
Algebraic cryptography: new constructions and their
security against provable break?

Dima Grigoriev1, A. Kojevnikov2, Sergey I. Nikolenko2

1 CNRS, Mathematiques, Universite de Lille,
59655, Villeneuve d'Ascq, France

Dmitry.Grigoryev@math.univ-lille1.fr
2 Steklov Mathematical Institute,

Russia, 191023, St. Petersburg, nab. r. Fontanka, 27
http://logic.pdmi.ras.ru/~{arist,sergey}/

Abstract. Very few known cryptographic primitives are based on noncommutative algebra. Each
new scheme is of substantial interest, because noncommutative constructions are secure agains many
standard cryptographic attacks. On the other hand, cryptography does not provide security proofs that
would allow to base the security of a cryptographic primitive on structural complexity assumptions.
Thus, it is important to investigate weaker notions of security.
In this paper we introduce new constructions of cryptographic primitives based on group invariants and
o�er new ways to strengthen them for practical use. Besides, we introduce the notion of provable break
which is a weaker version of the regular cryptographic break. In this version, an adversary should have
a proof that he has correctly decyphered the message. We prove that cryptosystems based on matrix
groups invariants and a version of the Anshel-Anshel-Goldfeld key agreement protocol for modular
groups are secure against provable break unless NP = RP.

1 Algebraic cryptography
Public-key cryptography, since its very beginning [16, 53], has been actively employing al-
gebraic constructions. The RSA protocol, for example, is based on number theory; the very
construction of the protocol requires computing the Euler totient, ϕ(n). Its security is based
on factoring a number into prime divisors, or, more precisely, on the hardness of the so-called
¾RSA problem¿: �nd roots of a given degree modulo a number n = pq, where p and q are
prime (this task may not be equivalent to factoring; see [14,15,54] for more information).

However, usually the term algebraic cryptography is used in a narrower meaning. Alge-
braic cryptography deals with constructions where encoding and decoding are both group
homomorphisms. In [29] Grigoriev and Ponomarenko give the following de�nition of a ho-
momorphic cryptosystem (compare with De�nition 2, where we introduce the general notion
of a cryptosystem).

De�nition 1 Let H be a �nite nonidentity group, G a �nitely generated group, and f : G→
H an epimorphism. Assume that R is a set of distinct representatives of the right cosets of
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Ker(f) in G, A is a set of words in some alphabet, and a mapping P : A → G satis�es
Im(P ) = Ker(f). A triple S = (R, A, P ) is called a homomorphic cryptosystem over H with
respect to f if the following conditions are satis�ed:

� one can generate random elements (of the sets A, G, H), compute the inverse of an
element and the product of two elements (in the group G or H) in probabilistic polynomial
(in N) time where N is the size of presentations of G, H, and A;

� |R| = |H|, and the image f(g) of every element g ∈ R as well as the unique preimage
g ∈ R such that f(g) = h of every element h ∈ H can be computed in probabilistic
polynomial (in N) time;

� the mapping P is a trapdoor function.

Formally speaking, even in this stricter sense algebraic cryptography was introduced
almost at the same time as public key cryptography: the quadratic residue cryptosystem was
the �rst homomorphic cryptosystem and one of the �rst known cryptosystems in general
[22,23].

However, algebraic cryptography in its modern sense stems from the works on elliptic
curve cryptography [37, 45]. The basic constructions of elliptic curve primitives di�er very
little from the constructions based on discrete logarithm, such as the Di�e-Hellman key
agreement protocol. The main di�erence is that elliptic curve crypto computes in an abelian
group of points of an elliptic curve of the form y2 = x3+ax+b or y2+xy = x3+ax2+b; it allows
to reduce the key size substantially and make the cryptosystems more e�cient [10, 32, 58].
Lately the US government introduced a number of cryptographic standards based on elliptic
curve cryptography.

Note that both classical constructions and elliptic curve crypto deal with abelian groups.
This additional structure allows to make encoding and decoding algorithms even more e�-
cient, while the analysis of arising computational tasks simpli�es. However, over the last ten
years abelian constructions were found to be susceptible to a new kind of cryptographic at-
tacks, quantum computing. Beginning from the seminal works of Peter Shor [9,55], factoring
and discrete logarithm were solved in a simple and e�cient manner on a quantum computer
for abelian groups [24] (see also [42,48] and Chapter 20 of [7]). In fact, a quantum computer
is able to e�ciently solve the problem of calculating the order of an element in an abelian
group (via quantum Fourier transforms), and this problem generalized discrete logarithm.

Discrete logarithm and factoring were e�ectively the base of all classical crypto, including
elliptic curve crypto. Thus, in a situation when quantum computing is already gradually be-
coming feasible (although the prospects are not clear yet), cryptography cannot limit itself to
commutative constructions anymore. Cryptographers aim to create nonabelian constructions
which are expected to be more secure [5].

That's why elliptic constructions and classical Di�e-Hellman and RSA constructions
were generalized, and the task of constructing homomorphic cryptosystems was introduced
in [19,60]. First steps in using algebraic constructions, in particular group theory, for building
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cryptographic primitives were made in [8,47,49,50]. An important step on the road of non-
abelian cryptographic constructions were the works of Anshel, Anshel, and Goldfeld [2�4].
We will focus on one of their constructions in Section 9

These ideas were further developed in the works of Grigoriev and Ponomarenko. They
developed basic de�nitions, such as De�nition 1, and build constructions of nonabelian
homomorphic public-key cryptosystems [29], homomorphic public-key cryptosystems over
rings [28], and a general scheme of building complex homomorphic cryptosystems from
smaller �blocks� [31] (this scheme will play an important part in this work). They also
investigated the connections between homomorphic cryptosystems and encoding Boolean
circuits [30].

