t variables from Z = {x ∈ X \ {x∗} : At(x) = 0}

and flip them. Denote the resulting assignment by A′. Clearly, w(A) = w(A′) and so
diff(MAJn, A′) = −1. Therefore there must be a gate G in G∗ such that −W ≤ diff(G,A′) <
0. Thus, before flipping t random variables, all the gates with negative difference has
difference less than −d, while after the flipping, at least one gate G has difference at least
−W . Let Z ′ = {x ∈ X(G) \ {x∗} : At(x) = 0}. This means that the flipping changed the
values of at least r = (d−W )/W variables of G, that is, |T ∩ Z ′| ≥ r.

Let p be the probability that |T ∩Z ′| ≥ r where the probability is taken over the random
choice of T . By choosing the parameters s and d we will make p small enough so that with
non-zero probability no gate from G∗ satisfies this. Due to the discussion above this leads
to a contradiction since flipping x∗ changes the value of the function, but not the value of
the circuit. The probability that no gate from G∗ satisfies |T ∩ Z ′| ≥ r is at least 1− |G∗|p.
The probability p can be upper bounded using Lemma 5: p ≤

(
t|Z′|
|Z|

)r
≤
(
sk
n/2

)r
where the

second inequality follows since t < s, |Z ′| ≤ k and |Z| ≥ n
2 .

We want the probability 1− |G∗|p to be positive. Since |G∗| ≤ k2/n = n1/3+2ε we get the
following inequality on s, d, and k: (k2/n) · (2sk/n)r < 1 . We can satisfy this if sk < n/4
and r ≥ log k2

n . Since logn > log k2

n for the latter it is enough to have d = W logn. Overall,
this case poses the following constraint for the considered parameters:

sk ≤ n/4 . (2)

Case 2. For each assignment A ∈ A∗ (i.e., diff(MAJn, A) = −1) the process walk(A, s, d)
goes through all s iterations for all choices of random bits. We consider two subcases here.
Case 2.1. For each assignment A ∈ A∗ (i.e., diff(MAJn, A) = −1) there exists a choice
of variables y1, . . . , ys at line 8 of the process walk(A, s, d), such that for each gate G ∈
{G1, . . . , Gs} (recall that the gates G1, . . . , Gs are selected at line 6 of the process) we have
diff(G,A) ≤ f , where f is again a positive parameter to be chosen later.

We estimate the expected number E of gates G from G∗ that have −d ≤ diff(G,A) ≤ f
where the expectation is taken over the random choices of A. Note that a particular
gate G ∈ G∗ may appear in the sequence G1, . . . , Gs at most d times: the first time it
appears, it must have diff(G,A1) ≤ −1 for the current assignment A1, the next time it
has diff(G,A2) ≤ −2 for the new current assignment A2, and so on. If Ed < s we get a
contradiction: take an assignment A ∈ A∗ with diff(MAJn, A) = −1 such that the number
of gates G in G∗ with −d ≤ diff(G,A) ≤ f is at most E, then we cannot have that for all of
G1, . . . , Gs it is true that −d ≤ diff(Gi, A) ≤ f , there are just not enough gates with this
diff.

Now we upper bound E. Due to the normalization stage any fixed gate has at least
n2/(100k2) = n2/3−2ε/100 variables in it. Note that the set of inputs B to the gate G that
give diff(G,B) = i for any i form an antichain. Then due to Lemma 4 the probability for a
gate to attain a certain value is at most O(k/n) = O(1/n1/3−ε).

Hence

E ≤ |G∗| · (f + d) ·O
(
k

n

)
= k2

n
· (f + d) ·O

(
k

n

)
= O

(
k3(f + d)

n2

)
= O

(
k3f

n2

)
,

where for the last equality we add the constraint

d = O(f) . (3)
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Overall, this case poses the following constraint for the parameters:

O

(
k3fd

n2

)
= O(fdn3ε) < s . (4)

Case 2.2. There exists an assignment A ∈ A∗ (i.e., diff(MAJn, A) = −1) such that for any
choice of variables y1, . . . , ys, for at least one gate G ∈ {G1, . . . , Gs} we have diff(G,A) > f .

