
Tricks and optimization in deep learning
Master’s Computer Vision

Sergey Nikolenko, Alex Davydow

Harbour Space University, Barcelona
May 20, 2020

Random facts:

• May 20 is celebrated as the World Bee Day; Anton Janša, the pioneer of beekeeping, was
born on May 20, 1734

• On May 20, 1498, Vasco da Gama arrived at Kozhikode (Calicut), India

• on May 20, 1609, Thomas Thorpe first published Shakespeare’s sonnets in London; it was
most probably an illicit publication, as was the custom at the time

• On May 20, 1873, Levi Strauss and Jacob Davis patented blue jeans with copper rivets

• On May 20, 2019, the international system of units (SI) was restructured, and the
international prototype of the kilogram (IPK), stored in an underground vault near Paris, lost
its importance; the IPK had been a problem because no one could explain why its mass and
the mass of its copies deviated by tens of micrograms over the last century, and the whole
SI was built upon the IPK

Weight initialization

Weight initialization

• The deep learning revolution began with unsupervised
pretraining.

• Main idea: get to a good region of the search space, then
fine-tune with gradient descent.

• Turns out by now we don’t need unsupervised pretraining with
complex models like RBM to get to a good region.

• Weight initialization is an important part of why.

1

Weight initialization

• Xavier initialization (Glorot, Bengio, 2010).
• Let’s consider a single linear unit:

y = w⊤x+ b =
∑
i

wixi + b.

• The variance is

Var [yi] = Var [wixi] = E
[
X2Y2

]
− (E [XY])2 =

= E [xi]2 Var [wi] + E [wi]2 Var [xi] + Var [wi]Var [xi] .

1

Weight initialization

• The variance is

Var [yi] = Var [wixi] = E
[
X2Y2

]
− (E [XY])2 =

= E [xi]2 Var [wi] + E [wi]2 Var [xi] + Var [wi]Var [xi] .

• For symmetric activation functions and zero mean of the weights

Var [yi] = Var [wi]Var [xi] .

• And if wi and xi are initialized independently from the same
distribution,

Var [y] = Var
[nout∑
i=1

yi

]
=

nout∑
i=1

Var [wixi] = noutVar [wi]Var [xi] .

• In other words, the output variance is proportional to the input
variance with coefficient noutVar [wi]. 1

Weight initialization

• Before (Glorot, Bengio, 2010), the standard way to initialize was
(it’s all over older literature)

wi ∼ U
[
− 1√nout

,
1√nout

]
.

• So in this case we get

Var [wi] =
1
12

(
1√nout

+
1√nout

)2
=

1
3nout

, so

noutVar [wi] =
1
3 ,

and a ter a few layers the signal dies down; the same happens in
backprop.

1

Weight initialization

• Xavier initialization tries to reduce the change in variance, so we
take

Var [wi] =
2

nin + nout
,

which for uniform distribution means

wi ∼ U
[
−

√
6√

nin + nout
,

√
6√

nin + nout

]
.

• But it only works for symmetric activations, i.e., not for ReLU...

1

Weight initialization

• ...until (He et al., 2015)! Let’s go back to

Var [wixi] = E [xi]2 Var [wi] + E [wi]2 Var [xi] + Var [wi]Var [xi]

• We now can only make the second term zero:

Var [wixi] = E [xi]2 Var [wi] + Var [wi]Var [xi] = Var [wi]E
[
x2i
]
, so

Var
[
y(l)

]
= n(l)in Var

[
w(l)

]
E
[(
x(l)

)2]
.

1

Weight initialization

• We now can only make the second term zero:

Var
[
y(l)

]
= n(l)in Var

[
w(l)

]
E
[(
x(l)

)2]
.

• Suppose now that x(l) = max(0, y(l−1)), and y(l−1) has a symmetric
distribution around zero. Then

E
[(
x(l)

)2]
=
1
2Var

[
y(l−1)

]
, Var

[
y(l)

]
=
n(l)in
2 Var

[
w(l)

]
Var

[
y(l−1)

]
.

• And this leads to the variance for ReLU init; there is no nout now:

Var [wi] = 2/n(l)in .

• You don’t have to make it uniform, btw; e.g., a normal
distribution is fine: wi ∼ N

(
0,
√
2/n(l)in

)
.

1

Batch normalization

Batch normalization

• Important problem in deep neural networks: internal covariate
shi t.

• When we change the weights of a layer, the distribution of its
outputs changes.

• This means that the next layer has to re-train almost from
scratch, it did not expect these outputs.

• Moreover, these neurons might have already reached saturation,
so they can’t re-train quickly.

• This seriously impedes learning.