In [25], Grigoriev suggested a method to use group invariants for public-key cryptography.
In Section 5 we will discuss this construction in detail, but now we proceed to provable
break � the second basic idea of the present work. This paper is a revised and extended
version of [27].

2 Weak results in modern cryptography
Modern cryptography virtually does not allow one to prove the security of public key prim-
itives. From the very �rst Di�e-Hellman key agreement protocol [16] and the RSA public
key cryptosystem [53], numerous cryptographic constructions have been devised, but not a
single proof of their security has appeared yet. Indeed, it would be very hard to �nd an
unconditional proof since it would necessarily include the proof of P 6= NP. However, con-
ditional proofs of the kind ¾if P 6= NP then a protocol is secure¿ are also hard to get. The
matter here is that the classic notion of cryptographic security is naturally connected with
average-case complexity rather than classical worst-case complexity.

Let us begin with a classic notion of semantic security of a cryptosystem; to de�ne it we
will have to begin with the de�nition of a cryptosystem [22].

De�nition 2 A public-key encryption scheme S consists of three probabilistic worst-case
polynomial-time algorithms (G,E,D) for key generation, encryption and decryption respec-
tively.

The key generation algorithm G on input 1n (the security parameter) produces a pair
G(1n) = (e, d) of public and secret keys. The encryption algorithm E takes as input a public
key e and a plaintext message m and produces a ciphertext

E(e,m) = c.

Finally, the decryption algorithm D takes as input a secret key d and a ciphertext c. The
output of D is a message

D(d, c) = m′,

which may fail to equal the original message m when E(e,m) = E(e,m′). These situations
are called collisions; we assume that collisions happen with negligible probability.
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De�nition 3 An encryption scheme (G,E, D) is semantically secure if for all probabilistic
polynomial time algorithms M and A, functions h, polynomials Q there exists a probabilistic
polynomial time algorithm B such that for su�ciently large k,

Prr

[
A(1k, c, e) = h(m) | (e, d)←r G(1k), m←r M(1k), c←r E(e,m)

] ≤
≤ Prr

[
B(1k) = h(m) | m→r M(1k)

]
+

1

Q(k)
.

Informally speaking, every adversary who knows the distribution of messages M and
receives as input the encoded message and the public key will not be able to decode it
substantially more often than an algorithm that does not know anything except M (M is
necessary because if, for example, only one message were transmitted all the time then an
adversary would indeed be able to decode it, not even needing the code and the public
key). The main problem here is that the probabilities in this de�nition are taken over the
distribution on the inputs of the cryptosystem, over the messages; this is, of course, natural
because in practice it is usually enough to break a cryptosystem on a substantial fraction of
the inputs, not necessarily on all of them.

Recent results allowed to connect cryptographic security (in the sense of De�nition 3)
with worst-case complexity assumptions for certain problems [1, 17, 51, 52]. However, these
assumptions so far appear arti�cial and, as before, do not translate into assumptions about
(in)equality of some complexity classes. In general, it seems that modern cryptography still
has a very long way to go before any provably secure constructions. There even exists evi-
dence supporting the view that such constructions may not exist or may lead to improbable
corollaries for complexity classes [13].

Thus, is it natural that researchers, having encountered a problem too hard, began work
on alternative de�nitions, criteria, and contexts trying to prove security of some constructions
in some de�nitions.

The �rst natural approach would be to consider not the �real� cryptographic primitives
but their weaker counterparts, like one-way functions (note that a one-way function does
not imply a public-key cryptosystem, one would need a trapdoor function for it). Indeed,
results on one-way functions are easier to prove. For example, complete one-way functions
(by a complete one-way function we mean such a function f that if one-way functions exist
then f is a one-way function) have been known for quite a long time already [21, 40], while
complete public-key cryptosystems appeared only recently in the works of Harnik et al.
and Grigoriev et al. [26,33]. Moreover, recently Levin developed more natural combinatorial
constructions of complete one-way functions [41]; this work was continued by recent results
by the Kojevnikov and Nikolenko [38].

Another approach that also leads to weaker results is to change the notion of security
itself. If we consider weaker notions of security we are able to construct provably secure
primitives. For example, consider the theory of feebly one-way functions, developen by A.
Hiltgen [34,35]. Hiltgen considered the circuit complexity of functions in the complete binary
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basis which is the hardest case for proving lower bounds [12,59]. He managed to devise a linear
invertible function such that computing this function is almost twice easier than inverting
it. These bounds, however weak, were the �rst unconditional security proofs for one-way
functions. Lately, Hirsch and Nikolenko have created a feebly secure trapdoor function [36];
it appears possible to devise a provably secure cryptosystem along the same lines (security
understood in an extremely restricted sense, of course).

On the other hand, partial results were obtained under the assumption of a very strong
adversary, a worst-case adversary who breaks the code in all cases. No wonder that in this
setting one could base security on worst-case complexity assumptions [18,39]. For a detailed
survey on the subject we refer the reader to the book [46] and to previous papers of the �rst
author [30,31].

In the next section we introduce and investigate another approach to weakening the
notion of security. It turns out that our de�nition of provable break, while being somewhat
arti�cial, allows to associate provable break of invariant-based cryptosystems and Anshel-
Anshel-Goldfeld key agreement protocols with worst-case structural complexity assumptions.