Fix a gate G ∈ G∗ with diff(G,A) > f . We are going to upper bound the probability
(over the random choices of variables y1, . . . , ys) that G appears among G1, . . . , Gs during
the process. If this probability is less than 1/k, then by the union bound with a positive
probability no gate such gate appears among G1, . . . , Gs which leads to a contradiction with
the case statement.

For G to appear among G1, . . . , Gs, the process has to select a variable appearing in G
at line 8 many times. Indeed, if G appears in the process, then its diff with the current
assignment is negative. At the same time, in the beginning of the process diff(G,A) > f .
Each time when the process reduces a variable at line 8 (that is, changes its value from 1
to 0), the value of the linear function computed at G decreases by at most W (just because
W is the maximum weight of a variable in all the gates in G∗). Thus, it is enough to upper
bound the probability that for a fixed gate G ∈ G∗ with diff(G,A) > f , the process selects a
variable from X(G) at least f/W times.

Let Y1, . . . , Ys be random 0/1-variables defined as follows: Yi = 1 iff the i-th reduced
variable appears in G (i.e., yi ∈ X(G)). Let Y =

∑s
i=1 Yi. Our goal is to upper bound

Prob(Y ≥ f/W ).
Let H1, . . . ,Hl be all the gates that share at least one variable with G. Assume that on

step j we reduce a variable from Hi. Then

Prob(Yj = 1) = Prob(yi ∈ X(G)) = |X(G) ∩X(Hi)|
|{x ∈ X(Hi) : Aj−1(x) = 1}| .

Due to the stage 2.1 of the normalization process, |{x ∈ X(Hi) : Aj−1(x) = 1}| ≥ n2

100k2 − d.
To see this, assume the contrary. Recall that −d ≤ diff(Hi, Aj−1) < 0. This means that by
increasing at most d variables (i.e., changing their values from 0 to 1) from X(Hi) in Aj−1
results in an assignment of weight at most n2

100k2 that sets Hi to 1. This, in turn, contradicts
to the fact that the circuit is normalized. Thus,

Prob(Yj = 1) ≤ |X(G) ∩X(Hi)|
n2

100k2 − d
≤ |X(G) ∩X(Hi)|

n2

200k2

,

where we add a constraint

d ≤ n2

200k2 . (5)

We are now going to use the fact that variables from a fixed gate Hi can be reduced
at most d times. We upper bound Y =

∑s
i=1 Yi by the following random variable: Z =∑l

i=1
∑d
j=1 Zij . where each Zij is a random 0/1-variable such that

Prob(Zij = 1) = |X(G) ∩X(Hi)|
n2

200k2

,

and Zij are independent. That is, instead of reducing variables in some of Hi’s in some
random order, we reduce d variables in each Hi. Thus we reduce maximal possible number
of variables in all gates. Clearly, for any r we have Prob(Y ≥ r) ≤ Prob(Z ≥ r).
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Let us bound the expectation of Z. Since due to the normalization each variable of G
appear in other gates at most 100k3/n2 = 100n3ε times, we have∑

i,j

|X(G) ∩X(Hi)| ≤ d · (100k3/n2) · |X(G)| ≤ 100 · d · k4/n2 = 100 · n2/3+4ε ·W · logn.

Overall we get EZ ≤ 100dk4/n2

n2/200k2 = 4 · 104 · d k
6

n4 = 4 · 104 · n6ε ·W · logn. Application of
Chernoff–Hoeffding bound (Lemma 1) immediately implies that the probability that Z is
twice greater than the expectation is exponentially small in d · k

6

n4 . Since d · k
6

n4 = W · logn ·n9ε

grows asymptotically faster than logn for sure, we conclude that Prob(Z ≥ 2 ·EZ) < 1
n ≤

1
k .

Hence, if f/W ≥ 2 ·EZ, then Prob(Y ≥ f/W ) ≤ Prob(Z ≥ 2 ·EZ) < 1
k as desired. Overall,

this gives us the following constraint:

f ≥ 4 · 104 · d ·W · k
6

n4 = 4 · 104 · n9ε ·W 2 · logn . (6)

5.2.3 Tuning the parameters
It remains to set the parameters so that the inequalities (2)–(6) are satisfied and k is as large
as possible. The inequality (4) sets a lower bound on s in terms of f , while (6) sets a lower
bound on f . Putting them together gives a lower bound on s: s ≥ 4 · 104 · k

9

n6 ·W 3 · log2 n .

