CONJUGATE PRIORS AND LEAST SQUARES

Sergey Nikolenko

Harbour Space University, Barcelona, Spain March 14, 2017

CONJUGATE PRIORS

- Recall that we are trying to learn the parameters of a distribution and/or predict the next points by the data we have.
- Bayesian inference includes:
 - + $p(x \mid \theta)$ likelihood of the data;
 - + $p(\theta)$ prior distribution;
 - + $p(x) = \int_{\Theta} p(x \mid \theta) p(\theta) d\theta$ marginal likelihood;
 - $p(\theta \mid x) = \frac{p(x \mid \theta)p(\theta)}{p(x)}$ posterior distribution;
 - $p(x' \mid x) = \int_{\Theta} p(x' \mid \theta) p(\theta \mid x) d\theta$ predictive distribution.
- The problem is usually to find $p(\theta \mid x)$ and/or $p(x' \mid x)$.
- How do we choose $p(\theta)$?

- Reasonable idea: let's choose prior distributions in such a way that they would have the same form *a posteriori*.
- Before the inference we have a prior distribution $p(\theta)$.
- After, we have a new posterior distribution $p(\theta \mid x)$.
- Let us try to get $p(\theta \mid x)$ to have the same form as $p(\theta)$, just with other parameters.

- A not quite formal definition: a family of distributions $p(\theta \mid \alpha)$ is called a family of *conjugate priors* for a family of likelihoods $p(x \mid \theta)$, if after multiplication by a likelihood the posterior distribution $p(\theta \mid x, \alpha)$ remains in the same family: $p(\theta \mid x, \alpha) = p(\theta \mid \alpha')$.
- α are called *hyperparameters*, "parameters of the distribution of parameters".
- Trivial example: the family of all distributions will be conjugate to anything.

- Naturally, the form of a good conjugate prior depends on the form of the likelihood $p(x \mid \theta)$.
- Conjugate priors are known for many distributions.

BERNOULLI TRIALS

• What is the conjugate prior for tossing an unfair coin (Bernoulli priors)?

BERNOULLI TRIALS

- What is the conjugate prior for tossing an unfair coin (Bernoulli priors)?
- It is the *beta distribution*; the density of the distribution on θ is

$$p(\theta \mid \alpha, \beta) = \frac{\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{B(\alpha, \beta)}.$$

- The distribution density for the coin parameter heta is

$$p(\theta \mid \alpha, \beta) = \frac{\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{B(\alpha, \beta)}.$$

 \cdot Then, if we sample the coin and get s heads and f tails, we get

$$p(s,f\mid \theta) = {{s+f} \choose {s}} \theta^s (1-\theta)^f, \text{ so}$$

$$\begin{split} p(\theta|s,f) &= \frac{\binom{s+f}{s}\theta^{s+\alpha-1}(1-\theta)^{f+\beta-1}/B(\alpha,\beta)}{\int_0^1 \binom{s+f}{s}x^{s+\alpha-1}(1-x)^{f+\beta-1}/B(\alpha,\beta)dx} = \\ &= \frac{\theta^{s+\alpha-1}(1-\theta)^{f+\beta-1}}{B(s+\alpha,f+\beta)}. \end{split}$$

• Thus, we get that the conjugate prior for the parameter of an unfair coin θ is

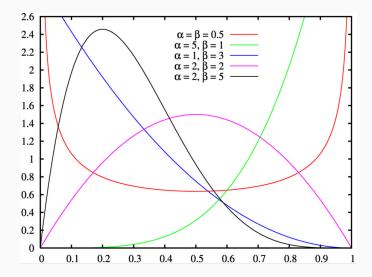
$$p(\theta \mid \alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}.$$

• After getting new data with *s* heads and *f* tails, the hyperparameters change to

$$p(\theta \mid s + \alpha, f + \beta) \propto \theta^{s + \alpha - 1} (1 - \theta)^{f + \beta - 1}.$$

• At this stage, we can forget about complicated formulas, we have found a very simple learning rule.

