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Abstract. The TrueSkillTM Bayesian rating system, developed a few years ago in Microsoft
Research, provides an accurate probabilistic model for estimating relative skills of partici-
pants in the most general situation of participants re-organizing into different teams for each
game. However, in cases when data on each participant is scarce, the teams may be of differ-
ent size and their strength does not grow proportional to the size the TrueSkillTM system does
not cope so well. We present several extensions and ramifications of the TrueSkillTM system
and compare their predictive power on a testbed that exhibits all the problems described
above.
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1. Introduction. Probabilistic rating models

A Bayesian rating system is a probabilistic model that aims to infer a linear ordering
(usually by providing a set of real numbers called ratings) on a certain set of entities (players)
based on a set of noisy comparisons of small subsets of these entities (games). Naturally, any
such model adopts certain assumptions on the base events (the comparisons) and provides
a probabilistic description of the process, for which a maximal likelihood hypothesis on the
ratings of the entities is finally inferred. While it is easier to think of probabilistic rating
models in terms of sports, players, and games, they find other applications in areas where
results of pairwise comparisons (or comparisons of a small number of entities) are available,
and with this data one has to infer a general ordering [1–6].

The simplest example of a Bayesian rating system is the Elo rating system developed by
Arpad Elo for comparing the skills of chessplayers [7]. The system makes very restrictive
assumptions (for example, the Elo rating fixes the variance as a global constant and does not
attempt to infer it from the data) and makes full use of the restrictive features of chess (e.g.,
strictly two player games). Nevertheless, it has been widely accepted, and the Elo rating and
its close variations are widely used in chess and other sports with the same properties. The
TrueSkillTM model is in fact a generalization of the Elo model, so we will not describe the
latter in detail.

Another family of probabilistic rating models are the so-called Bradley–Terry models [8–
10]. In their simplest form, Bradley–Terry models assume that each player i has a real rating
γi, and the win probability of a player in a game is proportional to his rating γi ( γ1

γ1+γ2

and γ2

γ1+γ2
in the simplest case of two players competing with no ties). There are natural

generalizations of this model that incorporate ties, home advantage, and multiplayer contests,
although the latter have limited support since a Bradley–Terry model grows exponentially

Research of the first author was partially supported by the Russian Presidential Grant Programme for
Young Ph.D.’s, grant no. MK-4089.2010.1, for Leading Scientific Schools, grant no. NSh-5282.2010.1, Fed-
eral Target Programme “Scientific and scientific-pedagogical personnel of the innovative Russia” contracts
no. 02.740.11.5192 and P265, and RFBR grants no. 09-01-12137-ofi m, 09-01-00784-a, and 08-01-00640-a.

1



2 SERGEY I. NIKOLENKO AND ALEXANDER V. SIROTKIN

in the number of players (it enumerates transpositions). After a model is constructed, the
maximal likelihood estimate of the ratings is found with likelihood maximization algorithms,
e.g., minorization–maximization algorithms [11,12] or neural networks [13].

The TrueSkillTM rating system [14] has been developed as a general probabilistic model
that supports all possible situations in a multiplayer contest. It supports teams of individual
players that compete in varying rosters; the system supports ties and teams of different
size, and the model grows polynomially in the number of players. The inference algorithm
is derived from standard Bayesian message passing algorithms [15, 16], and the authors of
TrueSkillTM present an iterative approximate algorithm to make all involved distributions
normal.

The TrueSkillTM model was designed to be used in online gaming, on the Xbox360 Live
servers; later studies showed that TrueSkillTM has better predictive power than the classical
Elo rating for chess games [17], and most recent results apply the ideas of TrueSkillTM to
online learning problems [5, 6]. The present paper’s ideas originate from an attempt to
implement the TrueSkillTM system in a slightly different environment. It turned out that our
dataset exhibits properties that make the basic TrueSkillTM system hard to use. We present
modifications and extensions that can increase TrueSkillTM’s predictive power in applications
with the same characteristic features as ours.

The paper is organized as follows. Section 2 recounts the structure of the TrueSkillTM

model. Section 3 explains the features of our dataset and why they make TrueSkillTM unde-
sirable. In Section 4, we present our most important modification to the TrueSkillTM model,
learning the places ratings, and list other modifications. Section 5 presents experimental
results.

2. The TrueSkillTM rating model

The TrueSkillTM rating system fits the probabilistic model for skills of players who unite
in teams of different size and participate in matches (tournaments) with several participants.
The mathematical problem is to recompute posterior ratings (skill estimates) after each
tournament.