2

Batch normalization

• A characteristic example; note how different the distributions
are:

• What can we do?
2

Batch normalization

• We could try to normalize (whiten) a ter every layer.
• Does not work: consider a layer that simply adds a bias b to its
inputs u:

x̂ = x− E [x] , where x = u+ b.

• On the next gradient descent step, we’ll have b := b+∆b...
• ...but x̂ will not change:

u+ b+∆b− E [u+ b+∆b] = u+ b− E [u+ b] .

• So the biases will simply increase unboundedly, and that’s all
the training we’ll get; not a good thing.

2

Batch normalization

• We can try to add normalization as a layer:

x̂ = Norm(x,X).

• But note that the entire dataset X is required here.
• So on the gradient descent step we’ll need to compute ∂Norm

∂x
and ∂Norm

∂X , and also the covariance matrix

Cov[x] = Ex∈X
[
xx⊤

]
− E [x]E [x]⊤ .

• Definitely won’t work.

2

Batch normalization

• The solution is to normalize each component separately, and
not over the whole dataset but over the current mini-batch;
hence batch normalization.

• A ter batch normalization we get

x̂k =
xk − E [xk]√

Var [xk]
,

where the statistics are computed over the current mini-batch.
• However, one more problem: now nonlinearities disappear!
• E.g., we will almost always get into the region where σ is very
close to linear.

2

Batch normalization

• To fix this, we have to allow the batchnorm layer enough
flexibility to sometimes do nothing with the inputs.

• So we introduce additional shi t and scale parameters:

yk = γkx̂k + βk = γk
xk − E [xk]√

Var[xk]
+ βk.

• γk and βk are new variables and will be trained just like the
weights.

2

Batch normalization

• Last remark: it matters where to put the batchnorm.
• You can put it either before or a ter the nonlinearity.

2

Variations of
gradient descent

Gradient descent

• “Vanilla” gradient descent:

xk = xk−1 − α∇f(xk).

• So much depends on the learning rate α.
• First idea — let α decrease with time:

• linear decay:

α = α0

(
1− t

T

)
;

• exponential decay:
α = α0e−

t
T .

3

Gradient descent

• There’re a lot of results here. Wolfe conditions: if we are solving
minx f(x), and on step k we already know the direction pk where
to go (e.g., pk = ∇xf(xk)), i.e., we need to solve minα f(xk + αpk),
then:

• for ϕk(α) = f(xk + αpk) we have ϕ′
k(α) = ∇f(xk + αpk)⊤pk, and if

pk is the descent direction then ϕ′
k(0) < 0;

• the step size α must satisfy the Armijo rule:

ϕk(α) ≤ ϕk(0) + c1αϕ′
k(0) for some c1 ∈ (0, 12);

• or even stronger Wolfe’s rule: Armijo rule plus

|ϕ′
k(α)| ≤ c2|ϕ′

k(0)|,

i.e., we’d like to decrease the projection of the gradient.
• We stop the process when ∥∇xf(xk)∥2 ≤ ϵ or
∥∇xf(xk)∥2 ≤ ϵ∥∇xf(x0)∥2 (why square, btw?).

3

Gradient descent

• Let’s see what happens if the scale is different: for a function
f(x, y) = 1

2x
2 + ρ

2 y
2 → minx,y

• For elongated “valleys” (variables with different scale) we get a
lot of superfluous iterations, everything is very slow.

• Much better to be adaptive; but how?

3

Gradient descent

• The best thing in life is, of course, Newton’s method: let’s scale
back with the Hessian

gk = ∇xf(xk), Hk = ∇2
xf(xk), и xk+1 = xk − αkH−1

k gk.

• Armijo rule is applicable here as well:

αk : f(xk+1) ≤ f(xk)− c1αkg⊤k H−1
k gk, c1 ≈ 10−4.

• Would be very nice but, alas, you can’t just compute Hk.

3

Gradient descent

• There are approximations.
• Conjugate gradients, quasi-Newtonian methods...
• L-BFGS (limited memory Broyden–Fletcher–Goldfarb–Shanno):

• construct an approximation to H−1;
• to do that, save updates of the arguments and then express H−1

through them.

• Important open question: can we make L-BFGS or something
similar work for deep learning?

• Doesn’t work so far, mostly because you do need to be able to
compute the gradient.

• And we aren’t. Wait, what?..

3

Stochastic gradient descent

• We are usually dealing with stochastic gradient descent:

xt = xt−1 − α∇f(xt, xt−1, yt).

• With mini-batches, too. How do we understand this formally?
• We are usually dealing with stochastic optimization problems:

F(x) = Eq(y)f(x, y) → min
x

:

• empirical risk minimization:

F(x) = 1
N

N∑
i=1

fi(x) = Ei∼U(1,...,N)fi(x) → min
x
;

• variational lower bound (ELBO) minimization... but later about that
(if ever).