BETA DISTRIBUTION



- Simple generalization: consider the multinomial distribution with n trials, k categories, and suppose that x_i of experiments fell into category i.
- Parameters θ_i show the probability of getting into category *i*:

$$p(x \mid \theta) = {n \choose x_1, \dots, x_n} \theta_1^{x_1} \theta_2^{x_2} \dots \theta_k^{x_k}.$$

• The conjugate prior here is the Dirichlet distribution:

$$p(\theta \mid \alpha) \propto \theta_1^{\alpha_1 - 1} \theta_2^{\alpha_2 - 1} \dots \theta_k^{\alpha_k - 1}.$$

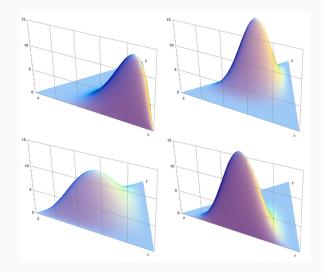
• The conjugate prior here is the Dirichlet distribution:

$$p(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) \propto \boldsymbol{\theta}_1^{\alpha_1 - 1} \boldsymbol{\theta}_2^{\alpha_2 - 1} \dots \boldsymbol{\theta}_k^{\alpha_k - 1}.$$

Exercise. Prove that after getting the data x_1, \ldots, x_k hyperparameters change into

$$p(\theta \mid x, \alpha) = p(\theta \mid x + \alpha) \propto \theta_1^{x_1 + \alpha_1 - 1} \theta_2^{x_2 + \alpha_2 - 1} \dots \theta_k^{x_k + \alpha_k - 1}$$

DIRICHLET DISTRIBUTION



LEAST SQUARES ESTIMATION

• Linear model: consider a linear function

$$y(\mathbf{x},\mathbf{w}) = w_0 + \sum_{j=1}^p x_j w_j = \mathbf{x}^\top \mathbf{w}, \quad \mathbf{x} = (1,x_1,\ldots,x_p).$$

+ For a vector of inputs $\mathbf{x}^{\top} = (x_1, \dots, x_p)$ we will predict the output y as

$$\hat{y}(\mathbf{x}) = \hat{w}_0 + \sum_{j=1}^p x_j \hat{w}_j = \mathbf{x}^\top \hat{\mathbf{w}}_j$$

- How do we find optimal parameters $\hat{\mathbf{w}}$ by training data of the form $(\mathbf{x}_i, y_i)_{i=1}^N$?
- · Least squares estimation: let us minimize

$$\mathrm{RSS}(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{x}_i^\top \mathbf{w})^2.$$

• How would you minimize this function?

• Actually, we can do it exactly:

$$\mathrm{RSS}(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^\top (\mathbf{y} - \mathbf{X}\mathbf{w}),$$

where ${\bf X}$ is an $N \times p$ matrix, differentiate w.r.t. ${\bf w},$ get

$$\hat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y},$$

if $\mathbf{X}^{ op}\mathbf{X}$ is nondegenerate.

- $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ is called the *Moore–Penrose pseudo-inverse* of matrix \mathbf{X} ; the correct generalization of the notion of inverse to non-square matrices.
- By the way, how do you take derivatives (gradients) with respect to vectors?
- How many points do we need to train this model?

- Let us now try to formalize linear regression in the framework of Bayesian inference.
- Main assumption: the noise (error in the data) is distributed normally, i.e., variable *t* that we observe is

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2).$$

In other words,

$$p(t \mid \mathbf{x}, \mathbf{w}, \sigma^2) = \mathcal{N}(t \mid y(\mathbf{x}, \mathbf{w}), \sigma^2).$$

• Here y can be an arbitrary function.

• Btw, a natural generalization (not even a generalization) is to consider linear regression with feature functions:

$$y(\mathbf{x},\mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^\top \phi(\mathbf{x})$$

(*M* parameters, M - 1 feature functions, $\phi_0(\mathbf{x}) = 1$).

- Feature functions ϕ_i can be
 - \cdot the result of some separate feature extraction process;
 - extension of the linear model to nonlinear dependencies (e.g., $\phi_i(x) = x^j$);
 - local functions that are significantly nonzero only in a small region, e.g., Gaussian feature functions $\phi_j(\mathbf{x}) = e^{-\frac{(x-\mu_j)^2}{2s^2}}$);
 - ...

- Consider a dataset $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ with correct answers $\mathbf{t} = \{t_1, \dots, t_N\}.$
- We assume that the data points are independent identically distributed:

$$p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^2) = \prod_{n=1}^N \mathcal{N}\left(t_n \mid \mathbf{w}^\top \phi(\mathbf{x}_n), \sigma^2\right).$$

• We take the logarithm (we omit **X** below for brevity):

$$\ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=1}^N \left(t_n - \mathbf{w}^\top \phi(\mathbf{x}_n) \right)^2.$$

BAYESIAN REGRESSION

• We take the logarithm (we omit **X** below for brevity):

$$\ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=1}^N \left(t_n - \mathbf{w}^\top \phi(\mathbf{x}_n) \right)^2.$$

• And we see that to maximize the likelihood w.r.t. **w** we need to minimze mean squared error!