Combining it with the upper bound on s from (2), we can set the following equality on k
and n: n

4k = 4 · 104 · k
9

n6 ·W 3 · log2 n. Thus k = Ω
(

n7/10

(logn)1/5W 3/10

)
and it is easy to see that

with this k we can pick other parameters to satisfy all the constraints (we set f so that (6)
turns into an equality, the inequalities (3) and (5) are satisfied since W ≤ k3

n2 ).
This gives a proof of Theorem 14. For W = 1 we get k = n7/10 · (logn)−1/5, which gives

a proof for Corollary 15. For unbounded W recall that we can assume W ≤ k3

n2 and thus
k = n13/19 · (logn)−2/19 and Theorem 13 follows.

6 Conclusion and Open Problems

The most interesting question left open is whether one can prove non-trivial upper bounds
for k in the worst case. Currently, we do not know how to construct MAJk ◦MAJk circuits
computing MAJn on all inputs even for k = n− 2 (though we have many examples of such
circuits for n = 7, 9, 11), not to say about k = nε for ε < 1.

Another natural open question is to get rid of the logarithmic gap between upper and
lower bound for depth-2 randomized circuits.

A natural direction is to extend our studies to the case of non-monotone MAJk ◦MAJk
circuits.

Many of our results naturally translate to larger depth circuits. Indeed, note that in the
proofs of lower bounds we do not use the fact that the function on the top of the circuit is
majority. In these proofs it can be any monotone function. Thus we can split a depth-d
circuit consisting of MAJk into two parts: bottom layer and the rest of the circuit. Then our
lower bounds translate to this setting straightforwardly. It is interesting to proceed with the
studies of larger depth majority circuits.
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7 Appendix: Omitted Proofs

7.1 Technical Lemmas
Proof of Lemma 3. The probability under consideration is equal to

Pr[|T ∩ S′| = l] =
(
k
l

)(
m−k
t−l
)(

m
t

) .

It is convenient to introduce notation c = t
m . Note that then ε < c < 1− ε. The probability

above then can be rewritten as

Pr[|T ∩ S′| = l] =
(
k
l

)(
m−k
cm−l

)(
m
cm

) .

It is not hard to see that the maximum is achieved for l equal to ck (the probability is
increasing for l < ck as a function of l and is decreasing for l > ck).

So we need to upper bound(
k
ck

)(
m−k
c(m−k)

)(
m
cm

) =
k!

ck!(1−c)k!
(m−k)!

c(m−k)!(1−c)(m−k)!
m!

cm!(1−c)m!
. (7)

To bound the probability we will use Stirling’s approximation, the following simple form
will be enough

n! ∼
(n
e

)n√
n.

Let us first consider binomial coefficients separately:

m!
cm!(1− c)m! ∼

(
m
e

)m√
m(

cm
e

)cm√
cm
(

(1−c)m
e

)(1−c)m√
(1− c)m

= 1
(cc(1− c)1−c)m ·

1√
c(1− c)

√
m

= dm · 1√
c(1− c)

√
m
,

where by d we denote 1
cc(1−c)1−c .
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Now for (7) we have

dk · 1√
c(1−c)

√
k
· dm−k · 1√

c(1−c)
√
m−k

dm · 1√
c(1−c)

√
m

=
√
m√

c(1− c)
√
k
√
m− k

∼ 1√
k
,

where the last equivalence follows since
√
m− k = Θ(

√
m).

So, we have shown the first part of the lemma and the second part for l = ck. To ensure
the second part for |l − ck| < d we can compare probabilities for l and l + 1:(

k
l

)(
m−k
cm−l

)(
m
cm

) =
(
k
l+1
)(

m−k
cm−l−1

)(
m
cm

) · l + 1
k − l

· m− k − (cm− l) + 1
cm− l

.

Note that if |l − ck| < d the probabilities differ by a constant factor. Thus the asymptotic of
the probability is the same for all l satisfying |l − ck| < d. This finishes the proof of lemma.

