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intro: topic modeling
and sentiment analysis
.



overview
.

• Very brief overview of the paper:
• we would like to do sentiment analysis;
• there are topic model extensions that deal with sentiment;
• but they always rely on an external dictionary of sentiment words;
• in this work, we show a way to extend this dictionary automatically
from that same topic model.

3



opinion mining
.

• Sentiment analysis / opinion mining:
• traditional approaches set positive/negative labels by hand;
• recently, machine learning models are trained to assign sentiment
scores for most words in the corpora;

• however, they can’t really work totally unsupervised, and
high-quality manual annotation is expensive;

• moreover, there are different aspects.

• Problem: automatically mine sentiment lexicons for specific
aspects.
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topic modeling with lda
.

• Latent Dirichlet Allocation (LDA) – topic modeling for a corpus of
texts:

• a document is represented as a mixture of topics;
• a topic is a distribution over words;
• to generate a document, for each word we sample a topic and
then sample a word from that topic;

• by learning these distributions, we learn what topics appear in a
dataset and in which documents.
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topic modeling with lda
.

• Sample LDA result from (Blei, 2012):
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topic modeling with lda
.

• Sample LDA result from (Blei, 2012):
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topic modeling with lda
.

• There are two major approaches to inference in probabilistic
models with a loopy factor graph like LDA:

• variational approximations simplify the graph by approximating
the underlying distribution with a simpler one, but with new
parameters that are subject to optimization;

• Gibbs sampling approaches the underlying distribution by
sampling a subset of variables conditional on fixed values of all
other variables.

• Both approaches have been applied to LDA.
• We will extend the Gibbs sampling.
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lda likelihood
.

• The total likelihood of the LDA model is

p(z,w, α, β) = ∫θ,φ
p(θ ∣ α)p(z ∣ θ)p(w ∣ z,φ)p(φ ∣ β)dθdφ.
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gibbs sampling
.

• And in collapsed Gibbs sampling, we sample

p(zj = t ∣ z−j, w, α, β) ∝
n¬j∗,t,d + α
n¬j∗,∗,d + Tα

⋅ n
¬j
w,t,∗ + α

n¬j∗,t,∗ +Wβ
,

where z−j denotes the set of all z values except zj.
• Samples are then used to estimate model variables:

θtd =
nw,t,d + α
nw,∗,d + Tα

, φwt =
nw,t,∗ + β
n∗,t,∗ +Wβ

.
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lda extensions
.

• There exist many LDA extensions:
• DiscLDA: LDA for classification with a class-dependent
transformation in the topic mixtures;

• Supervised LDA: documents with a response variable, we mine
topics that are indicative of the response;

• TagLDA: words have tags that mark context or linguistic features;
• Tag-LDA: documents have topical tags, the goal is to recommend
new tags to documents;

• Topics over Time: topics change their proportions with time;
• hierarchical modifications with nested topics are also important.

• In particular, there are extensions tailored for sentiment
analysis.
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joint sentiment-topic
.

• JST: topics depend on
sentiments from a
document’s sentiment
distribution πd, words are
conditional on
sentiment-topic pairs.

• Generative process – for each
word position j:
(1) sample a sentiment label

lj ∼Mult(πd);
(2) sample a topic

zj ∼Mult(θd,lj);
(3) sample a word

w ∼Mult(φlj,zj).
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joint sentiment-topic
.

• In Gibbs sampling, one can marginalize out πd:

p(zj = t, lj = k ∣ z−j, w, α, β, γ, λ) ∝
n¬j∗,k,t,d + αtk

n¬j∗,k,∗,d +∑t αtk
⋅
n¬jw,k,t,∗ + βkw

n¬j∗,k,t,∗ +∑w βkw
⋅
n¬j∗,k,∗,d + γ
n¬j∗,∗,∗,d + Sγ

,

where nw,k,t,d is the number of words w generated with topic
t and sentiment label k in document d, αtk is the Dirichlet prior
for topic t with sentiment label k.
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aspect and sentiment unification model
.