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^\top \phi(\mathbf{x}_n) \right) \phi(\mathbf{x}_n).$$

- Solving the system of equations $\nabla \ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = 0$, we get the same result as above:

$$\mathbf{w}_{ML} = \left(\Phi^{\top}\Phi\right)^{-1}\Phi^{\top}\mathbf{t}.$$

• Здесь $\Phi = (\phi_j(\mathbf{x}_i))_{i,j}$.

• Now we can also maximize the likelihood w.r.t. σ^2 ; we get

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^N \left(t_n - \mathbf{w}_{ML}^\top \boldsymbol{\phi}(\mathbf{x}_n) \right)^2,$$

i.e., sample variance of the data around the predicted value.

REGULARIZATION AS A PRIOR

• Bayes theorem:

$$p(\theta|D) = \frac{p(\theta)p(D|\theta)}{p(D)}.$$

- Two main problems of Bayesian inference:
 - find the posterior distribution

 $p(\boldsymbol{\theta} \mid \boldsymbol{D}) \propto p(\boldsymbol{D} | \boldsymbol{\theta}) p(\boldsymbol{\theta})$

(and/or find the maximal a posteriori hypothesis $\arg \max_{\theta} p(\theta \mid D)$);

find the predictive distribution:

$$p(x \mid D) \propto \int_{\theta \in \Theta} p(x \mid \theta) p(D | \theta) p(\theta) \mathrm{d} \theta.$$

• We already know that least squares estimation corresponds to maximal likelihood for normally distributed noise.

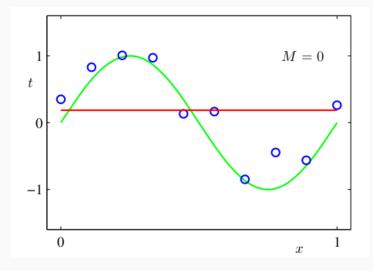
• We considered regression with feature functions:

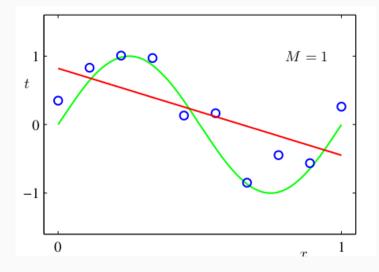
$$f(\mathbf{x},\mathbf{w}) = w_0 + \sum_{j=1}^M w_j \phi_j(\mathbf{x}) = \mathbf{w}^\top \phi(\mathbf{x}).$$

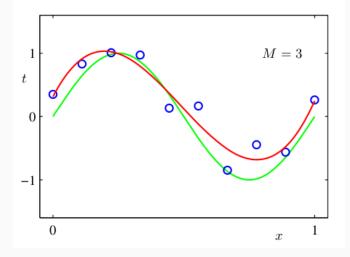
· Let us see an example of such a regression for $\phi_j(x) = x^j$, i.e.,

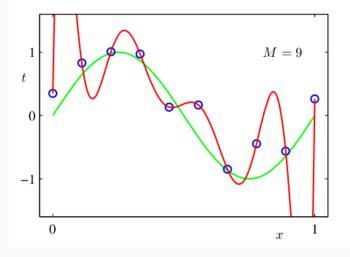
$$f(x,\mathbf{w})=w_0+w_1x+w_2x^2+\ldots+w_Mx^M.$$

• And we will minimize the mean squared error, as above.

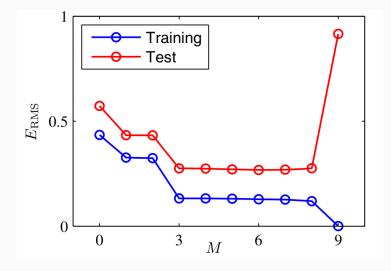




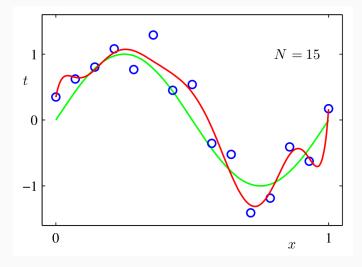




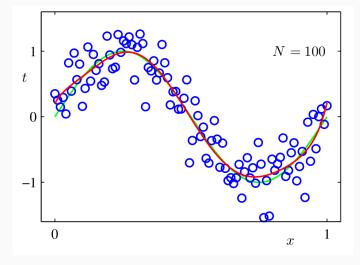
RMS VALUES



IF WE CAN COLLECT MORE DATA...