3 Provable break
Consider a system with three participants: Alice, Bob, and Charlie. Suppose that, as usual,
Alice (A) and Bob (B) are engaged in a cryptographic protocol (in a key agreement protocol
Alice and Bob are equal peers, and in a public key cryptosystem Alice forms a pair of public
and secret keys and emits the public key, while Bob encodes his message and sends it to
Alice over an open channel), and Charlie tries to eavesdrop, decoding the messages that Bob
sends to Alice. But now Charlie's task is di�erent: not only does he need to decipher Bob's
message, he also he wants to be able to prove that his decoded message is actually what Bob
had in mind. Perhaps, Charlie does not really trust the results he receives; perhaps, he has
a boss who does not trust Charlie's algorithm of breaking the protocol. This is (informally)
what we call a provable break.

In this setting, it is not su�cient for Charlie just to recover the encrypted message m
from a ciphertext c, he should also justify that it is possible to encode m into c. What could
serve as such a justi�cation? We take the following natural idea as de�nition: in the provable
break security model an adversary given a codeword E(m) should not only produce the
message m, but also present suitable random bits of E that might lead to such a cipher.

Remark 1. In what follows we (equivalently) rede�ne the encoding algorithm E as a
deterministic worst-case polynomial time algorithm with access to a random string r. It
receives as input the public key e, the message m, and a random bit string r and outputs
the encoded message E(r, e, m) = c.

There may be several sets of random bits {r1, . . . , rk} that produce the same cipher:
E(m, pk, r1) = . . . = E(m, pk, rk). In this case, of course, an adversary only needs to present
some random string that results in the cipher, not necessarily the one Bob actually used
(when k > 1, Charlie has absolutely no chance to �nd it anyway).
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Informal discussion of provable break began in connection with the Rabin�Goldwasser�
Micali cryptosystem based on quadratic residues [22]. It was shown that provable break of
this cryptosystem implies that factoring is contained in RP. However, we know of no reference
where a formal de�nition was presented and studied.

As we have already mentioned in Sec. 2, one of the most fundamental unsolved questions
in theoretical cryptography is to construct a secure encryption scheme based on some natural
complexity assumptions like P 6=NP. In this paper, we present two slightly di�erent de�nitions
of provable break (one weaker than the other) and prove that two di�erent cryptographic
protocols, namely the Anshel-Anshel-Goldfeld key agreement protocol and cryptosystems
based on group invariants are all secure against provable worst-case break provided NP 6⊆RP.
For the latter cryptosystem, we develop new ways to provide for their security in the usual
cryptographic sense.

4 De�nitions

First we de�ne provable break of public key cryptosystems and then extend it to key agree-
ment protocols. We present two separate de�nitions, one of them for the average case, and
one for the worst case. First, we recollect De�nition 2 ad de�ne the corresponding provable
break.

De�nition 4 An adversary C performs provable break of a cryptosystem (G,E,D) if for
a uniform distribution over messages m and random bits of all participating algorithms (the
public key pk is taken from the pair (pk, sk) generated by the key generation algorithm G(1n))

Pr [C(E(m, pk, r), pk) = (m, r′)] ≥ 1

poly(n)
,

where E(m, pk, r′) = E(m, pk, r), and n is the security parameter.

The security parameter in De�nition 4 is e�ectively the key length; the security parameter
should be chosen such that the known adversary algorithms would run long enough to make
break hopeless.

If E is deterministic then provable break is equivalent to usual break (the set of random
bits is empty). An adversary can prove that he has correctly decoded a message by encoding
it again. This is precisely the idea of provable break: an adversary should not only decipher
the message, but also check that the cipher is actually a valid one; while the former may be
trivial (as it will be in some of our examples), the latter may be very hard.

We also introduce the notion of a very strong adversary that breaks the cryptosystem in
the worst case. The di�erence with the usual break is that the adversary should be successful
on all inputs.
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De�nition 5 An adversary C performs provable worst-case break of a cryptosystem
(G,E, D) if for all messages m, all pairs of keys (pk, sk) generated by G(1n), and all random
bits of the encoding algorithm E

Pr [C(E(m, pk, r), pk) = (m, r′)] ≥ 1

poly(n)
,

where E(m, pk, r′) = E(m, pk, r), n is the security parameter, and the distribution is taken
over the random bits of the adversary C.

We say that a cryptosystem (G,E,D) is secure against provable (worst-case) break if
there is no polynomial probabilistic Turing machine C performing provable (worst-case)
break of (G,E, D).

Remark 2. It is easy to think of a trivial cryptosystem which is secure against provable
break (in the sense of De�nition 4 which automatically makes it secure against worst case
provable break in the sense of De�nition 5). Let Bob transfer the message openly (decryption
is thus trivial), but add a value of some one-way function to the end of the message. Alice
may disregard this one-way function, but Charlie would have to invert this one-way function
in order to get a valid set of Bob's random bits. Therefore, our task is not to simply devise
cryptosystems that are secure against provable break, but to devise them in such a way
that they are or at least may be made secure in the usual cryptographic sense. Of course,
we cannot prove their security, but we provide constructions that we believe to produce
reasonably secure cryptosystems.

