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Дополнительные материалы по комбинаторике

1. М. Холл, Комбинаторика. М.: Мир, 1970.
2. Р. Стенли, Перечислительная комбинаторика. М.: Мир, 1990.
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Основные комбинаторные числа: число размещений
• Число размещений из n элементов по k — это количество
последовательностей длины k , составленных из различных элементов
n-элементного множества. Обозначается Ak

n .
• Это число можно интерпретировать как

▶ число инъективных отображений f : [1..k] → [1..n];
▶ число способов разложить k шаров по n ящикам (шары имеют номера

от 1 ÷ k , ящики — 1 ÷ n, в ящик помещается не более одного шара).
• Число размещений с повторениями из n элементов по k — это количество
последовательностей длины k , составленных из элементов n-элементного
множества. Обозначается Ãk

n .
• Это число можно интерпретировать как

▶ число отображений f : [1..k] → [1..n];
▶ число способов разложить k шаров по n ящикам (шары имеют номера

от 1 ÷ k , ящики — от 1 ÷ n, в ящик можно класть любое число шаров).
• Мы уже доказывали, что Ak

n = n(n − 1) . . . (n − k + 1) и Ãk
n = nk .
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Основные комбинаторные числа: число сочетаний
• Число сочетаний из n элементов по k — это количество k-элементных
подмножеств в n-элементном множестве (где 0 ≤ k ≤ n).
• Возможные обозначения: C k

n или
(n
k

)
.

• Это число можно интерпретировать как
▶ число строго монотонно возрастающих функций f : [1..k] → [1..n];
▶ число способов разложить k одинаковых шаров по n пронумерованным

ящикам (в каждый ящик помещается не более одного шара).

Теорема
C k
n = n!

k!(n−k)! .

Доказательство. Пусть |X | = n.
• Есть Ak

n = n(n − 1) . . . (n − k + 1) = n!
(n−k)! способов выбрать

последовательность из k различных элементов X .
• Каждая такая последовательность задает k-элементное подмножество X .
• Каждое подмножество посчитано k! раз, ибо его элементы можно
упорядочить k! способами. Итого, n!

k!(n−k)! различных подмножеств.
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Основные комбинаторные числа: число сочетаний с повторениями

• Число сочетаний с повторениями из n элементов по k — это количество
неупорядоченных наборов из k элементов n-элементного множества
(в отличии от множества, в наборе один и тот же элемент может
встречаться несколько раз).
• Возможные обозначения: C̃ k

n или
((n

k

))
.

• Это число можно интерпретировать как
▶ число нестрого монотонно возрастающих функций f : [1..k] → [1..n];
▶ число способов разложить k неразличимых шаров по n ящикам

(в ящик можно класть любое число шаров);
▶ число способов выбрать k предметов, если есть предметы n типов

(на складе есть хотя бы по k предметов каждого типа;
предметы одного типа абсолютно неразличимы).
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Формула для числа сочетаний с повторениями

Теорема
C̃ k
n = Cn−1

n+k−1 = C k
n+k−1.

Лемма
Число решений уравнения t1 + t2 + . . .+ tn = k (1)
в N0 равно C̃ k

n .
Доказательство. Пусть X = {x1, x2, . . . , xn}.
• Строим биекцию между решениями уравнения (1) и неупорядоченными
наборами из k элементов множества X .
• Каждому решению (t1, t2, . . . , tn) ставим в соответствие набор, состоящий
из t1 экземпляров элемента x1, t2 экземпляров x2, . . . , tn экземпляров xn.
• Обратно, каждому набору T ставим в соответствие решение (t1, t2, . . . , tn),
где ti — число экземпляров xi в T .
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Формула для числа сочетаний с повторениями: доказательство

Доказательство теоремы.
• Расположим в ряд k шариков и n − 1 перегородку.
• Всего есть C k

n+k−1 таких расположений.
• Обозначим через t1 число шариков до первой перегородки; t2 — между
первой и второй перегородками; . . . ; tn — после (n − 1)-й перегородки.
• Получаем биекцию между решениями уравнения (1) и такими
расположениями шаров и перегородок.
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Свойства чисел сочетаний

• C k
n = Cn−k

n (очевидно).
• C k+1

n+1 = C k
n + C k+1

n .
Доказательство. C k

n + C k+1
n = n!

k!(n−k)! +
n!

