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what is machine learning



first ai ideas

• Hephestus made giant android robots, e.g., Talos whom he
presented to Minos to defent Cretes.

• Pygmalion made Galatea.
• Jehovah and Allah breathed life into pieces of clay.
• Especially wise rabbis could create golems.
• Albertus Magnus made an artificial talking head (which really
discouraged his teacher, Thomas Aquinas).

• Starting from Dr. Frankenstein, AI is constantly appearing in
literature...
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turing test

• AI as a science began with the Turing test (1950).
• A computer must successfully pose as a human in a (written)
dialogue between a judge, a human, and a computer.

• The original formulation, by the way, was a bit different...
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turing test

• It is already obvious here how much we have to do to make an
AI:

• natural language processing;
• knowledge representation;
• inference from the knowledge;
• learning from experience (machine learning per se).
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dartmouth seminar

• The term AI and formulations of main problems appeared in
1956 on a seminar in Dartmouth.

• John McCarthy, Marvin Minsky, Claude Shennon, and Nathaniel
Rochester.

• Probably the most ambitious grant proposal in the history of
computer science.
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dartmouth seminar

We propose that a 2 month, 10 man study of artificial intelligence
be carried out during the summer of 1956 at Dartmouth College in
Hanover, New Hampshire. The study is to proceed on the basis of
the conjecture that every aspect of learning or any other feature of
intelligence can in principle be so precisely described that a
machine can be made to simulate it. An attempt will be made to
find how to make machines use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and
improve themselves. We think that a significant advance can be
made in one or more of these problems if a carefully selected
group of scientists work on it together for a summer.
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1956-1960: great expectations

• Very optimistic time. AI always seemed just around the corner...
• Allen Newell, Herbert Simon: Logic Theorist.

• A program for logical inference.
• Could re-prove a large part of Principia Mathematica, sometimes
more elegant than Russell and Whitehead themselves.

6



1956-1960: great expectations

• Very optimistic time. AI always seemed just around the corner...
• General Problem Solver – a program that tried to think like a
human;

• Many programs that could do limited things (microworlds):
• Analogy (IQ-tests);
• Student (algebraic word problems);
• Blocks World (moved 3D blocks).
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1970s: knowledge-based systems

• Collect a large set of rules and knowledge about a problem
domain, then perform probabilistic inference.

• First large success: MYCIN – diagnosing blood infections:
• about 450 rules;
• diagnosed like an experienced doctor, significantly better than a
novice doctor.
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1980s: commercial applications; the ai industry

• The first AI department was at DEC (Digital Equipment
Corporation).

• Rumor has it that by 1986 it brought DEC $10 mln. per year.
• But the bubble burst by the end of the 1980s, when many
companies could not meet high expectations.
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1990-2010: data mining, machine learning

• Lately, we moved on to data mining and machine learning.
• We have larger and larger datasets, especially after the Internet
began in earnest.

• But how far are we from strong AI? Nobody really knows.
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definition

• What does it mean for a program to “learn”? How do we define
it?
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definition

• What does it mean for a program to “learn”? How do we define
it?

Definition
A computer program is said to learn from experience 𝐸 with respect
to some class of tasks 𝑇 and performance measure 𝑃 if its perfor-
mance at tasks in 𝑇 , as measured by 𝑃 , improves with experience
𝐸.

• Very general definition. What specific examples can you think
of?

• We will speak of the general theory of Bayesian inference where
every machine learning algorithm can fit.

• But first — a brief survey of the main machine learning
directions and problems.
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main definitions and problems

• Supervised learning:
• training set (training sample), where each example consists of
features (attributes);

• correct answers – response variable, which we are predicting;
• categorical, continuous, or ordinal;
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main definitions and problems

• Supervised learning:
• training set (training sample), where each example consists of
features (attributes);

• correct answers – response variable, which we are predicting;
• categorical, continuous, or ordinal;

• a model trains on this set (training phase, learning phase), then
can be applied to new examples (test set);

• the goal is to train a model that not only explains examples from
the training set but also generalizes well to the test set;

• one important problem – overfitting;
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main definitions and problems

• Supervised learning:
• usually we simply have the training set; how do we know how well
a model generalizes?