J

Proof of Lemma 4. We introduce the same notation as in the previous proof: c = t
m . The

probability is bounded by∑
r∈A

(
m−k
cm−|r|

)(
m
cm

) =
∑
r∈A

(
1(
k
|r|
) ( k|r|)( m−kcm−|r|

)(
m
cm

) )
≤

max
|r|

((
k
|r|
)(

m−k
cm−|r|

)(
m
cm

) )∑
r∈A

1(
k
|r|
) ≤ max

|r|

((
k
|r|
)(

m−k
cm−|r|

)(
m
cm

) )
,

where the last inequality is LYM inequality (see e.g. [7], Theorem 8.6).
Now we can bound the probability by the same argument as in Lemma 3.

J

Proof of Lemma 5. The lemma can be shown by a simple direct calculation:

Prob{|T ∩ Z ′| ≥ l} ≤
(
k
l

)(
m−k
t−l
)(

m
t

) ≤ kl · t
m
· t− 1
m− 1 · · · · ·

t− l + 1
m− l + 1 ≤

kl ·
(
t

m

)l
=
(
kt

m

)l
,

where in the second inequality we use a simple bound
(
k
l

)
≤ kl. J

7.2 Circuits with High Correlation
Proof of Theorem 6. Proof overview. The required circuit is straightforward: we just pick
k random subsets S1, S2, . . . , Sk of X of size k, compute the majority for each of them, and
then compute the majority of the results:

C(X) = MAJk(MAJS1(X),MAJS2(X), . . . ,MAJSk
(X)) .

The resulting circuit has a high probability of error on middle layers of the boolean hypercube.
We will however select the parameters so that all the inputs from these middle layers constitute
only a small ε/2 fraction. We will then show that among all the remaining inputs (not
belonging to middle layers) there is only a fraction ε/2 (of all the inputs) where MAJn may
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be computed incorrectly. Overall, this gives a circuit that errs on at most ε fraction of the
inputs.

Assignments from middle layers. Consider all the inputs whose weight differs from n/2
by at most αn1/2 where α = α(ε) is a parameter to be chosen later. The number of such
inputs is∑

i : |i−n/2|≤αn1/2

(
n

i

)
≤ 2α · n1/2 ·

(
n

n/2

)
= 2α · n1/2 ·Θ(1) · 2n

n1/2 = α ·Θ(1) · 2n .

By choosing a small enough value for α = α(ε), one ensures that this is at most ε
2 · 2

n.
Assignments from outside of middle layers. Now, fix an input A ∈ {0, 1}n of weight

n/2 + αn1/2. Pick a random subset S ⊂ X of size k = βn1/2 (again, β is a parameter to be
defined later). We are going to lower bound the following probability (over the choices of S):

Prob(MAJS(A) = 1) = Prob(wS(A) ≥ |S|/2) .

The resulting lower bound will also hold for assignments A of weight greater than n/2+αn1/2

(the higher the weight of A, the larger is the probability that MAJS(A) = 1). By symmetry,
it will also give a lower bound on Prob(MAJS(A) = 0) for assignments of weight at most
n/2− αn1/2.

The distribution of the weight of A on S is a hypergeometric distribution with mean

k · w(A)
n

= βn1/2/2 + βα = k/2 + βα .

It is known (see, e.g., [17, Corollary 2.3]) that the median of the hypergeometric distribution
is approximately equal to its mean. Hence

Prob (wS(A) ≥ bk/2 + αβc) ≥ 1/2 . (8)

By choosing a large enough value of β, one ensures that αβ > 2. Then Lemma 3 guarantees
that

Prob (k/2 ≤ wS(A) < bk/2 + αβc) ≥ γn−1/4 (9)

for a constant γ > 0. Collecting (8) and (9), gives us

Prob(MAJS(A) = 1) = Prob(wS(A) ≥ k/2) ≥ 1/2 + γn−1/4 .

Now, pick sets S1, S2, . . . , Sk of size k uniformly and independently. For each Si, let Yi be
a 0/1-random variable defined by Yi = MAJSi(A). Then Prob(Yi = 1) ≥ 1/2 + γn−1/4 and

E

(
k∑
i=1

Yi

)
= k · (1/2 + γn−1/4) = k/2 + βγn1/4 .