The model does not assume to know actual prior skills, but rather a certain prior distri-
bution (assumed to be normal) f(si) = N (s; µi, σi). Here µi is the actual skill of player i,
and σi is the variance that characterizes how accurate the estimate is. After each match, the
variance decreases (if the model does not artificially increase it).

Each “true” skill is a mean value around which the actual performance shown by a player
in a given match is distributed, f(pi) = N (pi; si, β

2). The TrueSkillTM system assumes that
β2 is a universal constant common for all players1.

It is easy to express pi via initial parameters by integrating over all possible si:

f(pi | µi, σi) =

∫ ∞

−∞
N (pi; si, β

2)N (si; µi, σi)dsi.

Then player performances are combined to yield team performances. The TrueSkillTM system
uses a simple assumption: team performance is the sum of performances of its players:
ti =

∑
i pi, or, in a functional form, f(ti) = I(ti −

∑
i pi).

1Compare to the “skill level” constant of 200 points in the Elo rating.
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After that, team performances in a tournament must be compared; their comparison should
generate the order actually given by tournament results. Some teams can finish in a tie; in
this case, the TrueSkillTM system introduces a new global constant, ε, and assumes that a
draw between teams with performances t1 and t2 means that |t1 − t2| < ε.

The problem is to compute the posterior ratings; the data is a permutation of the teams
π that reflects match results (in which neighboring teams may finish in a draw). In other
words, we are to compute

p(s | π) =
p(π | s)p(s)∫
p(π | s)p(s)ds

.

Apart from si and π, variables pi, ti, and di are introduced, and the joint distribution density
of the entire system is presented as a product of distributions

p(π, d, t, p, s) = p(π | d)p(d | t)p(t | p)p(p | s)p(s).

The problem is to compute

p(π | s) =

∫ ∫ ∫
p(π, d, t, p, s)dddtdp.

Consequently, we are facing a marginalization problem which is one of the basic subject of
Bayesian analysis theory [15, 16]. To solve the problem, the TrueSkillTM system employs a
well-known marginalization message passing algorithm. See Fig. 1 for sample factor graphs,
including simple but representative cases of a match between two players, a match between
two teams of two players, and a match of four players with a draw.

The only trick is the approximate message passing in the bottom part of the graph. All
distributions are normal except for the distributions generated by the bottom nodes (e.g.,
the I(d1 > ε) node on Fig. 1c). Therefore, in TrueSkillTM this distribution is approximated
with a normal distribution (by computing the first two moments), and the message passing
algorithm goes on along the bottom part of the graph until convergence [14].

3. Dataset and problems encountered

In this section, we list the problems that can make the predictive power of classical
TrueSkillTM suffer. The dataset we attempted to apply TrueSkillTM to are tournament his-
tories for a Russian intellectual sport “What? Where? When?”. The game is played by
a (possibly large) number of teams who compete in answering specifically composed ques-
tions. Unfortunately, the number of correctly answered questions, on which we could base a
different probabilistic model, is unavailable, and tournament results are presented as lists of
places.

The game community shares all problems that TrueSkillTM is designed to overcome: it is a
friendly non-professional activity so players often switch teams even in official tournaments,
the teams cap at six players but are often understaffed, and so on. However, certain features
of this dataset have presented problems for classical TrueSkillTM. In this section, we list
these problems and present our approaches to solving them.
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Figure 1. Sample TrueSkillTM factor graphs. a – a match of two players, the
first has won; b – a match of two teams of two players each that has ended in
a draw; c – a match of four players, in which the first won, second and third
finished in a tie, and the fourth lost.
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3.1. Common multiway draws. In many tournaments of our dataset, many teams often
draw; there are large tournaments with limited number of different places (say, 30–40) and
a large number of teams (up to several thousand).2 The TrueSkillTM system behaves badly
in this situation due to the way it handles ties. If several teams line up in a multiway draw,
semantics of the I (|di+1 − di| ≤ ε) node cause incorrect behaviour, as we show on the following
example. Suppose there are four teams in a tournament, 1 through 4, with performances
p1, . . . , p4. Team 1 has won, while teams 2–4, listed in this order, drew behind the first. Then
the structure of the factor graph imposes the following restrictions:

p2 < p1 − ε,

|p2 − p3| ≤ ε,

|p3 − p4| ≤ ε.

Note that team 3’s performance may actually nearly equal p1, and p4 may exceed p1!
This problem is magnified when there are many teams, and the boundary cases are actually

often realized as maximal likelihood hypotheses (say, in a situation when an a priori leader
lost in a multiway draw). Thus, in a setting with common multiway draws a modification of
the TrueSkillTM model is required; we describe the corresponding modification in Section 4.

