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conjugate priors



reminder

• Recall that we are trying to learn the parameters of a
distribution and/or predict the next points by the data we have.

• Bayesian inference includes:
• 𝑝(𝑥 ∣ 𝜃) – likelihood of the data;
• 𝑝(𝜃) – prior distribution;
• 𝑝(𝑥) = ∫Θ 𝑝(𝑥 ∣ 𝜃)𝑝(𝜃)𝑑𝜃 – marginal likelihood;
• 𝑝(𝜃 ∣ 𝑥) = 𝑝(𝑥∣𝜃)𝑝(𝜃)

𝑝(𝑥) – posterior distribution;
• 𝑝(𝑥′ ∣ 𝑥) = ∫Θ 𝑝(𝑥′ ∣ 𝜃)𝑝(𝜃 ∣ 𝑥)𝑑𝜃 – predictive distribution.

• The problem is usually to find 𝑝(𝜃 ∣ 𝑥) and/or 𝑝(𝑥′ ∣ 𝑥).
• How do we choose 𝑝(𝜃)?
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conjugate priors

• Reasonable idea: let’s choose prior distributions in such a way
that they would have the same form a posteriori.

• Before the inference we have a prior distribution 𝑝(𝜃).
• After, we have a new posterior distribution 𝑝(𝜃 ∣ 𝑥).
• Let us try to get 𝑝(𝜃 ∣ 𝑥) to have the same form as 𝑝(𝜃), just with
other parameters.
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conjugate priors

• A not quite formal definition: a family of distributions 𝑝(𝜃 ∣ 𝛼) is
called a family of conjugate priors for a family of likelihoods
𝑝(𝑥 ∣ 𝜃), if after multiplication by a likelihood the posterior
distribution 𝑝(𝜃 ∣ 𝑥, 𝛼) remains in the same family:
𝑝(𝜃 ∣ 𝑥, 𝛼) = 𝑝(𝜃 ∣ 𝛼′).

• 𝛼 are called hyperparameters, “parameters of the distribution of
parameters”.

• Trivial example: the family of all distributions will be conjugate
to anything.
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conjugate priors

• Naturally, the form of a good conjugate prior depends on the
form of the likelihood 𝑝(𝑥 ∣ 𝜃).

• Conjugate priors are known for many distributions.
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bernoulli trials

• What is the conjugate prior for tossing an unfair coin (Bernoulli
priors)?
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bernoulli trials

• What is the conjugate prior for tossing an unfair coin (Bernoulli
priors)?

• It is the beta distribution; the density of the distribution on 𝜃 is

𝑝(𝜃 ∣ 𝛼, 𝛽) = 𝜃𝛼−1(1 − 𝜃)𝛽−1

𝐵(𝛼, 𝛽) .
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bernoulli trials

• The distribution density for the coin parameter 𝜃 is

𝑝(𝜃 ∣ 𝛼, 𝛽) = 𝜃𝛼−1(1 − 𝜃)𝛽−1

𝐵(𝛼, 𝛽) .

• Then, if we sample the coin and get 𝑠 heads and 𝑓 tails, we get

𝑝(𝑠, 𝑓 ∣ 𝜃) = (𝑠 + 𝑓
𝑠 )𝜃𝑠(1 − 𝜃)𝑓 , so

𝑝(𝜃|𝑠, 𝑓) = (𝑠+𝑓𝑠 )𝜃𝑠+𝛼−1(1 − 𝜃)𝑓+𝛽−1/𝐵(𝛼, 𝛽)
∫1
0 (𝑠+𝑓𝑠 )𝑥𝑠+𝛼−1(1 − 𝑥)𝑓+𝛽−1/𝐵(𝛼, 𝛽)𝑑𝑥

=

= 𝜃𝑠+𝛼−1(1 − 𝜃)𝑓+𝛽−1

𝐵(𝑠 + 𝛼, 𝑓 + 𝛽) .
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bernoulli trials

• Thus, we get that the conjugate prior for the parameter of an
unfair coin 𝜃 is

𝑝(𝜃 ∣ 𝛼, 𝛽) ∝ 𝜃𝛼−1(1 − 𝜃)𝛽−1.

• After getting new data with 𝑠 heads and 𝑓 tails, the
hyperparameters change to

𝑝(𝜃 ∣ 𝑠 + 𝛼, 𝑓 + 𝛽) ∝ 𝜃𝑠+𝛼−1(1 − 𝜃)𝑓+𝛽−1.

• At this stage, we can forget about complicated formulas, we
have found a very simple learning rule.
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beta distribution
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multinomial distribution

• Simple generalizatoin: consider the multinomial distribution
with 𝑛 trials, 𝑘 categories, and suppose that 𝑥𝑖 of experiments
fell into category 𝑖.