By Chernoff–Hoeffding bound (Lemma 1), the resulting circuit (where the first level gates
compute majorities over subsets S1, S2, . . . , Sk) computes MAJX(A) incorrectly is

Prob
(

k∑
i=1

Yi < k/2
)

= Prob
(

k∑
i=1

Yi < E

(
k∑
i=1

Yi

)
− βγn1/4

)
≤

exp
(
−2β2γ2n1/2

βn1/2

)
= exp(−2βγ2) .
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By choosing a large enough value for β one makes this expression small enough.
Thus, there exists a choice of S1, S2, . . . , Sk such that the fraction (among all 2n inputs)

of all the inputs from outside of middle layers for which the corresponding circuit computes
MAJX incorrectly is at most ε/2. This gives a circuit that computes MAJX correctly for at
least a fraction (1− ε) of all the inputs. J

Proof of Theorem 7. Let k = αn1/2 for a parameter α = α(ε) to be chosen later. We are
going to show that one can set this parameter so that a MAJk ◦MAJk circuit errs on more
than a fraction ε of inputs. Note that such a circuit can read at most k2 = α2n of the
input bits. Let R be the input bits that are read by the circuit C and U = X \R be all the
remaining input bits (for read and unread). Then |R| ≤ α2n. Intuitively, when α is small,
the circuit does not even read a large fraction of input bits and for this reason errs on a large
number of inputs. We formalize this intuition below.

If |R| < α2n it is convenient to extend |R| to |R| = α2n, so that |U | = (1 − α2)n and
the circuit C reads only some of the input bits from R and does not read any input bits
from U . Let β be a parameter to be chosen later. Denote by CR, FR, CU , FU the set of all
assignments to the variables from R and U , respectively, whose weight is close to or far from
the middle value, respectively:

CR = {A : R→ {0, 1} | |w(A)− |R|/2| ≤ βn1/2}, FR = {A : R→ {0, 1} | A 6∈ CR},

CU = {A : U → {0, 1} | |w(A)− |U |/2| ≤ βn1/2}, FU = {A : U → {0, 1} | A 6∈ CU}.

We would like to set the parameters α and β so that both |FU | and |CR| are large enough.
Namely, that each of them has at least a fraction 1−ε/10 of all the corresponding assignments.

By Lemma 1, for a randomly chosen assignment A : R→ {0, 1},

Prob(A ∈ FR) ≤ exp
(
−2β2n

|R|

)
= exp

(
−2β2

α2

)
. (10)

On the other hand,

|CU | =
∑

i : |i−|U |/2|≤βn1/2

(
|U |
i

)
≤ 2β · n1/2 ·

(
|U |
|U |/2

)
= 2|U | ·Θ(1) β

(1− α2)1/2 (11)

We now tune the parameters. First, set β = α√
2 ln 10

ε to ensure that (10) is at most ε/10.
Then one can choose a small enough value for α so that (11) is also at most 2|U | · ε/10. This
is possible, since the function α

(1−α2)1/2 decreases to 0 with α→ 0.
Now, break assignments from FU into pairs: A and ¬A (clearly, if the weight of A is

far from the middle, then so is the weight of ¬A, since w(A) = |U | − w(¬A)). Consider an
assignment A ∈ FU , its mate ¬A ∈ FU , and an assignment B ∈ CR. Consider the following
two assignments to X: A tB and ¬A tB. Clearly,

MAJX(A tB) 6= MAJX(¬A tB) .

On the other hand, the circuit C outputs the same for both of them as it only reads the bits
from R. This means that it errs on at least one of these two assignments. This, in turn,
implies that the circuit errs on at least a fraction (1 − ε/10)2 of all 2n assignments. For
ε ≤ 1/3, this is grater than ε, a contradiction.

J
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7.3 Randomized Circuits
Proof of Lemma 8. Consider a randomized circuit C. For any minterm/maxterm A of
MAJn, the circuit C computes MAJn(A) correctly with probability at least 1−ε. This means
that one can pick a deterministic circuit C from C that computes MAJn correctly on at least
a fraction 1− ε of all minterms and maxterms of MAJn.