(k+1)!(n−k−1)! =

= n!·(k+1)
(k+1)!(n−k)! +

n!·(n−k)
(k+1)!(n−k)! =

n!·(n+1)
(k+1)!(n−k)! = C k+1

n+1 .

Другой способ доказательства. Пусть X = {x0, x1, . . . , xn}.
▶ (k + 1)-элементные подмножества X бывают двух видов:

содержащие x0 и не содержащие x0.
▶ Если x0 /∈ S ⊂ X , то S ⊂ X ′ = {x1, . . . , xn}. Таких подмножеств C k+1

n .
▶ Если x0 ∈ S ⊂ X , то удалим x0 из S . Получим подмножество S ′ ⊂ X ′,

где |S ′| = k . Таких подмножеств C k
n .

Большинство соотношений на C k
n имеют как алгебраическое,

так и комбинаторное доказательство.
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Свойства чисел сочетаний

• Треугольник Паскаля
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

• kC k
n = nC k−1

n−1 .
Доказательство.
Алгебраически:
kC k

n = k · n!
k!(n−k)! =

n!
(k−1)!(n−k)! = n · (n−1)!

(k−1)!((n−1)−(k−1))! = nC k−1
n−1 .

Комбинаторно: Как в левой, так и в правой части формулы записано число
k-элементных подмножеств n-элементного множества, в которых один
элемент отмечен.
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Свойства чисел сочетаний

• (Бином Ньютона) (a+ b)n =
n∑

k=0
C k
n a

n−kbk .

Доказательство.
▶ (a+ b)n = (a+ b)(a+ b) . . . (a+ b)︸ ︷︷ ︸

n скобок

;

▶ слагаемое an−kbk получается, если из k скобок выбрать b, а из
остальных — a.

▶ Это можно сделать C k
n способами.

• Другое название чисел C k
n — биномиальные коэффициенты.

• C 0
n + C 1

n + . . .+ Cn
n = (1 + 1)n = 2n.

▶ Комбинаторное доказательство: в левой и в правой части записано
число подмножеств n-элементного множества.

• C 0
n − C 1

n + . . .+ (−1)nCn
n = (1 − 1)n = 0.

• C 0
n + C 2

n + . . . = C 1
n + C 3

n + . . . = 2n−1.
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Свойства чисел сочетаний
Докажем формулу C 0

n − C 1
n + . . .+ (−1)nCn

n = 0 комбинаторно.
Доказательство. Докажем, что C 0

n + C 2
n + . . . = C 1

n + C 3
n + . . ..

• Пусть X = {x1, . . . , xn}.
• Построим биекцию между всеми четными и всеми нечетными
подмножествами X .

• Пусть f (S)
def
=

{
S ∪ {xn}, xn /∈ S
S \ {xn}, xn ∈ S .

• Получаем отображение f : P(X ) → P(X ), обладающее следующим
свойством: ∀S (f (f (S)) = S).

▶ Отображение, обладающее таким свойством называется инволюцией.
▶ В частности, это означает, что f обратно самому себе, следовательно,

f — биекция.

• При этом, |S | и |f (S)| всегда имеют разную четность.
• Таким образом, f также задает биекцию между всем четными и всеми
нечетными подмножествами X .
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Мультиномиальные коэффициенты

Определение
Пусть n = k1 + k2 + . . .+ km, где m ∈ N и n, k1, k2, . . . , km ∈ N0. Тогда число
способов разбить n-элементное множество X на m непересекающихся
подмножеств X1,X2, . . . ,Xm, где |Xi | = ki , обозначается

( n
k1,k2,...,km

)
и

называется мультиномиальным коэффициентом.
(Другое название: полиномиальный коэффициент.)