• Parameters 𝜃𝑖 show the probability of getting into category 𝑖:

𝑝(𝑥 ∣ 𝜃) = ( 𝑛
𝑥1, … , 𝑥𝑛

)𝜃𝑥1
1 𝜃𝑥2

2 … 𝜃𝑥𝑘
𝑘 .

• The conjugate prior here is the Dirichlet distribution:

𝑝(𝜃 ∣ 𝛼) ∝ 𝜃𝛼1−1
1 𝜃𝛼2−1

2 … 𝜃𝛼𝑘−1
𝑘 .
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multinomial distribution

• The conjugate prior here is the Dirichlet distribution:

𝑝(𝜃 ∣ 𝛼) ∝ 𝜃𝛼1−1
1 𝜃𝛼2−1

2 … 𝜃𝛼𝑘−1
𝑘 .

Exercise. Prove that after getting the data 𝑥1, … , 𝑥𝑘 hyperparameters change into

𝑝(𝜃 ∣ 𝑥, 𝛼) = 𝑝(𝜃 ∣ 𝑥 + 𝛼) ∝ 𝜃𝑥1+𝛼1−1
1 𝜃𝑥2+𝛼2−1

2 … 𝜃𝑥𝑘+𝛼𝑘−1
𝑘 .
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dirichlet distribution
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least squares estimation



least squares estimation

• Linear model: consider a linear function

𝑦(x, w) = 𝑤0 +
𝑝

∑
𝑗=1

𝑥𝑗𝑤𝑗 = x⊤w, x = (1, 𝑥1, … , 𝑥𝑝).

• For a vector of inputs x⊤ = (𝑥1, … , 𝑥𝑝) we will predict the output
𝑦 as

̂𝑦(x) = 𝑤̂0 +
𝑝

∑
𝑗=1

𝑥𝑗𝑤̂𝑗 = x⊤ŵ.
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least squares estimation

• How do we find optimal parameters ŵ by training data of the
form (x𝑖, 𝑦𝑖)𝑁

𝑖=1?
• Least squares estimation: let us minimize

RSS(w) =
𝑁

∑
𝑖=1

(𝑦𝑖 − x⊤
𝑖 w)2.

• How would you minimize this function?
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least squares estimation

• Actually, we can do it exactly:

RSS(w) = (y − Xw)⊤(y − Xw),

where X is an 𝑁 × 𝑝 matrix, differentiate w.r.t. w, get

ŵ = (X⊤X)−1X⊤y,

if X⊤X is nondegenerate.
• (X⊤X)−1 X⊤ is called the Moore–Penrose pseudo-inverse of
matrix X; the correct generalization of the notion of inverse to
non-square matrices.

• By the way, how do you take derivatives (gradients) with respect
to vectors?

• How many points do we need to train this model?
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bayesian regression

• Let us now try to formalize linear regression in the framework of
Bayesian inference.

• Main assumption: the noise (error in the data) is distributed
normally, i.e., variable 𝑡 that we observe is

𝑡 = 𝑦(x, w) + 𝜖, 𝜖 ∼ 𝒩(0, 𝜎2).

In other words,

𝑝(𝑡 ∣ x, w, 𝜎2) = 𝒩(𝑡 ∣ 𝑦(x, w), 𝜎2).

• Here 𝑦 can be an arbitrary function.
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bayesian regression

• Btw, a natural generalization (not even a generalization) is to
consider linear regression with feature functions:

𝑦(x, w) = 𝑤0 +
𝑀−1
∑
𝑗=1

𝑤𝑗𝜙𝑗(x) = w⊤𝜙(x)

(𝑀 parameters, 𝑀 − 1 feature functions, 𝜙0(x) = 1).
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bayesian regression

• Feature functions 𝜙𝑖 can be
• the result of some separate feature extraction process;
• extension of the linear model to nonlinear dependencies (e.g.,

𝜙𝑗(𝑥) = 𝑥𝑗);
• local functions that are significantly nonzero only in a small
region, e.g., Gaussian feature functions 𝜙𝑗(x) = 𝑒− (𝑥−𝜇𝑗)2

2𝑠2 );
• …
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bayesian regression

• Consider a dataset X = {x1, … , x𝑁} with correct answers
t = {𝑡1, … , 𝑡𝑁}.

• We assume that the data points are independent identically
distributed:

𝑝(t ∣ X, w, 𝜎2) =
𝑁

∏
𝑛=1

𝒩 (𝑡𝑛 ∣ w⊤𝜙(x𝑛), 𝜎2) .