For the other direction, consider a circuit C computing MAJn correctly on at least 1− ε
fraction of minterms and maxterms. Let t =

(
n
n/2
)
be the number of minterms. Then we also

have t maxterms (for this, we assume additionally that n is odd). The circuit C errs on at
most 2tε of minterms/maxterms. Consider a random permutation of inputs of C. Denote
the resulting distribution of the circuits by C. Consider a minterm A (the case of maxterms
is handled similarly). It is not difficult to see that for a randomly and uniformly chosen
permutation of its coordinates one gets a uniformly distributed random minterm. Note the
the fraction of errors of C among minterms is at most 2tε/t = 2ε. Hence C is incorrect on A
with probability at most 2ε.

Now, consider an arbitrary assignment A : X → {0, 1} such that MAJn(A) = 1 (again, the
case MAJn(A) = 0 is handled in a similar fashion). Then there is a minterm A′ : X → {0, 1}
such that MAJn(A′) = 1 and A′ ≤ A (componentwise). The randomized circuit C is incorrect
on A′ with probability at most 2ε. Since C is monotone it is also incorrect on A with at most
the same probability. J

Proof of Theorem 9. Let p, t be parameters to be chosen later. Partition the set of n
input bits into n

p blocks of size p: X = X1 tX2 t . . . tXn
p
. For each block Xi, compute

[
∑
x∈Xi

x ≥ m] for all m ∈ [p]. The outputs of all these p gates is just a permutation of Xi,
that is, Xi in sorted order. Computing the majority of all these gates (for all blocks) gives
us a depth two formula computing MAJn(X) with the fanin of the output gate equal to n.
To reduce this fanin, instead of going through all values of m ∈ [p] we go only through t
middle values. Thus, the resulting formula looks as follows: on the bottom level, for each
block Xi, we compute [

∑
x∈Xi

x ≥ m] for all m ∈ [ p2 −
t
2 ..

p
2 + t

2 ]; on the top level we compute
the majority of all the gates from the bottom level. The fanin of the bottom level of the
resulting formula is p while its top level fanin is nt

p . Hence, for this formula

k = max
{
p,
nt

p

}
. (12)

A simple observation is that, if for an assignment A : X → {0, 1},
p

2 −
t

2 ≤
∑
x∈Xi

A(x) ≤ p

2 + t

2 (13)

for all i, then our formula outputs MAJn(A) on the input assignment A.
We turn to estimating the number of assignments A satisfying (13). The number of

assignments to Xi violating (13) is at most

2 ·
∑

m> p
2 + t

2

(
p

m

)
.

Hence the total number of assignments A for which the formula computes MAJn incorrectly
is at most

O

2n−p · n
p
·
∑

m> p
2 + t

2

(
p

m

)
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We are going to set the parameters p and t such that this number is at most 2n

poly(n) .
For this, take p = n

2
3 and t = α

√
p ln p = O(n 1

3 log
1
2 n) (where α is a constant) and

use the estimate (1). From (12) we conclude that this gives a MAJk ◦MAJk circuit with
k = O(n 2

3 log
1
2 n). J

Proof of Theorem 10. Consider a MAJk ◦MAJk circuit C computing MAJn for k = αn2/3.
We will show that for small enough value of the constant α such a circuit must err on more
than ε fraction of minterms and maxterms.

For a function f : {0, 1}n → {0, 1}, define its boundary as follows:

Bnd(f) = {(A, i) : A ∈ {0, 1}n, i ∈ [n], f(A) 6= f(Ai)} ,

where by Ai we denote an assignment from {0, 1}n resulting from A by flipping its i-th bit.
In particular, by Lemma 2, |Bnd(MAJn)| = Ω(2n · n1/2). Below, we show that for small
enough value of α, |Bnd(C)| is much smaller than |Bnd(MAJn)|, which implies that C errs
on a large fraction of minterms and maxterms of MAJn.

Consider (A, i) ∈ Bnd(C). This means that C contains a gate G at a bottom level such
that G(A) 6= G(Ai). Recall that G is a monotone function on l ≤ k variables. It is known
(see, e.g., [15, Theorem 2.33]) that the influence of such a function is O(l1/2):

Inf(G) = 2−l ·
∑

A∈{0,1}l

|{i ∈ [l] : G(A) 6= G(Ai)}| = O(l1/2) = O(k1/2) .

Hence,

|{(A, i) : A ∈ {0, 1}l, i ∈ [l], G(A) 6= G(Ai)}| = O(k1/22l) .