5 Invariant-based cryptosystems and their provable break
5.1 Cryptosystems based on group invariants
In [25], D. Grigoriev suggested a new class of public-key cryptosystems based on group
invariants. In an invariant-based cryptosystem, Alice chooses a group G ≤ GL(n, F ) acting
on some vector space F n. As a secret key, Alice chooses a set X and an invariant f : F n → X
such that ∀g ∈ G f(gx) = f(x). She also selects a set (or a space given by generators) of
messages M ⊆ F n such that for all m1 6= m2 ∈M f(m1) 6= f(m2). Thus, an invariant-based
cryptosystem is de�ned by a triple (G, f, M). As the public key Alice transmits generators
of G and M .

Bob selects a vector m ∈ M (m is Bob's message) and a random element g ∈ G. After
that, Bob communicates gm to Alice. Alice can decipher the message by taking the invariant
f(gm) = f(m). Since she had chosen the set of messages M as a transversal set for the
orbits, the value of f(m) allows her to uniquely determine the original message m. We call
a triple (G, f,M) admissible if it correctly de�nes an invariant�based cryptosystem.

It is now clear that the primary concern of the security of invariant-based cryptosystems
is to �nd a well-concealed invariant. In what follows we give several ways to do so. These
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ways are similar to the ones employed in [31] and may be summarized with the following
construction. Consider a tree such that each node of the tree contains a triple (G, f, M).
Alice builds this tree from the leaves to the root, at each step keeping track of G, f , and M .
After the tree is created, Alice takes the cryptosystem from the root and uses it.

An adversary will thus be able to break the cryptosystem if he knows the structure of
the tree (we suppose that cryptosystems in the leaves are easy to break, otherwise there is
no point to construct a tree). This structure is equivalent to the description of the invariant
from the security point of view, and may also be considered as Alice's secret key. The security
of this cryptosystem will rely on the di�culty of the conjugacy and membership problems,
as in [31] (see Section 6 for details).

5.2 An invariant-based cryptosystem secure against provable break unless
NP⊆RP

The construction is based on the modular group. The modular group is the multiplicative
group SL2(Z) of 2×2-matrices of determinant 1 (unimodular matrices). Algebraic properties
of this group are described in detail in, for example, [6].

In [11, Corollary 11.5] Blass and Gurevich proved that the following bounded membership
problem (BM) for the modular group is NP-complete.

Problem 1 Let X be an unimodular matrix, S be a �nite set of unimodular matrices and N
be a positive integer. Can X be represented as

∏m
i=1 Yi, where m ≤ N and for each i either

Yi or Y −1
i is in S?

Remark 3. Do not confuse this problem with other problems that in [11] are proven
to be DistNP-complete (complete with respect to average case reductions). The primary
di�erence is that in this case we are dealing with group membership, while RNP-complete
problems arise from checking membership in semigroups.

Let us take G to be the unimodular group

G =

{(
1 x
0 1

)
, x ∈ Z

}
.

As the invariant we take a rather trivial map

f

(
x1

x2

)
= x2,

and as the message space � the space of vectors

M =

{(
1
x

)
, x ∈ Z

}
.



9

Bob selects a random element g in the given group (obtained by multiplying not more than,
say, N generators), transports the message vector m into gm and transmits gm and N . Alice
computes f(gm) and decides which m it was.

Note that this �cryptosystem� is trivial to break: encryption does not change the part of
the vector that actually carries the message. However, we will presently see that its provable
break is NP-hard.

Theorem 1 If there is a polynomial adversary C performing provable worst-case break of
the invariant-based cryptosystem described above then NP ⊆ RP.

Proof. In short, the provable break is NP-hard because the Integer Sum problem is easily
reduced to deciding bounded membership in a subgroup of the modular group, as shown
in [11].

First, note that (
1 λ
0 1

)(
1 µ
0 1

)
=

(
1 λ + µ
0 1

)
.

Thus, the problem of deciding bounded membership in a subgroup of the modular group is
equivalent to the problem of deciding whether a given number is expressible as a bounded
sum of other given numbers. This is the Integer Sum problem, shown to be NP-complete
in [11].

If a polynomial-time algorithm solves a search problem with success probability 1
nConst ,

this probability can be easily ampli�ed to 3/4 by repeating the algorithm for a polynomial
number of times and taking the majority vote as an answer. Therefore, if a polynomially
bounded adversary provably worst-case breaks the cryptosystem presented then NP ⊆ RP.

In Sections 6 and 7 we present constructions aimed at making invariant-based cryptosys-
tems more reasonable from the security viewpoint.

6 The tree of groups
6.1 General remarks

The invariant-based protocol described in the previous section shares a discouraging property
with the cryptosystem presented in a remark in Section 4. It is easy to break in the common
cryptographic sense. In this section we provide a construction that allows us to �hide� these
primitives inside a large tree of groups. We can also use it to improve security of the Anshel-
Anshel-Goldfeld key agreement protocol.

We follow the lines of [31] to produce a tree of group�invariant�messages triples such
that knowing the structure of the tree one can e�ciently calculate the invariant in its root,
while without knowing the structure the invariant is �concealed� behind computationally
hard problems in the tree.
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In what follows, we concentrate on the invariant-based cryptosystems (introduced in
Section 5) since [31] can be directly applied to key agreement protocols described in Section 9.
However, we have to develop several new techniques to handle invariant-based cryptosystems.
We will consider the same operations as in [31] and look at what happens with the invariants.
But �rst let us introduce some basic notions.