IF WE CAN COLLECT MORE DATA...



VALUES OF COEFFICIENTS

	M = 0	M = 1	M = 6	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
$w_9^{\check{\star}}$				125201.43

- We see that coefficients grow a lot; this is very improbable.
- Let's try to combat this in a very straightforward way: add the size of the coefficients to the error function.

• Before (for test examples $\{(x_i, y_i)\}_{i=1}^N$):

$$\label{eq:RSS} \mathrm{RSS}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^N (f(x_i, \mathbf{w}) - y_i)^2.$$

• After:

$$\label{eq:RSS} \text{RSS}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^N (f(x_i, \mathbf{w}) - y_i)^2 + \frac{\alpha}{2} \left\| \mathbf{w} \right\|^2,$$

where α is the regularization coefficient (we now have to choose it somehow).

• How do we optimize this error function?

• Exactly the same: write

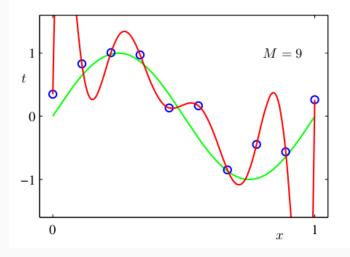
$$\mathrm{RSS}(\mathbf{w}) = \frac{1}{2} \left(\mathbf{y} - \mathbf{X} \mathbf{w} \right)^\top \left(\mathbf{y} - \mathbf{X} \mathbf{w} \right) + \frac{\alpha}{2} \mathbf{w}^\top \mathbf{w}$$

and take the derivative:

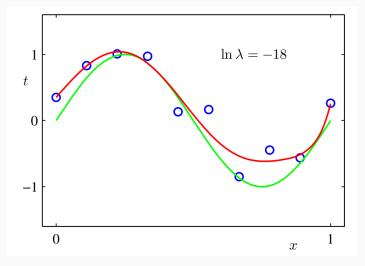
$$\mathbf{w}^* = \left(\mathbf{X}^\top \mathbf{X} + \alpha \mathbf{I}\right)^{-1} \mathbf{X}^\top \mathbf{y}.$$

• This is called *ridge regression*; by the way, adding $\alpha \mathbf{I}$ to a matrix of incomplete rank makes it invertible; this was the original motivation for ridge regression and for *regularization*.

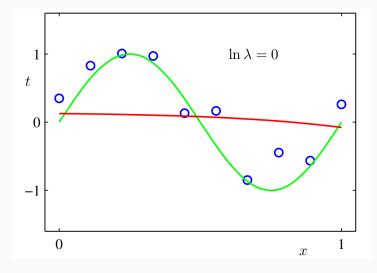
RIDGE REGRESSION: $\ln \alpha = -\infty$



RIDGE REGRESSION: $\ln \alpha = -18$



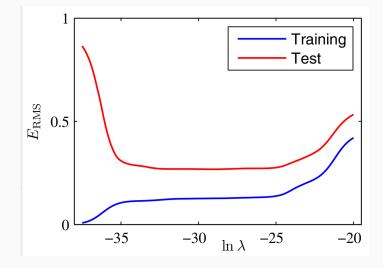
RIDGE REGRESSION: $\ln \alpha = 0$



RIDGE REGRESSION: COEFFICIENTS

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^\star	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
$w_4^{\check{\star}}$	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
$w_9^{\check{\star}}$	125201.43	72.68	0.01

RIDGE REGRESSION: RMS



- Why exactly $\frac{\alpha}{2} \|\mathbf{w}\|^2$?
- We will see an answer shortly, but in general it's not necessary.
- Lasso regression regularizes with L_1 norm rather than L_2 :

$$\label{eq:RSS} \text{RSS}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^N (f(x_i, \mathbf{w}) - y_i)^2 + \alpha \sum_{j=0}^M |w_j|.$$

• There are other kinds of regularizers too; more on that later.

Thank you for your attention!