• ASUM: aspect-based analysis
+ sentiment for user reviews;
a review is broken down into
sentences, assuming that
each sentence speaks about
only one aspect.

• Basic model – Sentence LDA
(SLDA): for each review d with
topic distribution θd, for each
sentence in d,
(1) choose its sentiment label

ls ∼Mult(πd),
(2) choose topic

ts ∼Mult(θdls)
conditional on the
sentiment label ls,

(3) generate words
w ∼Mult(φlsts).
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gibbs sampling for asum
.

• Denoting by sk,t,d the number of sentences (rather than words)
assigned with topic t and sentiment label t in document d:

p(zj = t, lj = k ∣ l−j, z−j, w, γ, α, β) ∝
s¬jk,t,d + αt

s¬jk,∗,d +∑t αt
⋅

s¬jk,∗,d + γk
s¬j∗,∗,d +∑k′ γk′

×

×
Γ (n

¬j
∗,k,t,∗ +∑w βkw)

Γ (n
¬j
∗,k,t,∗ +∑w βkw +W∗,j)

∏
w

Γ (n
¬j
w,k,t,∗ + βkw +Ww,j)
Γ (n

¬j
w,k,t,∗ + βkw)

,

whereWw,j is the number of words w in sentence j.
• There are other models and extensions (USTM).
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learning sentiment priors
.



idea
.

• All of the models above assume that we have prior sentiment
information from an external vocabulary:

• in JST and Reverse-JST, word-sentiment priors λ are drawn from an
external dictionary and incorporated into β priors; βkw = β if
wordw can have sentiment label k and βkw = 0 otherwise;

• in ASUM, prior sentiment information is also encoded in the β
prior, making βkw asymmetric similar to JST;

• the same holds for other extensions such as USTM.
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idea
.

• Dictionaries of sentiment words do exist.
• But they are often incomplete; for instance, we wanted to apply
it to Russian where there are few such dictionaries.

• It would be great to extend topic models for sentiment analysis
to train sentiment for new words automatically!

• We can assume access to a small seed vocabulary with
predefined sentiment, but the goal is to extend it to new words
and learn their sentiment from the model.
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idea
.

• In all of these models, word sentiments are input as different β
priors for sentiment labels.

• If only we could train these priors automatically...
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idea
.

• In all of these models, word sentiments are input as different β
priors for sentiment labels.

• If only we could train these priors automatically...
• ...and we can do it with EM!

GeneralEMScheme
1: while inference has not converged do
2: for N steps do � M-step
3: run one Gibbs sampling update step
4: update βkw priors � E-step
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em to train β
.

• This scheme works for every LDA extension considered above.
• At the E-step, we update βkw ∝ nw,k,∗,∗, and we can choose
the normalization coefficient ourselves, so we start with high
variance and then gradually refine βkw estimates in simulated
annealing:

βkw = 1
τnw,k,∗,∗,

where τ is a regularization coefficient (temperature) that starts
large (high variance) and then decrease (lower variance).
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em to train β
.

• Thus, the final algorithm is as follows:
• start with some initial approximation to βws (from a small seed
dictionary and maybe some simpler learning method used for
initialization and then smoothed);

• then, iteratively,
• at the E-step of iteration i, update βkw as βkw = 1

τ(i)nw,k,∗,∗
with, e.g., τ(i) = max(1,200/i);

• at the M-step, perform several iterations of Gibbs sampling for the
corresponding model with fixed values of βkw .
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word embeddings
.

• Earlier (MICAI 2015), we have shown that this approach leads to
improved results in terms of sentiment prediction quality.

• In this work, we use improved sentiment-topic models to learn
new aspect-based sentiment dictionaries.

• To do so, we used distributed word representations (word
embeddings).
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word embeddings
.