• So what are mini-batches, then? 4

Stochastic gradient descent

• Simply empirical estimates of a random function from a sample:

F̂(x) = 1
m

m∑
i=1

f(x, yi), ĝ(x) = 1
m

m∑
i=1

∇xf(x, yi).

• Very good estimates: unbiased, converging (albeit slowly), easy
to compute.

• In general, that’s how you motivate stochastic gradient descent
(SGD), it’s a Monte-Carlo approach. But there are problems...

4

Stochastic gradient descent

• SGD problems:
• never goes in the right direction,
• even at the exact optimum of F(x) the step is nonzero, i.e., it
cannot converge with a constant step size,

• we know neither F(x) nor ∇F(x), i.e., we cannot use Armijo and
Wolfe’s rules.

4

Stochastic gradient descent

• Nevertheless, we can try to analyze an SGD iteration for
F(x) = Eq(y)f(x, y) → minx:

xk+1 = xk − αkĝk, Eĝk = gk = ∇F(xk).

• Let’s estimate the residue of a point on some iteration:

∥xk+1 − xopt∥2 = ∥xk − αkĝk − xopt∥2 =
= ∥xk − xopt∥2 − 2αkĝ⊤k (xk − xopt) + α2k∥ĝk∥2.

• Take expectation with respect to q(y) at time moment k:

E∥xk+1 − xopt∥2 = ∥xk − xopt∥2 − 2αkg⊤k (xk − xopt) + α2kE∥ĝk∥2.

4

Stochastic gradient descent

• Assume for simplicity that F is convex:

F(xopt) ≥ F(xk) + g⊤k (xk − xopt)

4

Stochastic gradient descent

• We had

E∥xk+1 − xopt∥2 = ∥xk − xopt∥2 − 2αkg⊤k (xk − xopt) + α2kE∥ĝk∥2,
F(xopt) ≥ F(xk) + g⊤k (xk − xopt).

• Therefore,

αk(F(xk)− F(xopt)) ≤ αkg⊤k (xk − xopt) =

=
1
2∥xk − xopt∥2 +

1
2α

2
kE∥ĝk∥2 −

1
2E∥xk+1 − xopt∥2.

4

Stochastic gradient descent

• Take the expectation of the le t-hand side and sum up:

k∑
i=0

αi(EF(xi)− F(xopt)) ≤

≤ 1
2∥x0 − xopt∥2 +

1
2

k∑
i=0

α2i E∥ĝi∥2 −
1
2E∥xk+1 − xopt∥2 ≤

≤ 1
2∥x0 − xopt∥2 +

1
2

k∑
i=0

α2i E∥ĝi∥2.

• We got the sum of function values at different points with
weights αi. What do we do now?

4

Stochastic gradient descent

• Use convexity:

EF
(∑

i αixi∑
i αi

)
− F(xopt) ≤

≤
∑

i αi(EF(xi)− F(xopt)∑
i αi

≤
1
2∥x0 − xopt∥2 + 1

2
∑k

i=0 α
2
i E∥ĝi∥2∑

i αi
.

• The estimate is on the value in a linear combination of points
(in practice there is no difference or it’s even better to take the
last point).

• If ∥x0 − xopt∥ ≤ R and E∥ĝk∥2 ≤ G2 then

EF(x̂k)− F(xopt) ≤
R2 + G2

∑k
i=0 α

2
i

2
∑k

i=0 αi
.

4

Stochastic gradient descent

• The main bound regarding SGD:

EF(x̂k)− F(xopt) ≤
R2 + G2

∑k
i=0 α

2
i

2
∑k

i=0 αi
.

• R is an estimate for the initial residue, and G is an estimate of
something like the variance of the stochastic gradient.

• For instance, for constant step size αi = h

EF(x̂k)− F(xopt) ≤
R2

2h(k+ 1) +
G2h
2 →k→∞

G2h
2 .

4

Stochastic gradient descent

• SGD summary:
• SGD comes to an “uncertainty region” of radius 1

2G
2h, and it is

proportional to step size;
• the faster we go, the faster we arrive there but the larger the
uncertainty region will be, i.e., we need to reduce the learning rate
with time;

• SGD converges slowly: full GD for convex functions has residue
O(1/k), while SGD has only O(1/

√
k);

• but far from the uncertainty region we still have O(1/k) residue for
constant learning rate, i.e., it slows down only near the optimum,
and generally our goal is to reach the uncertainty region;

• but it still depends on G, and this will be especially important for
neurobayesian approaches.

4

Thank you!

Thank you for your attention!

5

	Weight initialization
	Batch normalization