3.2. Draw constant ε. Another problem related to the lack of attention to draws in basic
TrueSkillTM. Our dataset contains two distinct classes of tournaments. In one, multiway
draws are common (see item 1). In the other, additional parameters are used, and draws are
virtually impossible. Thus, using the same value of ε for both kinds of tournaments would
either group the teams too close together in the first kind or spread them impossibly far
apart in the second kind.

To alleviate this problem, we learn the value of ε automatically from tournament results.
Several approaches to computing ε are possible, all based on the number of different places m
in the tournament results. The simplest approach is a linear spread from the prior estimate
of the best team’s performance pbest to the prior estimate of the worst team’s performance
pworst:

ε =
pbest − pworst

m
.

In our particular case, the dataset had a large gap between the two strictly different cases
outlined above. Therefore, we introduced two values of ε, recognized which case we are
dealing with, and applied the corresponding value. In other applications, more care may be
needed in working with the ε constant.

3.3. Variable team size. The game is played in teams of six players, but teams are often
incomplete. The expected performance of a five- or four-player team is not all that much
worse than for a six-player team; in fact, if a relatively weak player leaves the team, it will
lose hardly anything. Basic TrueSkillTM uses sums to represent team performance, which is
unacceptable here: teams with fewer players will get an almost automatic rating boost.

This problem can be alleviated by using another function for team performance. The first
idea is to use average performance instead of the sum of performances (all linear functions are

2In the problem setting, this results from the fact that competitions actually consist of solving several
dozen problems, and the teams are ranked according to the number of correctly solved problems. Thus, if
there are no additional parameters then large multiway draws are inevitable. This feature also applies to any
other competition of the same discrete nature.
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fully supported by basic TrueSkillTM: a weighted sum of normal distributions is still normal)
but discount it linearly for incomplete teams (the best value of the discount may vary from
dataset to dataset). In Section 5, we denote an implementation of this idea by “incomplete
teams discount”.

The second idea is to use a team performance function weighted towards the team leaders.
However, this may lead to a “rich get richer” situation, when leaders of their corresponding
teams get larger rating bonuses, and the gap between players of the same team who often
play together grows. Different leader bonus values are also compared in Section 5. We plan
further experiments with other, nonlinear team performance functions. However, we believe
that no single performance function will suit all problems, so we encourage other TrueSkillTM

users to experiment on their own data and find which team performance function works best
in their situation.

3.4. Variances. In the TrueSkillTM system, rating variances are estimated together with the
means. This actually implies that variance always decreases over time. This also leads to
a “rich get richer” problem, and it becomes very hard for a player with meek beginnings to
achieve greatness. To alleviate this problem, authors of the TrueSkillTM system suggest to
artificially increase the variance before (or after) each tournament. However, for tournaments
with a wide range of sizes (from dozens to thousands of teams) it becomes hard to pick a
unified constant that will suit all situations. Therefore, after experimenting with different
strategies for increasing the variance, we have come to a conclusion that the best way to
process variance would be to set it constant for all players (much like the Elo rating does).

4. Fitting place performances

In this section, we describe a modification to the TrueSkillTM system that we have imple-
mented to cope with common multiway draws (see Section 3.1).

We introduce an additional entity to the base TrueSkillTM model: the layer of place per-
formances li. Each place performance provides an estimate for the team performance it took
to get to a given place in the final rankings of a tournament. The TrueSkillTM bottom level
remains the same, but it is now connected to the place performances level, and each team is
connected to its corresponding place via a node that requires it to score a performance in the
ε-neighborhood of this node. Fig. 2 shown a sample factor graph for the new probabilistic
model (let us call it TS2 for the moment) corresponding to the factor graph on Fig. 1c.
Note how an additional layer of place performances corrects the errors in handling multiway
draws shown in Section 3.1. After that, the first version of TS2 performs the usual Bayesian
inference on the modified factor graph.

In the second version of the modified model, TS3, the factor graph stays the same but the
inference algorithm changes. Basically, we break the inference up in two stages: the first stage
computes maximal likelihood estimates for place performances, and the second stage takes
them as point estimates and computes posterior player ratings. A (more) formal description
of the algorithm follows. The algorithm receives as input prior ratings of all players of all
participating teams and a table of places of all participating teams. Suppose that there are
m different places, and team i placed j(i)th in the tournament.

(1) Compute prior estimates of team performances ti.



EXTENSIONS OF THE TRUESKILLTM RATING SYSTEM 7

Figure 2. A sample TS2 factor graph corresponding to Fig. 1c. In this case,
j(1) = 1, j(2) = j(3) = 2, j(3) = 4.