Теорема(
n

k1, k2, . . . , km

)
=

n!

k1!k2! . . . km!
.

Доказательство. Есть n! способов упорядочить элементы множества X .
• Для каждого способа, помещаем первые k1 элементов в X1; следующие k2
элементов в X2 и т. д.
• Получаем разбиение X на подмножества нужного размера.
• Каждое разбиение посчитано k1!k2! . . . km! раз.



Дискретная
математика.

Глава 3.
Элементарная
комбинаторика.

А. В. Пастор

Обобщенный бином Ньютона

Теорема

(a1 + a2 + . . .+ am)
n =

∑
k1+k2+...+km=n

(
n

k1, k2, . . . , km

)
ak1
1 ak2

2 . . . akmm .

Доказательство. Аналогично доказательству Бинома Ньютона.
• При раскрытии скобок слагаемое ak1

1 ak2
2 . . . akmm получается, если выбрать

из k1 скобок слагаемое a1, из k2 скобок слагаемое a2, . . . , из km скобок
слагаемое am.

• Такой выбор можно сделать в точности
(

n

k1, k2, . . . , km

)
способами.
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Формула включений-исключений

Примеры

1. Пусть A,B — конечные множества. Тогда

|A ∪ B| = |A|+ |B| − |A ∩ B|.

2. Пусть A,B,C — конечные множества. Тогда

|A ∪ B ∪ C | =
= |A|+ |B|+ |C | − |A ∩ B| − |B ∩ C | − |C ∩ A|+

+ |A ∩ B ∩ C |.
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Формула включений-исключений

Теорема (Формула включений-исключений)
Пусть A1, . . . ,An — конечные множества. Тогда∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣ = ∑
∅̸=I⊂[1..n]

(−1)|I |+1
∣∣∣∣⋂
i∈I

Ai

∣∣∣∣. (1)

Доказательство.

▶ Пусть x ∈ Ai1 , . . . ,Aik и x не принадлежит остальным Aj .
▶ Тогда x учитывается в формуле (1) с коэффициентом

k∑
ℓ=1

(−1)ℓ+1C ℓ
k = 1.
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Формула включений-исключений

Следствие (другая формулировка формулы включений-исключений)
Пусть X — конечное множество, |X | = N;
• P1, . . . ,Pn — свойства элементов множества X (т. е. одноместные
предикаты на X );
• Ni1,...,ik — число элементов, удовлетворяющих Pi1 , . . . ,Pik ;
• N(0) — число элементов, не удовлетворяющих ни одному свойству.
Тогда

N(0) = N −
∑
i

Ni +
∑
i1<i2

Ni1,i2 − . . .

. . .+ (−1)k
∑

i1<...<ik

Ni1,...,ik + . . .

. . .+ (−1)nN1,...,n. (2)
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Субфакториалы (задача о беспорядках)

Определение
• Перестановкой на множестве M называется произвольная биекция
σ : M → M.
• Неподвижной точкой перестановки σ называется такой элемент x ∈ M,
что σ(x) = x .
• Sn — множество всех перестановок на [1..n].

Замечание
Мы знаем, что |Sn| = n!.

Определение
D(n) — число перестановок из Sn, не имеющих неподвижных точек.
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Субфакториалы: рекуррентная формула

Теорема
D(n + 1) = n(D(n) + D(n − 1)).

Доказательство.

▶ Пусть σ ∈ Sn+1; k = σ(n + 1); ℓ = σ−1(n + 1).
▶ Возможны два случая: k ̸= ℓ или k = ℓ.

1◦ Пусть k ̸= ℓ.

• Тогда σ′(x)
def
=

{
σ(x), x ̸= ℓ
k , x = ℓ

— перестановка из Sn без неподвижных
точек.
• Для каждого k ∈ [1..n] есть D(n) таких перестановок.

2◦ Пусть k = ℓ.
• Тогда σ|[1..n]\{k} — перестановка на [1..n] \ {k} без неподвижных точек.
• Для каждого k ∈ [1..n] есть D(n − 1) таких перестановок.