Note that by Lemma 2 any A ∈ {0, 1}l such that G(A) 6= G(Ai) can be extended to a
minterm/maxterm of MAJn in O(2n−l · (n− l)−1/2) ways. Thus, G contributes at most

O(k1/2 · 2n · n−1/2)

pairs (A, i) to Bnd(C) (note that (n − l)1/2 = Θ(n1/2) since l ≤ k = Θ(n2/3)). Since C
contains at most k such gates, we conclude that

Bnd(C) = O(k3/2 · 2n · n−1/2) .

For small enough constant α,

Bnd(C) ≤ 1
100 ·

n

2 ·
(
n

n/2

)
.

In particular, there are at most 1
10
(
n
n/2
)
maxterms that contribute at least n/10 elements

to Bnd(C). Thus there are at least 9
10
(
n
n/2
)
maxterms that contribute to Bnd(C) less than

n/10 elements. Since by our assumption C computes MAJn correctly on at least 8/10
fraction of maxterms we have that there is a set M of at least 1

2
(
n
n/2
)
maxterms on which

the computation of C is correct, but the contribution to Bnd(C) is small. That is, M
consists of assignments A : X → {0, 1} such that there are at least 4n/10 of i’s for them with
Ai = 0, (A, i) /∈ Bnd(C), and C(A) = 0. From this we will deduce that C computes MAJX
incorrectly on a large fraction of minterms.

Indeed, consider the following bipartite graph. The vertices of one part are elements
of M . For each A ∈M and for each i ∈ [n] with the properties above there is an outgoing
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edge corresponding to this pair (A, i). The other endpoint of this edge is labeled by Ai. Note
that Ai is a minterm of MAJn and by the analysis above C(Ai) = 0. The vertices on the
second part of the graph are thus labeled by minterms connected to maxterms in M . It is
left to estimate the number of elements in the second part. For this note that there are at
least 1

2
(
n
n/2
)
vertices in M each of degree at least 4n/10. On the other hand the degree of

each vertex in the second part is at most n/2. From this it follows that there are at least

1
2 ·
(
n

n/2

)
· 4n

10 ·
2
n

= 4
10 ·

(
n

n/2

)
vertices in the second part. Thus, the circuit C gives the wrong output on at least 4/10 of
minterms, a contradiction.

J

7.4 Deterministic Circuits
Proof of Lemma 11. Suppose n = 2l+1 and suppose there is a depth-2 circuit F computing
MAJn, consisting of standard majorities of exactly 2l− 1 variables each and for each gate on
the bottom layer having distinct variables as its inputs.

Consider the following undirected graph G. Its vertices are the inputs x1, . . . , xn. Two
vertices xi and xj are connected if there is a gate on the bottom layer that gets on input all
variables except xi and xj . Thus, graph G has n vertices and n− 2 edges.

Consider a minterm A of the function MAJn. Its weight is w(A) = l + 1. For the circuit
F to output 1 on A there should be at least l gates on the bottom layer outputing 1 on
A. For each of these gates to output 1 it has to receive at least l ones on inputs. This is
equivalent to saying that one of the two variables that are not given on the input of the gate
should be 0.

Thus in terms of the graph G, for the circuit to compute the function correctly it is
needed that for any coloring of l vertices of G in color 0 there are at least l edges that have
an endpoint colored in 0. It is not hard to see that this is impossible. Below we provide a
formal proof.

We will construct a coloring of l vertices into color 0 such that there are at most l − 1
edges having an endpoint colored in 0. Since G has n vertices and n− 2 edges we have that
there are at least two connected components in G. For each connected component H consider
the following parameter: p(H) = e(H) − v(H), where v(H) and e(H) are the number of
vertices and the number of edges in H respectively. The sum of p(H) over all components of
G is equal to −2. The minimal possible value of p(H) is −1 (when H is a tree). Thus, there
are at least two components H with negative p(H), that is with p(H) = −1. At least one of
these components has at most l vertices. Order the components in the increasing order of the
parameter p(H). Among components with p(H) = −1 order the component in the increasing
order of the number of vertices. Thus the first component is always a tree of size at most l.

Now we are ready to color l vertices of the graph in the color 0. We color all vertices in
the first several components and if needed we will color a part of one more component.