• We take the logarithm (we omit X below for brevity):

ln 𝑝(t ∣ w, 𝜎2) = −𝑁
2 ln(2𝜋𝜎2) − 1

2𝜎2

𝑁
∑
𝑛=1

(𝑡𝑛 − w⊤𝜙(x𝑛))2 .
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bayesian regression

• We take the logarithm (we omit X below for brevity):

ln 𝑝(t ∣ w, 𝜎2) = −𝑁
2 ln(2𝜋𝜎2) − 1

2𝜎2

𝑁
∑
𝑛=1

(𝑡𝑛 − w⊤𝜙(x𝑛))2 .

• And we see that to maximize the likelihood w.r.t. w we need to
minimze mean squared error!

∇w ln 𝑝(t ∣ w, 𝜎2) = 1
𝜎2

𝑁
∑
𝑛=1

(𝑡𝑛 − w⊤𝜙(x𝑛)) 𝜙(x𝑛).
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bayesian regression

• Solving the system of equations ∇ ln 𝑝(t ∣ w, 𝜎2) = 0, we get the
same result as above:

w𝑀𝐿 = (Φ⊤Φ)−1 Φ⊤t.

• Здесь Φ = (𝜙𝑗(x𝑖))𝑖,𝑗.
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bayesian regression

• Now we can also maximize the likelihood w.r.t. 𝜎2; we get

𝜎2
𝑀𝐿 = 1

𝑁
𝑁

∑
𝑛=1

(𝑡𝑛 − w⊤
𝑀𝐿𝜙(x𝑛))2 ,

i.e., sample variance of the data around the predicted value.
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regularization as a prior



in previous installments...

• Bayes theorem:
𝑝(𝜃|𝐷) = 𝑝(𝜃)𝑝(𝐷|𝜃)

𝑝(𝐷) .

• Two main problems of Bayesian inference:
• find the posterior distribution

𝑝(𝜃 ∣ 𝐷) ∝ 𝑝(𝐷|𝜃)𝑝(𝜃)

(and/or find the maximal a posteriori hypothesis
arg max𝜃𝑝(𝜃 ∣ 𝐷));

• find the predictive distribution:

𝑝(𝑥 ∣ 𝐷) ∝ ∫
𝜃∈Θ

𝑝(𝑥 ∣ 𝜃)𝑝(𝐷|𝜃)𝑝(𝜃)d𝜃.

• We already know that least squares estimation corresponds to
maximal likelihood for normally distributed noise.
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polynomial approximation

• We considered regression with feature functions:

𝑓(x, w) = 𝑤0 +
𝑀

∑
𝑗=1

𝑤𝑗𝜙𝑗(x) = w⊤𝜙(x).

• Let us see an example of such a regression for 𝜙𝑗(𝑥) = 𝑥𝑗, i.e.,

𝑓(𝑥, w) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + … + 𝑤𝑀𝑥𝑀 .

• And we will minimize the mean squared error, as above.
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polynomial approximation
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polynomial approximation
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polynomial approximation
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polynomial approximation
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rms values
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if we can collect more data...
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if we can collect more data...
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values of coefficients
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regularization

• We see that coefficients grow a lot; this is very improbable.
• Let’s try to combat this in a very straightforward way: add the
size of the coefficients to the error function.
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regularization

• Before (for test examples {(𝑥𝑖, 𝑦𝑖)}𝑁
𝑖=1):

RSS(w) = 1
2

𝑁
∑
𝑖=1

(𝑓(𝑥𝑖, w) − 𝑦𝑖)2.

• After:
RSS(w) = 1

2
𝑁

∑
𝑖=1

(𝑓(𝑥𝑖, w) − 𝑦𝑖)2 + 𝛼
2 ‖w‖2 ,

where 𝛼 is the regularization coefficient (we now have to choose
it somehow).

• How do we optimize this error function?
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regularization

• Exactly the same: write

RSS(w) = 1
2 (y − Xw)⊤ (y − Xw) + 𝛼

2 w⊤w

and take the derivative:

w∗ = (X⊤X + 𝛼I)−1 X⊤y.

• This is called ridge regression; by the way, adding 𝛼I to a matrix
of incomplete rank makes it invertible; this was the original
motivation for ridge regression and for regularization.
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ridge regression: ln 𝛼 = −∞
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ridge regression: ln 𝛼 = −18
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ridge regression: ln 𝛼 = 0
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ridge regression: coefficients
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ridge regression: rms
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other forms of regularization

• Why exactly 𝛼
2 ‖w‖2?

• We will see an answer shortly, but in general it’s not necessary.
• Lasso regression regularizes with 𝐿1 norm rather than 𝐿2:

RSS(w) = 1
2

𝑁
∑
𝑖=1

(𝑓(𝑥𝑖, w) − 𝑦𝑖)2 + 𝛼
𝑀

∑
𝑗=0

|𝑤𝑗|.

• There are other kinds of regularizers too; more on that later.
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thank you!

Thank you for your attention!
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