• Distributed word representations map each word occurring in
the dictionary to a Euclidean space, attempting to capture
semantic relationships between the words as geometric
relationships in the Euclidean space.

• Started back in (Bengio et al., 2003), exploded after the works of
Bengio et al. and Mikolov et al. (2009–2011), now used
everywhere; we use embeddings trained on a very large Russian
dataset (thanks to Nikolay Arefyev and Alexander Panchenko!).

CBOW skip-gram
16



how to extend lexicons
.

• Intuition: words similar in some aspects of their meaning, e.g.,
sentiment, will be expected to be close in the semantic
Euclidean space.

• To expand the top words of resulting topics:
• extract word vectors for all top words from the distribution φ in
topics and all words in available general-purpose sentiment
lexicons;

• for every top word in the topics, construct a list of its nearest
neighbors according to the cosine similarity measure in the R500
space among the sentiment words from the lexicons (20
neighbors is almost always enough).

• We have experimented with other similarity metrics (L1, L2,
variations on L∞) with either worse or very similar results.
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experiments
.



dataset
.

• Dataset with Russian language reviews on restaurants released
for the SentiRuEval-2015 task (Loukachevitch et al., 2015).

• In total, 17,132 unlabeled reviews were used to train the
Reverse-JST model.

• Preprocessing natural for topic modeling: remove stopwords
and punctuation, convert to lowercase, normalize the text with
Mystem, remove too rare words (< 3 occurrences).

• For initial β priors, we used a manually constructed sentiment
lexicon.
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sample topics
.

# sent. sentiment words

1
neu соус [sauce], салат [salad], кусочек [slice], сыр [cheese], тарелка [plate], овощ

[vegetable], масло [oil], лук [onions], перец [pepper]
pos приятный [pleasant], атмосфера [atmosphere], уютный [cozy], вечер

[evening], музыка [music], ужин [dinner], романтический [romantic]
neg ресторан [restaurant], официант [waiter], внимание [attention], сервис [ser-

vice], обращать [to notice], обслуживать [to serve], уровень [level]

2
neu столик [table], заказывать [to order], вечер [evening], стол [table], приходить

[to come], место [place], заранее [in advance], встречать [to meet]
pos место [place], хороший [good], вкус [taste], самый [most], приятный [pleas-

ant], вполне [quite], отличный [excellent], интересный [interesting]
neg еда [food], вообще [in general], никакой [none], заказывать [to order],

оказываться [appear], вкус [taste], ужасный [awful], ничто [nothing]

3
neu девушка [girl], спрашивать [to ask], вопрос [question], подходить [to come],

официантка [waitress], официант [waiter], говорить [to speak]
pos большой [big], место [place], выбор [choice], хороший [good], блюдо [dish],

цена [price], порция [portion], небольшой [small], плюс [plus]
neg цена [price], обслуживание [service], качество [quality], уровень [level],

кухня [kitten], средний [average], ценник [price tag], высоко [high]
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mining aspects
.

• The resulting aspect-based lexicons contain 726 topical aspects
commonly divided into three types:
(1) explicit aspects that denote parts of a product (e.g., сотрудник

[worker], баранина [lamb], овощ [vegetable], мексиканский
[mexican]);

(2) implicit aspects that refer indirectly to a product (e.g., чисто
[clean], ароматный [aromatic], сытно [filling], шумно [noisy]);

(3) narrative words which related to major topics in the text and
indirectly refer to sentiment polarity of the text (e.g., пересолить
[to oversalt], пожелать [to wish], почувствовать [to sense],
отсутствовать [be missing]).

• Next we applied the mined aspects to sentiment classification
to see whether there is an improvement.
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sentiment classification
.

• Classifier from (Ivanov, Tutubalina et al., 2015) based on a
max-entropy model.

• It uses term frequency features in the context of an aspect term
and lexicon-based features.