To each vertex v of the tree we attach a triple (Gv, fv,Mv). Triples are produced by
recursion on the vertices of the tree starting with leaves towards the root to each vertex. At
each step, we apply one of the operations described below. For every vertex v the group Gv

is a matrix group Gv ≤ GL(n,R) for some n and some base ring R.
Thus, a tree corresponds to the resulting triple (G, f,M), where G ≤ GL(n,R) is a group,

f is an invariant, that is, a function f : Rn → R such that ∀g ∈ G ∀x ∈ Rn f(gx) = f(x), and
M ⊂ F n is a canonical set of messages with the property that ∀m 6= m′ ∈M f(m) 6= f(m′).

The public key consists of R, n, G (given by matrix generators), and M . The point of
building such a tree is to conceal the secret invariant.

Remark 4. Note that in situations where we change the invariant we can either change
the invariant from f to f ◦ h or change the message space from M to h(M). Since we care
about concealing the invariant, and the message space is to be given publicly, we will always
choose the �rst alternative.

We want to combine this regular security with provable worst-case security of the modular
group that we have proven in Theorem 1. To do this, we place a provably secure construction
based on the modular group in one of the leaves of the tree. Then, for Charlie to solve the
membership problem in the root of the tree, Charlie would have to solve the membership
problem for all leaves of the tree (our construction has this property).

6.2 Base of recursion
To treat the construction formally, consider a class of groups G closed under a certain set of
group�theoretical operations O (we list the relevant operations below) on triples (G, f, M)
that preserve admissibility. For a set G0 ⊂ G (which is the base of the construction) we de�ne
recursively a class P(G0,O) of quadruples (G, f, M, T ) in the following way.
� Base of recursion: any quadruple (G, f, M, T ), where G ∈ G0, (G, f, M) is an admissible

triple, and T is a single node labeled by G.
� Recursive step: given quadruples {(Gi, fi,Mi, Ti)}si=1 and an operation o ∈ O of arity

s, the class P(G0,O) contains the quadruple (G, f, M, T ), where G = o(G1, . . . , Gs),
f = o(f1, . . . , fs), M = o(M1, . . . , Ms), and T is the tree obtained from T1, . . . , Ts by
adding a new root labeled by o, its sons being the roots of T1, . . . , Ts.

6.3 Recursive step
Let us now list the �building blocks� of the tree, the operations acting on admissible triples.
A number of such operations were introduced in [30]; we have to check what happens with
the invariants in these cases.
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1. Changing the base ring φ : R → R′. If the ring becomes smaller (R′ embeds in R with
ϕ : R′ → R, and φϕ = id), an invariant f transforms into an invariant φ(f) that acts like
φ(f)(x′) = f(ϕ(x′)). If ∀x ∈ Rn, g ∈ G f(x) = f(gx) then

∀x′ ∈ R′n, g ∈ G φ(f)(gx′) = f(gϕ(x′)) = f(ϕ(x′)) = φ(f)f(x′).

If the ring becomes larger, bad things may happen (since there are new elements in the
ring now, old equalities may not hold anymore). This property allows us to reason that
any invariant known from invariant theory over �elds will carry on to the rings that are
subsets of these �elds; e.g. any invariant over C will be an invariant over Z.
However, this action requires care about the message space. If there were di�erent rep-
resentatives m,m′ ∈ M such that φ(m) = φ(m′) then the corresponding messages will
be considered identical in the resulting message space φ(M). Therefore, it is sensible to
reduce the underlying ring only if φ(M) is nontrivial.

2. Conjugation g 7→ h−1gh. The invariant f(x) becomes the invariant f ′(x) = f(hx). If
∀g ∈ G∀x ∈ Rn f(gx) = f(x) then

∀g ∈ G∀x ∈ Rn f ′(h−1ghx) = f(hh−1ghx) = f(g(hx)) = f(hx) = f ′(x).

The message space M does not change.
3. Direct product G1, G2 7→ G1 × G2. We here consider the natural representation of the

direct product; if G1 ≤ GL(n1, F ) and G2 ≤ GL(n2, F ) then G1 ×G2 ≤ GL(n1 + n2, F ),
acting componentwise. In this situation, if f1(x), f2(x) were invariants of G1, G2, any
element f ∈ 〈f1(x), f2(y)〉 ≤ R[x, y] will be an invariant of G1 × G2. We can choose a
random element of this set, and the message space will in any case become M1 × M2

(if we do not need that many di�erent messages, we can choose several at random and
discard the others).

4. Wreath product G oH, where G ≤ GL(n,R), H ≤ Sm. In this case, we take the natural
representation of G oH on Rmn acting as

(g1, . . . , gm, π)




x1

. . .
xm


 =




g1xπ(1)

. . .
gmxπ(m)


 .

In this case, for any invariant f , if ∀g ∈ G, x ∈ Rn f(gx) = f(x) the same will hold
for G oH if we take fm to act componentwise. The permutation disturbs nothing in the
invariant equality. The message space will grow correspondingly to Mm (again, we may
choose several messages at random or choose the diagonal ∆ = {(x, . . . , x) | x ∈ M} if
we do not need that many messages).

Apart from the previously considered ways to extend the tree, invariant theory suggests
new ways. We can consider several transformations o ∈ O that leave the group intact (o(G) =
G) and only change the invariant f and the message space M . The following will only work
if f is a polynomial.
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1. Hessians H(f). If f is a polynomial invariant of G, and ∀g ∈ G ≤ GL(n, F ) det g = ±1
(note that F is a �eld) then

H(f) = det

(
∂2f

∂zi∂zj

)

is also an invariant. The group G and the message space M remain unchanged.
2. Jacobian J . If f1, . . . , fn are polynomial invariants of G ≤ SL(n, F ) (note that F is a

�eld) then
J(f1, . . . , fn) = det

(
∂fi

∂zj

)

is also an invariant. In this way we can unite n identical groups with di�erent invariants
into one; this will probably be useful only on the �rst level of the tree, where we can
choose arbitrarily many identical groups.

