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CONJUGATE PRIORS




- Recall that we are trying to learn the parameters of a
distribution and/or predict the next points by the data we have.

- Bayesian inference includes:
(z | 8) - likelihood of the data;
) = prior distribution;
* p(x) = [ p(x | 0)p(0)do - marginal likelihood;
| ): “‘f)f)’(" posterior distribution;
"l x) = [, p(’ | 0)p(0 ] z)do - predictive distribution.

- The problem is usually to find p(# | =) and/or p(z’ | z).
- How do we choose p(0)?



CONJUGATE PRIORS

- Reasonable idea: let's choose prior distributions in such a way
that they would have the same form a posteriori.

- Before the inference we have a prior distribution p(8).
- After, we have a new posterior distribution p(@ | ).

- Let us try to get p(0 | ) to have the same form as p(#), just with
other parameters.



CONJUGATE PRIORS

- A not quite formal definition: a family of distributions p(@ | «) is
called a family of conjugate priors for a family of likelihoods
p(x | 0), if after multiplication by a likelihood the posterior
distribution p(é | z, &) remains in the same family:
p(0 |z, ) =p@ | ).

-« are called hyperparameters, “parameters of the distribution of
parameters”.

- Trivial example: the family of all distributions will be conjugate
to anything.



CONJUGATE PRIORS

- Naturally, the form of a good conjugate prior depends on the
form of the likelihood p(x | 6).

- Conjugate priors are known for many distributions.



BERNOULLI TRIALS

- What is the conjugate prior for tossing an unfair coin (Bernoulli
priors)?



BERNOULLI TRIALS

- What is the conjugate prior for tossing an unfair coin (Bernoulli
priors)?
- It is the beta distribution; the density of the distribution on @ is

a—1 _ p\p-1
6 ap) = "= —



BERNOULLI TRIALS

- The distribution density for the coin parameter 6 is

a—1 _ p\B-1
6 ap) = =2

- Then, if we sample the coin and get s heads and f tails, we get

p(s, f 1 8) = (Sif)esu_o)f, 50

_Ctherre 1 =01 B, B)
p(lls, f) = 12)1 (s+h)wste-1(1 — 2)f+8-1/B(a, B)da =
93+a71<1 _ 9)f+/371
"~ "B(Gtaf+h)




BERNOULLI TRIALS

- Thus, we get that the conjugate prior for the parameter of an
unfair coin @ is

p(6] o, B) x 62-1(1 — 61,

- After getting new data with s heads and f tails, the
hyperparameters change to

PO ]s+a, f+B) oc g (1 — )1

- At this stage, we can forget about complicated formulas, we
have found a very simple learning rule.



BETA DISTRIBUTION
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MULTINOMIAL DISTRIBUTION

- Simple generalizatoin: consider the multinomial distribution
with n trials, k categories, and suppose that z; of experiments
fell into category i.

- Parameters 6, show the probability of getting into category

peley=(_ " )enes ..o

4855 000 9 BBy

- The conjugate prior here is the Dirichlet distribution:

a;—1 pags—1 ap—1
p(0|a)oc 67052 Lok



MULTINOMIAL DISTRIBUTION

- The conjugate prior here is the Dirichlet distribution:

—1pay—1 -1
p(0 ] @) oc 67052 L0
Exercise. Prove that after getting the data =4, ..., z, hyperparameters change into

p0|z,a) =p0|z+a)x 0T1+01_19;2+02_1 6’i""+ak71‘



DIRICHLET DISTRIBUTION




LEAST SQUARES ESTIMATION




LEAST SQUARES ESTIMATION

- Linear model: consider a linear function
p
.
y(x,w) = wy + Za:jwj =x'w, x=(Lx,...,7,).
j=1

- For a vector of inputs x" = (zy, ..., z,,) we will predict the output
y as

P
§(x) =y + > _ z;i; =x"W.
j=1



LEAST SQUARES ESTIMATION

- How do we find optimal parameters w by training data of the
form (x;,4,),?
- Least squares estimation: let us minimize

N
RSS(w) = Y (y; —x] w)?.

i=1

- How would you minimize this function?



LEAST SQUARES ESTIMATION

- Actually, we can do it exactly:
RSS(w) = (y — Xw)" (y — Xw),
where X is an N x p matrix, differentiate w.rt. w, get
w=(X"X)"XTy,

if XTX is nondegenerate.

- (XTX) ' XT is called the Moore-Penrose pseudo-inverse of
matrix X; the correct generalization of the notion of inverse to
non-square matrices.

- By the way, how do you take derivatives (gradients) with respect
to vectors?

- How many points do we need to train this model?



BAYESIAN REGRESSION

- Let us now try to formalize linear regression in the framework of
Bayesian inference.

- Main assumption: the noise (error in the data) is distributed
normally, i.e, variable ¢ that we observe is

t=y(x,w)+e e~ N(0,d2).
In other words,
p(t] x,w,0%) = N(t | y(x, w),0?).