▶ Итого, получаем nD(n) + nD(n − 1) перестановок без неподвижных
точек.
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Субфакториалы: явная формула

Замечание
Для обычных факториалов выполняется такое же соотношение:

(n + 1)! = n(n! + (n − 1)!).

Поэтому числа D(n) называют субфакториалами.

Теорема

D(n) = n!
n∑

k=0

(−1)k

k!
.

Доказательство. Пусть X = Sn.
• Pi — свойство “σ(i) = i” для перестановки σ ∈ Sn.
• Тогда N = n! и Ni1,...,ik = (n − k)!.

• По формуле (2) имеем: D(n) =
n∑

k=0
(−1)k(n − k)!C k

n = n!
n∑

k=0

(−1)k
k! .
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Субфакториалы: явная формула

Следствие
D(n) = round(n!e ); более того, |D(n)− n!

e | <
1

n+1 .

Доказательство. Напомним, что ex =
∞∑
k=0

xk

k! . Тогда

• n!
e = n!

∞∑
k=0

(−1)k
k! = n!

n∑
k=0

(−1)k
k! + n!

∞∑
k=n+1

(−1)k
k! =

= D(n) + (−1)n+1
∞∑
ℓ=1

(−1)ℓ+1n!
(n+ℓ)! ;

• |D(n)− n!
e | = |

∞∑
ℓ=1

(−1)ℓ+1n!
(n+ℓ)! | = | 1

n+1 − 1
(n+1)(n+2) +

1
(n+1)(n+2)(n+3) − . . . |;

•
∞∑
ℓ=1

(−1)ℓ+1n!
(n+ℓ)! =

(
n!

(n+1)! −
n!

(n+2)!

)
+
(

n!
(n+3)! −

n!
(n+4)!

)
+ . . . > 0;

•
∞∑
ℓ=1

(−1)ℓ+1n!
(n+ℓ)! = 1

n+1 −
(

n!
(n+2)! −

n!
(n+3)!

)
−
(

n!
(n+4)! −

n!
(n+5)!

)
− . . . < 1

n+1 .



Дискретная
математика.

Глава 3.
Элементарная
комбинаторика.

А. В. Пастор

Функция Эйлера

Определение
• Натуральные числа a и b называются взаимно простыми, если у них нет
общего натурального делителя, отличного от единицы.
• φ(n) — количество натуральных чисел, меньше либо равных n и взаимно
простых с n (функция Эйлера).

Теорема
Пусть n = pa1

1 . . . pass (где p1, . . . ps — различные простые и a1, . . . , as —
натуральные числа). Тогда φ(n) = n(1 − 1

p1
) . . . (1 − 1

ps
).

Доказательство. Пусть X = [1..n].
• Pi — свойство “x

... pi ” для числа x ∈ X .
• Тогда Ni1,...,ik = n

pi1pi2 ...pik
.

• По формуле (2) имеем:

φ(n) =
n∑

k=0
(−1)k

∑
1≤i1<i2<...<ik≤s

n
pi1pi2 ...pik

= n(1 − 1
p1
) . . . (1 − 1

ps
).
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Число сюръективных отображений

Теорема

Число сюръективных отображений f : [1..k] → [1..n] равно
n∑

s=1

(−1)n−sC s
n s

k .

Доказательство.
• Пусть X — множество всех отображений f : [1..k] → [1..n].
• Pi — свойство “f −1(i) = ∅” для отображения f ∈ X .

▶ Тогда N = |X | = nk ;
▶ Ni1,...,iℓ = (n − ℓ)k — количество функций, удовлетворяющих данным ℓ

свойствам.
▶ f ∈ X — сюръекция ⇔ f не удовлетворяет ни одному из свойств.

Следовательно, число сюръекций равно N(0).
• По формуле включений-исключений имеем:

N(0) =
n∑

ℓ=0

(−1)ℓC ℓ
n(n − ℓ)k =

n∑
s=1

(−1)n−sC s
n s

k .

(Последнее равенство получено заменой переменной s = n − ℓ).