• cross-validation: break the sample up into training and validation
sets;

• before feeding data into a model, it makes sense to do
preprocessing:

• feature extraction,
• normalization/whitening,
• encoding categorical features,
• …

11



main definitions and problems

• Supervised learning:
• classification: a certain discrete set of categories (classes), and we
have to classify new examples into one of these classes;

• text classification by topics (e.g., spam filter);
• image/object/character recognition;
• …
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main definitions and problems

• Supervised learning:
• classification: a certain discrete set of categories (classes), and we
have to classify new examples into one of these classes;

• text classification by topics (e.g., spam filter);
• image/object/character recognition;
• …

• regression: predicting the values of an unknown continuous
function:

• engineering applications (predict physical values, e.g., temperature,
position etc.);

• finances (predicting prices or effects);
• …

• the same plus a time dimension: time series analysis, speech
recognition etc.
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main definitions and problems

• Unsupervised learning – no correct answers, only data:
• clustering – divide data into subsets so that the points are similar
inside a cluster but dissimilar between them:

• extract families of genes from a sequence of nucleotides;
• cluster users and personalize an app for them;
• cluster a mass-spectrometry image into subregions with similar
composition;

• feature extraction – when unsupervised learning is an auxiliary,
instrumental goal for some subsequent supervised problems;

• most generally, density estimation.
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main definitions and problems

• Unsupervised learning – no correct answers, only data:
• clustering – divide data into subsets so that the points are similar
inside a cluster but dissimilar between them:

• extract families of genes from a sequence of nucleotides;
• cluster users and personalize an app for them;
• cluster a mass-spectrometry image into subregions with similar
composition;

• feature extraction – when unsupervised learning is an auxiliary,
instrumental goal for some subsequent supervised problems;

• most generally, density estimation.
• Other variations:

• Dimensionality reduction: represent a high-dimensional sample in
lower dimensions while preserving important properties;

• Matrix completion: given a matrix with lots of unknown elements,
predict them.

• Often we know the correct answers for a small part of available
data: semi-supervised learning.
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main definitions and problems

• Reinforcement learning – when an agent trains by trial and
error:

• multiarmed bandits: maximize expected revenue from an action;
• exploration vs. exploitation: how and when to pass from exploring
new possibilities to simply choosing the current best;

• credit assignment: we get a response at the end but are now sure
what exactly went right or wrong along the way.
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main definitions and problems

• Active learning: how do we choose the next (costly) test?
• Learning to rank: how do we generate an ordered list (e.g., Web
search)?

• Model combination: how do we combine several models to get
one better than any single component?

• Model selection: how do we choose between simpler and more
complicated models?

11



probability in ml

• In all methods and approaches of machine learning, the central
notion is uncertainty.

• We don’t know the answers, and the answers in the training set
do not perfectly match our models.

• Moreover, it would be great to know how certain we are.
• Therefore, probability theory is crucial for ML.
• To be honest, this is mostly a course in applied probability
theory.
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sources

• Christopher M. Bishop, Pattern Recognition and Machine
Learning, Springer, 2007.

• Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT
Press, 2013.

• Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The
Elements of Statistical Learning: Data Mining, Inference, and
Prediction, 2nd ed., Springer, 2009.
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bayesian inference



main definitions

• We won’t need the whole formalism of probability measure
defined on the sigma-algebra of Borel sets and so on.

• We only need the intuition that people usually get after an
introductory probability course:

• there are discrete random values, where nonnegative probabilities
of outcomes sum up to one;

• and continuous random values that integrate to one;
• which probability distributions do you know?
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main definitions

• Joint probability – 𝑝(𝑥, 𝑦) is the probability of both 𝑥 and 𝑦 at
the same time; marginalization:

𝑝(𝑥) = ∑
𝑦

𝑝(𝑥, 𝑦).