- Here y can be an arbitrary function.
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BAYESIAN REGRESSION

- Btw, a natural generalization (not even a generalization) is to
consider linear regression with feature functions:

M—1

y(x, W) = wo + D w;6;(x) = W' 6(x)

(M parameters, M — 1 feature functions, ¢,(x) = 1).
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BAYESIAN REGRESSION

- Feature functions ¢, can be

- the result of some separate feature extraction process;

- extension of the linear model to nonlinear dependencies (e.g.
¢J("’E) = z7);

- local functions that are significantly nonzero only in a small

. . . _lemuy?
region, e.g., Gaussian feature functions qu(x) =e 22 )
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BAYESIAN REGRESSION

- Consider a dataset X = {xy, ..., x,y} with correct answers

t={t,,...,tx}.
- We assume that the data points are independent identically
distributed:
N
p(t | X,w,0%) = [V (t, | W' o(x,),0?).
n=1

- We take the logarithm (we omit X below for brevity):

N 1 & 2
hlp(t ‘ w, 02) = _5 111(271'0'2) - ﬁ § (tn - WTQZ)(X,”)) :
n=1
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BAYESIAN REGRESSION

- We take the logarithm (we omit X below for brevity):

N
Inp(t|w, a):—gln(%ra) QLZ t, —w gb(xn))Q.

- And we see that to maximize the likelihood w.rt. w we need to
minimze mean squared error!

N
V,Inpt|w,o?) = %Z t, — W o(x,)) d(x,).
n=1
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BAYESIAN REGRESSION

- Solving the system of equations VInp(t | w,0?) = 0, we get the
same result as above:

* 3pech @ = (¢;(x;)); -
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BAYESIAN REGRESSION

- Now we can also maximize the likelihood w.rt. o2; we get
1 2
o = N Z (tn = Wi 6(x,))"

n=1

i.e., sample variance of the data around the predicted value.
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REGULARIZATION AS A PRIOR




IN PREVIOUS INSTALLMENTS...

- Bayes theorem:
p(8)p(D]0)
p(D)
- Two main problems of Bayesian inference:
- find the posterior distribution

p(0|D) =

p(0 | D) o< p(D|0)p(0)

(and/or find the maximal a posteriori hypothesis
argmax,p(6 | D))
- find the predictive distribution:

p(x|D)oc [ pla|6)p(DIO)p(6)de.
6cO

- We already know that least squares estimation corresponds to
maximal likelihood for normally distributed noise.



POLYNOMIAL APPROXIMATION

- We considered regression with feature functions:
M
Fxw) =wy + > w;b;(x) = w' (x).
j=1

- Let us see an example of such a regression for ¢,(x) = 27, i.e,,
f($7w) = wo + wl.%‘ + w2$2 + 0co + ’LU]\/I],'M,

- And we will minimize the mean squared error, as above.
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POLYNOMIAL APPROXIMATION

1| e—o0 M=0




POLYNOMIAL APPROXIMATION

L 0—o0 M=1
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POLYNOMIAL APPROXIMATION




POLYNOMIAL APPROXIMATION

1f M=9




RMS VALUES

|

—©— Training
—6— Test
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IF WE CAN COLLECT MORE DATA...
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IF WE CAN COLLECT MORE DATA...
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VALUES OF COEFFICIENTS

M=0 M=1 M=6 M=9
wy | 019 082 031 0.35
w} 127 7.99 232.37
w} -25.43 -5321.83
w 17.37  48568.31
w} -231639.30
w? 640042.26
w} -1061800.52
w} 1042400.18
w} -557682.99
w 125201.43
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REGULARIZATION

- We see that coefficients grow a lot; this is very improbable.

- Let's try to combat this in a very straightforward way: add the
size of the coefficients to the error function.
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REGULARIZATION

- Before (for test examples {(z;,y;)}Y,):

N
RSS(w) = Z(f(-ri,W) -y,

DN | =

- After:
RSS(w

N @ )
Z 2 5 HWH ’

=1

l\?\’—‘

where « is the regularization coefficient (we now have to choose
it somehow).

- How do we optimize this error function?
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REGULARIZATION

- Exactly the same: write
RSS(w) = % (y—Xw)' (y —Xw) + %WTW
and take the derivative:
w = (X"X +ol) ' XTy.
- This is called ridge regression; by the way, adding oI to a matrix

of incomplete rank makes it invertible; this was the original
motivation for ridge regression and for regularization.
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RIDGE REGRESSION: Ina = —0

M=9
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RIDGE REGRESSION: Ina = —18
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RIDGE REGRESSION: Ina = 0

1 c—0 InA=0
(o)
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—1t
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RIDGE REGRESSION: COEFFICIENTS

InA\=—-00 InA=-18 InA=0
wy 0.35 0.35 0.13
wy 232.37 4.74 -0.05
w} -5321.83 -0.77 -0.06
wj 48568.31 -31.97 -0.05
wy -231639.30 -3.89 -0.03
Wi 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
wy | 1042400.18 -45.95 -0.00
wg -557682.99 -91.53 0.00
w; 125201.43 72.68 0.01
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RIDGE REGRESSION: RMS

Training
Test
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OTHER FORMS OF REGULARIZATION

- Why exactly ¢ |w]*?
- We will see an answer shortly, but in general it's not necessary.

- Lasso regression regularizes with L; norm rather than Ly:

1 N M
RSS(w 52 —y)?+a) |
=0

1=

- There are other kinds of regularizers too; more on that later.
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THANK YOU!

Thank you for your attention!
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