7 The leaves of the tree
The previous section explains how to build a new invariant out of existing ones (thus, the
recursive step). The question that remains is to �nd the base of this recursion. What should
we put in the leaves of this tree?

7.1 General remarks
The �rst remark we should make is that in computer science, we cannot truly work over C
or R. Anything we do is actually over Q. Invariant theory over Q is a little di�erent from the
classic well-known invariant theory over C. Fortunately, we don't have to throw away the
theory: if f is an invariant of a group G ≤ GL(n,C) represented by matrices with rational
coe�cients, then it is still an invariant of the group G ≤ GL(n,Q) because elements of G
have rational coe�cients. Therefore, in what follows we will refer to invariants over C but
they will always be the same for Q.

We may also look at invariants over �nite �elds, usually called modular invariants, but
they provide a completely di�erent story with completely di�erent theory (see Example 4 in
Section 7.3).

7.2 Orbit Chern classes
As an example of a standard well-known construction from invariant theory (see, e.g., [56])
we remind the so-called orbit Chern classes. They provide most known invariants of �nite
groups. The idea is simple: take an orbit aG of an element a ∈ F n (suppose for the moment
that G acts over a �eld) and note that

∏
b∈aG(x+b), where x is a formal variable, is invariant

under G (elements of G only permute the factors in this expression). Its coe�cients are called
orbit Chern classes. For example,

∑
b∈aG b is an invariant of G, namely the �rst orbit Chern

class.
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All orbit Chern classes are nothing more than symmetric functions in the elements of the
orbit; if we take a to be an unknown, we obtain the invariants we are looking for. Similar
statements hold for compact groups.

7.3 Examples of �nite groups' invariants
In this subsection we give several examples of invariants of di�erent �nite groups. The ex-
amples may be easily multiplied.

Example 1. The symmetric group Sn has a monomial representation on F n Sn →
GL(n, F ) that permutes the variables. The ring of invariants in this case is generated by all
symmetric polynomials, from x1 + . . . + xn to x1 . . . xn. This is a simple example of orbit
Chern classes.

Example 2. A cyclic group Zn may be represented by any matrix g ∈ GL(m,F ) such
that gn = e (a unipotent matrix of a matching order). For a function f to be an invariant
of a cyclic group's representation, it su�ces to ensure that it remains unchanged under the
action of the only generator: f(x) = f(gx).

For example, a cyclic group Zn is naturally represented by a subgroup generated by
ξne, where ξn is a primitive n-th root of unity and e is the identity matrix. Obviously, any
homogeneous polynomial of degree n is an invariant of this group. We can go one step further
and consider the representation of a cyclic group Zn generated by a matrix


ξ1 . . . 0
... ...
0 . . . ξm


 ,

where ξi are (possibly di�erent) primitive roots of unity, ξn
i = 1. The invariant ring of this

group will be C[xn
1 , . . . , x

n
m].

Note that invariants depend not only on groups themselves, but also on their represen-
tations; the same group with di�erent representations can have di�erent invariants.

Example 3. A dihedral group D2k has a representation D2k → GL(2,R) as the symmetry
group of a regular polygon. In this representation D2k is generated by two matrices:

D2k =

〈(
cos 2π

k
− sin 2π

k

sin 2π
k

cos 2π
k

)
,

(
1 0
0 −1

)〉
.

Then the invariant ring of the dihedral group in this representation is generated by
polynomials

q = x2 + y2, h =
k−1∏
i=0

((
cos

2πi

k

)
x +

(
sin

2πi

k

)
y

)
.

Example 4. For an odd prime p the dihedral group D2p has a representation D2p →
GL(2,Fp) over the �nite �eld Fp given by the matrices

D2k =

〈(
1 1
0 1

)
,

(−1 0
0 1

)〉
.
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In this case the invariant ring is isomorphic to Fp[y, (xyp−1 − xp)2]. However, if we switch
to the dual representation (by simply transposing the matrices), the invariants will change
substantially; the ring will now be isomorphic to Fp[x

2, y(yp−1 − xp−1)]. In this example it
was important that the group was represented over a �nite �eld of degree not coprime with
the group's degree.

These two examples show how much invariants depend on the actual representation.
Some other examples of invariants of �nite and classical groups one can �nd in [25].

7.4 Invariants of classical groups
In this subsection, we give two examples of well-known invariants of classical groups. They
may also lie in the leaves of the tree of groups.

Example 5. The orthogonal group in an even dimension SO(2l, F ) has the well-known
Dickson invariant : if charF 6= 2, which we will assume to be the case, it is (−1)det g for a
g ∈ SO(2l, F ). This invariant works for any �eld with characteristic not equal to two. Note
that this invariant only has two values, so it is good for encrypting only one bit.

Example 6. The symplectic group Sp(2n, F ) by de�nition preserves a nondegenerate
skew-symmetric bilinear form. The value of this form is an invariant (and, unlike the previous
example, a polynomial invariant).

8 Attacks on invariant-based cryptosystems
When a new cryptosystem (or a family of cryptosystems) is presented, it is common to
analyze the attacks on such cryptosystems. In this section we analyze several attacks on
invariant-based cryptosystems and give practical advises on how to avoid their success.