(2) Compute the joint likelihood of the fact that team i has shown the performance in
an ε-neighborhood of an unknown performance value xj, that is, |ti − xj(i)| ≤ ε. We
get a large product of distributions, a function of all xi’s:

f(x1, . . . , xm) =
∏

i

p
(
|ti − xj(i)| ≤ ε

)
.

(3) Maximize f(x1, . . . , xm) under the constraints

x1 ≥ x2 + 2ε ≥ x3 + 4ε ≥ . . . ≥ xm + 2(m− 1)ε.

(4) Propagate the maximizing values of xj to their corresponding teams, assuming that
an event |ti − xj(i)| ≤ ε has happened.

(5) Output the resulting posterior estimates.

This algorithm is incorrect in the sense that it is no longer guaranteed to produce the
maximal likelihood hypothesis for the model shown on Fig. 2. However, our experiments
have shown that TS3 actually outperforms TS2 in predictive power (see Section 5). We leave
a probabilistic explanation of this model as subject for further study.

5. Experimental results

In this Section, we present some experimental result. In our experiments, various rating
models try to learn the ratings of the players and predict the results of new . We consider
six version of the prediction system’s implementation.

(1) The basic TrueSkillTM system.
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Table 1. Pairwise comparisons of the rating models: numbers of better predictions.

1 2 3 4 5 6
1 0 40 40 43 49 45
2 110 0 70 75 72 63
3 109 75 0 74 76 63
4 107 69 53 0 72 63
5 100 76 72 76 0 45
6 104 85 83 83 96 0

(2) TS2 (with the additional layer for place performances).
(3) TS2 with incomplete teams support.
(4) TS2 with incomplete teams support and a 10% leader bonus.
(5) TS3 with incomplete teams support.
(6) TS3 with incomplete teams support and a 10% leader bonus.

We have used the following error prediction measure: a prediction system that predicted
places yi, i = 1..n, for the teams that finally placed xi, i = 1..n, receives error prediction
score (less is better) √√√√ n∑

i=1

1√
i
(xi − yi)

2.

The 1√
i

factor is a natural discount given to errors in low places. There are two reasons for

this discount: first, we are naturally more interested in correct predictions of the leaders;
second, as the place number grows, more and more teams are usually tied, so a small error
in the actual result may cause wild changes in the absolute place ranking.

We have performed pairwise comparisons of the predictive power of each of six prediction
systems. Our dataset consists of 449 tournaments, in which a total of more than 30000
players have participated. Before each tournament, a probabilistic rating model makes a
prediction, and we compare whose prediction was better according to the score introduced
above. Giving the models some time to learn, we only count the results from the last 150
tournaments. Table 1 shows the results of pairwise comparisons; cell (i, j) contains the
number of tournaments in which model i has had better predictions than model j minus the
number of tournaments (the numbers do not sum up to 150 because sometimes predictions
coincide completely). Table 2 shows the same data in a more clear way: its cell (i, j) contains
the advantage of rating model i over rating model j in our experiments.

Experiments clearly indicate that the basic TrueSkillTM system has lost to every modifi-
cation of ours. Among the modifications, TS3 with incomplete teams support and a 10%
leader bonus came out on top. Fig. 3 shows a more detailed comparison of the predictive
power of these two rating models, showing their relative predictive error score on the last 150
tournaments.
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Table 2. Pairwise comparisons of the rating models: advantages of one model
over the other.

1 2 3 4 5 6
1 0 -70 -69 -64 -51 -59
2 70 0 -5 6 -4 -22
3 69 5 0 21 4 -20
4 64 -6 -21 0 -4 -20
5 51 4 -4 4 0 -51
6 59 22 20 20 51 0

Figure 3. TS3 with incomplete teams support and a 10% leader bonus com-
pared to basic TrueSkillTM system prediction error.

6. Conclusion

In this paper, we have presented several modification to the TrueSkillTM model that en-
hance the model on datasets that exhibit certain properties unfavourable for the original
model. The most important of these modifications aims to alleviate the problem of multiway
ties. We have introduced another level of place performances to the model and devised a
new inference algorithm that makes use of this additional level. Experimental results show
that our models outperform basic TrueSkillTM.
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Further work may include both theoretical and practical investigations. The most impor-
tant theoretical question we are currently facing is to explain the probabilistic sense and
describe the properties of our TS3 model. More practical questions include devising proce-
dures for learning the ε parameter and the new parameters (incomplete team discount, leader
bonus) we have introduced in our modifications.
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