• Specifically, the following features from an aspect’s context
window of 4 words:
(1) lowercased character n-grams with document frequency greater

than two;
(2) lexicon-based unigrams and context unigrams and bigrams;
(3) aspect-based bigrams as a combination of the aspect terms itself

and words;
(4) lexicon-based features: the maximal sentiment score, the

minimum sentiment score, the total and averaged sums of the
words’ sentiment scores.
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sentiment classification
.

• We compare classifiers with lexicon-based features:
(1) computed on a manually constructed general-purpose lexicon

(baseline classifier),
(2) computed on a general-purpose lexicon for all words and

aspect-based lexicons for individual aspects.

• We evaluated three different versions of sentiment scores:
(1) scoresDict: take sentiment score from the manually created

lexicon if the word occurs in the lexicon with a positive or negative
label; otherwise, set the score to 0;

(2) scoresMult: set the sentiment score of a word as a product of the
dictionary score and the similarity;

(3) scoresCos: set the sentiment score to cosine similarity score if
similarity between the word in question and хороший [good] is
higher than similarity with плохой [bad]; otherwise, shift
sentiment score towards the opposite polarity.
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classification results
.

Max-Entropy Classifier micro-averaged macro-averaged
P R F1 P R F1

baseline - Lexicon1 0.595 0.344 0.436 0.738 0.649 0.676
scoresDict 0.592 0.344 0.436 0.737 0.649 0.676
scoresMult 0.600 0.351 0.442 0.740 0.653 0.680
scoresCos 0.610 0.372 0.462 0.748 0.663 0.691
baseline - Lexicon2 0.572 0.341 0.427 0.727 0.646 0.671
scoresDict 0.568 0.345 0.430 0.725 0.647 0.672
scoresMult 0.556 0.338 0.420 0.719 0.643 0.667
scoresCos 0.566 0.368 0.447 0.725 0.657 0.680
baseline - Lex1 + Lex2 0.594 0.348 0.439 0.738 0.651 0.679
scoresDict 0.595 0.376 0.461 0.741 0.663 0.689
scoresMult 0.590 0.372 0.457 0.738 0.661 0.687
scoresCos 0.602 0.376 0.463 0.744 0.664 0.690
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sample aspect-related sentiment words
.

aspect sentiment words
баранина
[lamb]

вкусный [tasty], сытный [filling], аппетитный [delicious], душистый
[sweet smelling], деликатесный [speciality], сладкий [sweet]

караоке
[karaoke]

музыкальный [musical], попсовый [pop], классно [awesome],
развлекательный [entertaining], улетный [mind-blowing]

пирог [pie] вкусный [tasty], аппетитный [delicious],обсыпной [bulk ], сытный [fill-
ing], черствый [stale], ароматный [aromatic], сладкий [sweet]

ресторан
[restaurant]

шикарный [upscale], фешенебельный [fashionable], уютный [cozy],
люкс [luxe], роскошный [luxurious], недорогой [affordable]

вывеска [sign] обветшалый [decayed], выцветший [faded], аляповатый [flashy],
фешенебельный [fashionable], фанерный [veneer]

администратор
[manager]

люкс [luxe], неисполнительный [careless], ответственный [responsible],
компетентный [competent], толстяк [fatty]

интерьер
[interior]

уют [comfort], уютный[cozy], стильный [stylish], просторный [spacious],
помпезный [magnific], роскошный [luxurious], шикарный [upscale]

вежливый
[delicate]

вежливый [delicate], учтивый[polite], обходительный [affable],
доброжелательный [good-minded], тактичный [diplomatic]
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conclusion
.

• We have presented a method for automatically extracting
aspect-based sentiment lexicons based on an extension of
sentiment-related topic models augmented with similarity
search based on distributed word representations.

• We extract important new sentiment words for aspect-specific
lexicons and show improvements in sentiment classification on
standard benchmarks.

• Future work:
• can we train a more informative relation between sentiment priors
and distributed word representations?

• maybe distributed word representations can be fed directly into
the priors?
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thank you!
.

Thank you for your attention!
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