8.1 Linear algebra attacks
The most dreaded attacks on algebraic cryptosystems usually go by linear algebra: an ad-
versary constructs a system of linear equations and �nds the secret key (the most notable
example of this approach breaks the Polly Cracker scheme [20] that was only recently aug-
mented with special techniques to make linear algebra attacks less e�cient [44]).

Suppose that the invariant f is a polynomial of degree d. In this case, an adversary
can view it as a polynomial with

(
n+d+1

d

)
inde�nite coe�cients. To �nd the coe�cients, he

considers the equations f(gimj) = f(mj) for all elements of the message space mj ∈ M
and all generators gi ∈ G. The space of solutions will yield an invariant separating the
orbits of M (along with trivial invariants like f = const, of course). If d is a constant this
attack will actually succeed, so Alice should choose invariants in such a way that

(
n+d+1

d

)
is

superpolynomial.
Example 7. Suppose that we are trying to build an invariant-based cryptosystem based

on the monomial representation of the symmetric group Sn generated by transpositions τij
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and its �rst degree invariant

f(x1, . . . , xn) = x1 + . . . + xn.

For the message space we should choose a number of vectors such that the sums of their
coordinates are di�erent; we denote them by mi = (mi1, . . . , min). An adversary performing
this kind of attack will simply consider a polynomial

h = λ1x1 + . . . + λnxn

and solve a system of equations to ensure that transpositions do not change h. The equation
corresponding to τij is h(τijx) = h(x) which is equivalent to λi = λj. So, the adversary
will arrive to the correct invariant (or a constant factor of it) after performing a polynomial
algorithm. Note that in order to overcome this algorithm one should choose the message space
in such a way that it contains messages with identical sums of elements. The adversary does
not need to �nd the same invariant, he only needs to �nd an invariant that separates the
vectors of M .

8.2 Monte-Carlo attack and orbit sizes
Another concern comes from the sizes of the orbits of elements of M . Indeed, suppose that
an element m ∈ M has an orbit mG of polynomial size. In this case, an adversary has a
polynomial chance of hitting the correct cipher E(m) by simply picking an element g ∈ G
at random and comparing E(m) and gm. Thus, the elements of the message space should
be chosen with care to ensure that their orbits are large.

Example 8. For a trivial yet representative example consider a message space consisting
of a zero vector and some other vector (the following analysis will do for any subgroup of
GL(n, F ) and any invariant). The size of the zero vector orbit is 1, so an adversary does
not have to do anything: if he sees a zero vector, the message was zero, if he sees a nonzero
vector � it was the other vector that got �encrypted�.

8.3 Tree reconstruction attack
Finally, an adversary may attempt to reconstruct the tree with which the invariant was built.
Along this way he will encounter, for example, of �nding a matrix a such that a−1Ga = H
for given G and H. This is a well-known hard problem; for example, in [43] it is shown
that Graph Isomorphism reduces to the problem of group conjugation. This kind of attacks
was considered in detail in [30]; the same reasoning applies in this case, since the task of
reconstructing the tree has not become any easier. In fact, it has become harder, as the
tree nodes are now augmented with invariants that may change nontrivially when going up
the tree; consequently, to reconstruct a tree an adversary needs not only to reconstruct the
groups but also to reconstruct invariants.
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9 Anshel-Anshel-Goldfeld key agreement protocol secure against
provable break

First we recall the construction of the Anshel-Anshel-Goldfeld key agreement protocol [3].
Let G be a group, and let two players A and B choose two subgroups of G

GA = 〈a1, . . . , am〉, GB = 〈b1, . . . , bn〉.

Remark 5. Note that everything shown below goes without change if instead of GA and
GB we consider subsemigroups of G G̃A and G̃B generated by the same elements 〈a1, . . . , am〉
and 〈b1, . . . , bn〉, respectively, but generated as semigroups rather than groups. All commu-
tators are taken in the larger group G.

The group G and elements ai, 1 ≤ i ≤ m, and bj, 1 ≤ i ≤ n, are made public. Both
players A and B randomly choose secret elements a ∈ GA and b ∈ GB as products of not
more than N generators and transmit to each other the following sequences:

XA = {a−1bja}nj=1, XB = {b−1aib}mi=1.

After this transmission, player A (resp. B) has a representation of the element a (resp. b)
in the subgroup GA (resp. GB). Therefore, he can compute a representation of the element
b−1ab (resp. a−1ba) using elements of the sequence XA (resp. XB). Thus, both players have
shared a common key, namely the commutator

a−1(b−1ab) = [a, b] = (a−1ba)−1b.

An obvious necessary condition for this protocol to be secure is that the set of all commutators
with a ∈ GA and b ∈ GB should contain at least two elements.

To provably break the Anshel-Anshel-Goldfeld key agreement protocol, one has to �nd
representations of certain elements a

′ in GA and b
′ in GB, where

XA = {a′−1bja
′}nj=1, XB = {b′−1aib

′}mi=1.

Theorem 2 The Anshel-Anshel-Goldfeld key agreement protocol for a modular group G and
its subgroups GA and GB is secure against provable worst-case break unless NP ⊆ RP. The
same statement holds if instead of GA and GB we consider subsemigroups of G G̃A and G̃B

generated by the same elements 〈a1, . . . , am〉 and 〈b1, . . . , bn〉, respectively, but generated as
semigroups rather than groups.