• Conditional probability – probability of one event if we know
that another occurred, 𝑝(𝑥 ∣ 𝑦):

𝑝(𝑥, 𝑦) = 𝑝(𝑥 ∣ 𝑦)𝑝(𝑦) = 𝑝(𝑦 ∣ 𝑥)𝑝(𝑥).

• From this definition, we can immediately see Bayes theorem:

𝑝(𝑦|𝑥) = 𝑝(𝑥|𝑦)𝑝(𝑦)
𝑝(𝑥) = 𝑝(𝑥|𝑦)𝑝(𝑦)

∑𝑦′ 𝑝(𝑥|𝑦′)𝑝(𝑦′) .

• Independence: 𝑥 and 𝑦 are independent if

𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦). 15



on diseases and probabilities

• We begin with a classical example.
• Suppose that a test for some disease has success probability

95% (i.e., 5% is the probability of both false positives and false
negatives).

• In total, 1% of the population have the disease.
• Suppose that someone (taken uniformly from that population)
got a positive test result. What is the probability that she is
actually sick?
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on diseases and probabilities

• We begin with a classical example.
• Suppose that a test for some disease has success probability

95% (i.e., 5% is the probability of both false positives and false
negatives).

• In total, 1% of the population have the disease.
• Suppose that someone (taken uniformly from that population)
got a positive test result. What is the probability that she is
actually sick?

• Answer: 16%.
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proof

• We denote by 𝑡 the test result; by 𝑑, the presence of a disease.
• 𝑝(𝑡 = 1) = 𝑝(𝑡 = 1|𝑑 = 1)𝑝(𝑑 = 1) + 𝑝(𝑡 = 1|𝑑 = 0)𝑝(𝑑 = 0).
• Using Bayes theorem:

𝑝(𝑑 = 1|𝑡 = 1) =

= 𝑝(𝑡 = 1|𝑑 = 1)𝑝(𝑑 = 1)
𝑝(𝑡 = 1|𝑑 = 1)𝑝(𝑑 = 1) + 𝑝(𝑡 = 1|𝑑 = 0)𝑝(𝑑 = 0) =

= 0.95 × 0.01
0.95 × 0.01 + 0.05 × 0.99 = 0.16.
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bayesian inference

• This is the kind of problems usually solved by probabilistic
inference.

• Since it is based on Bayes theorem, it is often called Bayesian
inference.

• But there is another reason.
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probability as frequency

• In classical probability theory, probability is usually understood
as the limit ratio of a certain experiment result to the total
number of experiments.

• E.g., tossing a coin.

19



probability as degree of belief

• We want and often need to talk about how “probable” it is that
• FC Barcelona will win the current Champions League,
• “Odyssey” was written by a woman,
• average temperature on Earth will rise by 5 degrees in 50 years,
• and so on.

• But there is only one experiment!
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probability as degree of belief

• Here probabilities are understood as degrees of belief.
• The Bayesian approach to probabilities.
• Fortunately, both kinds of probabilities obey exactly the same
laws, and very natural axioms of probabilistic logic lead to a
very narrow class of possible functions (Cox, 19).
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direct and inverse problems

• In probability theory, we have direct and inverse problems.
• Direct problem: there are 10 balls in the urn, 3 of them black.
What is the probability of choosing a black ball?

• Or: there are 10 balls in the urn numbered 1 through 10. What is
the probability that three balls drawn sequentially from the urn
will sum up to 12?

• Inverse problem: we have two urns, 10 balls each, but one has 3
black balls and another 6. Someone took a ball from an urn
(chosen at random), and it is black. How probable it is that he
took it from the first urn?
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direct and inverse problems

• Direct problems define a random process and ask to compute
the probability of some event (given a model, predict behaviour).