If after coloring l vertices we colored completely several components and have not started
the next one, then clearly the sum of p(H) over colored components is negative and thus the
number of edges with an endpoint colored in 0 is less than l.

Suppose we have colored several components and we need to color a part of the next
component H. We will explain now how to do it. If p(H) = −1, then H is a tree. Color a
part of H of needed size in such a way that the number of vertices in H colored in 0 is the
same as the number of edges with an endpoint colored in 0 (for example, we can repeat the
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following procedure: color a leaf and remove it from the tree). Note that in the previous
components the sum of the parameters p is negative and we are done. If p(H) = m ≥ 0 then
the sum of parameters p of all colored components is at most −m− 2. Consider a spanning
tree of H. It is obtained from H by removing m+ 1 edges. Color a part of the spanning tree
of H in such a way that the number of colored vertices in the spanning tree is the same as
the number of edges with an endpoint colored in 0. If we return edges removed from H it
will add at most m+ 1 edges with an endpoint colored in 0. However, in all components in
total the number of vertices colored in 0 is still greater than the number of edges with an
endpoint colored in 0. Thus we have constructed a needed coloring and thus found an input
on which the circuit gives the wrong output. J

Proof of Theorem 12. We adopt the strategy of the proof of Theorem 9. That is, we break
inputs into O(n1/3) blocks, compute majorities on each block on middle O(n1/3) layers and
then compute the majority of the results. We use the third layer of majority gates to induce
additional structure on the inputs.

We proceed to the formal proof. Partition the set of inputs into b = n1/3/21/3 blocks of
size p = 21/3n2/3 each: X = X1 tX2 t . . . tXb. For each block Xi, compute [

∑
x∈Xi

x ≥ k]
for all k ∈ [p]. This constitutes the first layer of the circuit. The outputs of each of these p
gates is just a permutation of Xi, that is, Xi in decreasing order.

As an output of the first layer we have again n bit vector Y with the same number of 1’s
and 0’s as in the input, but in each block the bits are ordered in decreasing order. On the
second layer we split Y again into b blocks of size p: Y = Y1 t Y2 t . . . t Yb. But now block
Yi consists of the bits of Y with numbers i, i+ b, i+ 2b, . . . , i+ (p− 1)b. For each block Yi,
we compute [

∑
y∈Yi

y ≥ k] for all k ∈ [ p2 − (n2 )1/3..p2 + (n2 )1/3]. Thus on the second layer
we have 22/3n1/3 gates for each of b = n1/3/21/3 blocks, that is 21/3n2/3 outputs in total.
Finally, on the third level we compute the majority of all of the outputs on the second layer.

Now we need to show that this circuit computes the majority for all possible inputs. Since
both the circuit and the majority function are monotone, it is enough to ensure that the
computation is correct on min-terms and max-terms of majority.

Consider an input A : X → {0, 1} with w(A) = n/2. We will show, that for each block Yi,

wYi
(A) ∈

[
p

2 −
(n

2

)1/3
,
p

2 +
(n

2

)1/3
]
. (14)

Indeed, since the variables in each Xi are ordered and we include in Yi each b-th variable of
each Xj ,

w(A) ∈ [wYi
(A) · b− b2, wYi

(A) · b+ b2],

where in ±b2 the first b factor corresponds to the error in each block Xi and the other b
factor corresponds to the number of blocks X1, . . . , Xb. On the other hand, we know that
w(A) = n/2. Thus

n

2 ∈ [wYi
(A) · b− b2, wYi

(A) · b+ b2]

which implies (14). Now, (14) implies that the computation of the constructed circuit on
A is correct. Indeed, by (14), on the block Yi, the assignment A has at least (p2 − b) zeroes
and at least (p2 − b) ones. This, in turn means that by computing [

∑
y∈Yi

y ≥ k] only for
middle values of k (namely, k ∈ [p/2− b, p/2 + b]), but not for all k ∈ [p], preserves a balance
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between 0’s and 1’s:

MAJ


[
∑
y∈Yi

A(y) ≥ k]


k∈[p]

 = MAJ


[
∑
y∈Yi

A(y) ≥ k]


k∈[p/2−b,p/2+b]

 .

J
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