Proof. Assume that there is a probabilistic polynomial-time Turing machine M such
that for in�nitely many security parameters N , and input I = {a1, . . . , am, b1, . . . , bn,
a−1b1a, . . . , a−1bma, b−1a1b, . . . , b

−1anb} it is true that

Pr[M(I) = a
′
1, s1, . . . , a

′
f , sf , b

′
1, t1, . . . , b

′
g, tg] ≥ 1/p(N),
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where GA = 〈a1, . . . , am〉 and GB = 〈b1, . . . , bn〉 are subgroups of the modular group, a ∈ GA,
b ∈ GB, a

′
=

∏f
i=1 a

′si
i , b

′
=

∏g
j=1 b

′tj
j , a

′
i ∈ {ai}mi=1, b

′
j ∈ {bj}nj=1, a

′−1bja
′
= a−1bja, for all

1 ≤ j ≤ n, b
′−1aib

′
= b−1aib, for all 1 ≤ i ≤ m, si and tj are in {−1, 1} for all 1 ≤ i ≤ f and

1 ≤ j ≤ g, f, g ≤ N and p is some polynomial. Note that we can check the correctness of
the answer of M , so we also assume that M produces only correct answers.

Using M , we can a construct probabilistic polynomial-time Turing machine M ′ that
contains p(N)/2 copies of M such that on input (X, {Yi}i, N) it does the following.
1. If X =

∏m
i=1 Y

′si
i , where Y ′ ∈ {Yi}i, m ≤ N , si ∈ {−1, 1} (if we consider GA and GB as

semigroups, here we take positive degrees only), then Pr[M ′ accepts] ≥ 1/2.
2. Otherwise, Pr[M ′ accepts] = 0.
For inputs of all copies of M we take a = b = X, ai = bi = Yi, and compute all
a−1b1a, . . . , a−1bma, b−1a1b, . . . , b

−1anb in polynomial time. By [11, Corollary 11.5] the BM
problem is NP-complete, hence, NP ⊆ RP. ut

Remark 6. If GA and GB are semigroups, the BM problem is hard, moreover, on average
[57].

Note that the described key agreement protocol can be insecure against linear algebra
attack (cf. Subsection 8.1): it gives an adversary the decision of the conjugacy problem which
could be unique, provided that the ring generated by GA (or by GB) coincides with the whole
ring of matrices (that is the case if we build our protocol on the Blass-Gurevich groups). To
make a cryptosystem more resistant against linear algebra attacks, one can replace G by a
tree-like construction of groups or semigroups as in Section 6.

Formally speaking, we produce the following recursive construction for a class of groups
G closed under a certain set of group�theoretical operations O; this time we do not have to
worry about admissible triples, and the operations are de�ned simply on groups of G. For a
set G0 ⊂ G (which is the base of the construction) we de�ne recursively a class P(G0,O) of
pairs (G, T ).

The recursive de�nition is done precisely as in 6.2, omitting the constructions of the
invariants and message spaces. In our case, the set O of admissible operations consists of
changing the underlying ring, direct products, wreath products, and conjugations (same as
for invariant�based cryptosystems, but without invariant�speci�c operations).

The security of the Anshel�Anshel�Goldfeld key agreement protocol for matrix groups
relies on the following problem.

Linear Transporter Problem (LTP). Let R be a commutative ring, V be an R�
module and G ≤ GL(V,R). Given u ∈ V and v ∈ uG = {ug : g ∈ G} �nd g ∈ G such that
v = ug.

If an adversary can e�ciently solve LTP, he can obviously break the Anshel�Anshel�
Goldfeld protocol. In [31], the following proposition was proven (Lemma 3.4).
Proposition 1 Let G ∈ G. Then, given a derivation tree of G, LTP for G can be solved in
time polynomial in the size of the tree and the times of solving LTP for leaves of the tree.
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Of course, this does not prove that security of the Anshel�Anshel�Goldfeld key agreement
protocol in the root of the tree depends on the security of this protocol in the leaves of the
tree. We have a much weaker statement that goes in the undesirable direction twice: if we
can solve LTP we can break the Anshel�Anshel�Goldfeld protocol, and if we can solve LTP
for leaves of the tree, we can solve LTP for its root. To prove security we would need to
reverse both statements. However, this is the best we can do, and we know of no similar
constructions with stronger dependencies.

10 Conclusions and further work
In the paper, we have introduced a new notion of provable break and provable security in
general. While this notion is undoubtedly much weaker than regular cryptographic security,
it appears natural, well-de�ned, and sensible. Moreover, this notion of security is on of the
few known notions for which provable positive statements are possible. We have provided
three examples of cryptographic protocols: an invariant-based cryptosystem secure against
provable break (we have also substantially advanced the theory of invariant-based cryptosys-
tems since [25]) and a key agreement protocol secure against provable break, a special case
of the Anshel-Anshel-Goldfeld key agreement protocol. We are sure that one can produce
more examples along the same lines.

Therefore, on one hand, further work lies in the search for more cryptographic primitives
secure against provable break. On the other hand, one also wishes to look for connections
between provable break and other notions of security. It is easy to think of a trivial cryptosys-
tem for which provable security is equivalent to regular cryptographic security (for example,
Bob may not use random bits at all); however, it may be useful to look for nontrivial exam-
ples of the same. These lines will probably be similar to the research carried out by Ajtai
and Dwork [1] later augmented by Regev [51, 52]. They managed to reduce a worst-case
problem to an average-case one and thus produced a cryptosystem that is secure under some
worst-case assumptions.

Acknowledgements.The authors are grateful to Edward A. Hirsch for valuable discus-
sions and for Remark 2.
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