• Inverse problems usually contain latent variables and ask to
derive their values from the data (given behaviour, construct a
model).

• ML problems usually fall into the latter category.
• Note that the probabilities in an inverse problem are usually
Bayesian.
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definitions

• We begin with Bayes theorem:

𝑝(𝜃|𝐷) = 𝑝(𝜃)𝑝(𝐷|𝜃)
𝑝(𝐷) .

• Here
• 𝑝(𝜃) is the prior probability,
• 𝑝(𝐷|𝜃) is the likelihood,
• 𝑝(𝜃|𝐷) is the posterior probability,
• 𝑝(𝐷) = ∫ 𝑝(𝐷 ∣ 𝜃)𝑝(𝜃)d𝜃 is the evidence (probability of the data).

• Generally speaking, likelihood is a function of the form

𝑎 ↦ 𝑝(𝑦|𝑥 = 𝑎)

for some random value 𝑦.
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ml vs. map

• In classical statistics, one often looks for the maximum
likelihood hypothesis:

𝜃𝑀𝐿 = arg max𝜃𝑝(𝐷 ∣ 𝜃).

• In the Bayesian approach, we are looking for the posterior
distribution:

𝑝(𝜃|𝐷) ∝ 𝑝(𝐷|𝜃)𝑝(𝜃)

and, possibly, the maximum a posteriori hypothesis (MAP):

𝜃𝑀𝐴𝑃 = arg max𝜃𝑝(𝜃 ∣ 𝐷) = arg max𝜃𝑝(𝐷 ∣ 𝜃)𝑝(𝜃).
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example

• For example, suppose that we are given a (possibly unfair) coin,
it has been tossed 𝑁 times, and we know the results. The
problem is to find out “how unfair” it is and predict the next
result.

• The maximal likelihood hypothesis will say that the probability
of heads equals the number of heads divided by the number of
experiments.
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example

• For example, suppose that we are given a (possibly unfair) coin,
it has been tossed 𝑁 times, and we know the results. The
problem is to find out “how unfair” it is and predict the next
result.

• The maximal likelihood hypothesis will say that the probability
of heads equals the number of heads divided by the number of
experiments.

• That is, if you took a coin, tossed it once, and heads came up,
you’d expect it to always come out heads?

• Kinda strange... we will go over this in detail later.
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exercises for discussion

1. A friend of mine has two children; we assume that boys and girls
appear with probability 1

2 . Two questions:
(1) I asked if she has a boy, and she said “yes”; what is the probability

that one of the children is a girl?
(2) I met one of her children, and it’s a boy; what is the probability

that the other one is a girl?
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exercises for discussion

2. A murder has occurred. Blood was found at the murder scene,
which obviously belongs to the killer. It is a rare blood type, only
1% of the population have it, including the accused.
(1) The prosecutor says: “The chance that the accused would have

this blood type if he was innocent is only 1%; hence, with
probability 99% he is guilty”. What is wrong with this reasoning?

(2) The defender says: “A million people live in the city, so 10000 of
them have this blood type. Therefore, all that it says is that the
accused is guilty with probability 0.01%; pretty weak evidence”.
What is wrong with this reasoning?

26



prior distributions



ml vs. map

• Recall that in classical statistics, one often looks for the
maximum likelihood hypothesis:

𝜃𝑀𝐿 = arg max𝜃𝑝(𝐷 ∣ 𝜃).

• In the Bayesian approach, we are looking for the posterior
distribution:

𝑝(𝜃|𝐷) ∝ 𝑝(𝐷|𝜃)𝑝(𝜃)

and, possibly, the maximum a posteriori hypothesis (MAP):

𝜃𝑀𝐴𝑃 = arg max𝜃𝑝(𝜃 ∣ 𝐷) = arg max𝜃𝑝(𝐷 ∣ 𝜃)𝑝(𝜃).
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problem setting

• We are given a (possibly unfair) coin, it has been tossed 𝑁
times, and we know the results. We need to find out “how
unfair” it is and predict the next result.

• Denote by 𝜃 the probability of the coin showing heads (the
probability of tails is then 1 − 𝜃).

• What is the probability of a sequence 𝑠 with 𝑛ℎ heads and 𝑛𝑡
tails?
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problem setting

• We are given a (possibly unfair) coin, it has been tossed 𝑁
times, and we know the results. We need to find out “how
unfair” it is and predict the next result.

• Denote by 𝜃 the probability of the coin showing heads (the
probability of tails is then 1 − 𝜃).

• What is the probability of a sequence 𝑠 with 𝑛ℎ heads and 𝑛𝑡
tails?

𝑝(𝑠|𝜃) = 𝜃𝑛ℎ(1 − 𝜃)𝑛𝑡 .

• We will assume that 𝜃 has uniform prior distribution, i.e., we do
not know anything at all about 𝜃 (note that this is not true about
real coins).

• We now simply take the Bayes theorem and compute.
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sample application of the bayes theorem

• Likelihood: 𝑝(𝜃|𝑠) = 𝑝(𝑠|𝜃)𝑝(𝜃)
𝑝(𝑠) .

• 𝑝(𝜃) is a continuous random variable on [0, 1]. Our uniformity
assumption means that 𝑝(𝜃) = 1, 𝜃 ∈ [0, 1]. And we already know
𝑝(𝑠|𝜃).

• We get that
𝑝(𝜃|𝑠) = 𝜃𝑛ℎ(1 − 𝜃)𝑛𝑡

𝑝(𝑠) .
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sample application of the bayes theorem

• 𝑝(𝑠) can be computed as

𝑝(𝑠) = ∫
1

0
𝜃𝑛ℎ(1 − 𝜃)𝑛𝑡𝑑𝜃 =

= Γ(𝑛ℎ + 1)Γ(𝑛𝑡 + 1)
Γ(𝑛ℎ + 𝑛𝑡 + 2) = 𝑛ℎ! 𝑛𝑡!

(𝑛ℎ + 𝑛𝑡 + 1)! ,

but we could find arg max𝜃𝑝(𝜃 ∣ 𝑠) = 𝑛ℎ𝑛ℎ+𝑛𝑡
without it.
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sample application of the bayes theorem

• But that it not all. To predict the next outcome, we have to find
𝑝(heads|𝑠):

𝑝(heads|𝑠) = ∫
1

0
𝑝(heads|𝜃)𝑝(𝜃|𝑠)𝑑𝜃 =

= ∫
1

0

𝜃𝑛ℎ+1(1 − 𝜃)𝑛𝑡

𝑝(𝑠) 𝑑𝜃 =

= (𝑛ℎ + 1)! 𝑛𝑡!
(𝑛ℎ + 𝑛𝑡 + 2)! ⋅ (𝑛ℎ + 𝑛𝑡 + 1)!

𝑛ℎ! 𝑛𝑡!
= 𝑛ℎ + 1

𝑛ℎ + 𝑛𝑡 + 2.

• This is called Laplace’s rule.
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sample application of the bayes theorem

• This is an illustration of the two main problems of Bayesian
inference:
(1) find a posterior distribution on hypotheses or parameters:

𝑝(𝜃 ∣ 𝐷) ∝ 𝑝(𝐷|𝜃)𝑝(𝜃)

(and/or find the maximal a posteriori hypothesis
arg max𝜃𝑝(𝜃 ∣ 𝐷));

(2) find the posterior distribution of outcomes for further
experiments:

𝑝(𝑥 ∣ 𝐷) ∝ ∫
𝜃∈Θ

𝑝(𝑥 ∣ 𝜃)𝑝(𝐷|𝜃)𝑝(𝜃)d𝜃.
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thank you!

Thank you for your attention!
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