CONJUGATE PRIORS AND LEAST SQUARES

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
March 14, 2017

CONJUGATE PRIORS

- Recall that we are trying to learn the parameters of a distribution and/or predict the next points by the data we have.
- Bayesian inference includes:
- $p(x \mid \theta)$ - likelihood of the data;
- $p(\theta)$ - prior distribution;
- $p(x)=\int_{\Theta} p(x \mid \theta) p(\theta) d \theta$ - marginal likelihood;
- $p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}$ - posterior distribution;
- $p\left(x^{\prime} \mid x\right)=\int_{\Theta}^{p} p\left(x^{\prime} \mid \theta\right) p(\theta \mid x) d \theta$ - predictive distribution.
- The problem is usually to find $p(\theta \mid x)$ and /or $p\left(x^{\prime} \mid x\right)$.
- How do we choose $p(\theta)$?

CONJUGATE PRIORS

- Reasonable idea: let's choose prior distributions in such a way that they would have the same form a posteriori.
- Before the inference we have a prior distribution $p(\theta)$.
- After, we have a new posterior distribution $p(\theta \mid x)$.
- Let us try to get $p(\theta \mid x)$ to have the same form as $p(\theta)$, just with other parameters.

CONJUGATE PRIORS

- A not quite formal definition: a family of distributions $p(\theta \mid \alpha)$ is called a family of conjugate priors for a family of likelihoods $p(x \mid \theta)$, if after multiplication by a likelihood the posterior distribution $p(\theta \mid x, \alpha)$ remains in the same family:
$p(\theta \mid x, \alpha)=p\left(\theta \mid \alpha^{\prime}\right)$.
- α are called hyperparameters, "parameters of the distribution of parameters".
- Trivial example: the family of all distributions will be conjugate to anything.

CONJUGATE PRIORS

- Naturally, the form of a good conjugate prior depends on the form of the likelihood $p(x \mid \theta)$.
- Conjugate priors are known for many distributions.

BERNOULLI TRIALS

- What is the conjugate prior for tossing an unfair coin (Bernoulli priors)?
- What is the conjugate prior for tossing an unfair coin (Bernoulli priors)?
- It is the beta distribution; the density of the distribution on θ is

$$
p(\theta \mid \alpha, \beta)=\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)}
$$

BERNOULLI TRIALS

- The distribution density for the coin parameter θ is

$$
p(\theta \mid \alpha, \beta)=\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)}
$$

- Then, if we sample the coin and get s heads and f tails, we get

$$
\begin{gathered}
p(s, f \mid \theta)=\binom{s+f}{s} \theta^{s}(1-\theta)^{f}, \text { so } \\
p(\theta \mid s, f)=\frac{\binom{s+f}{s} \theta^{s+\alpha-1}(1-\theta)^{f+\beta-1} / B(\alpha, \beta)}{\int_{0}^{1}\binom{s+f}{s} x^{s+\alpha-1}(1-x)^{f+\beta-1} / B(\alpha, \beta) d x}= \\
=\frac{\theta^{s+\alpha-1}(1-\theta)^{f+\beta-1}}{B(s+\alpha, f+\beta)}
\end{gathered}
$$

- Thus, we get that the conjugate prior for the parameter of an unfair coin θ is

$$
p(\theta \mid \alpha, \beta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1} .
$$

- After getting new data with s heads and f tails, the hyperparameters change to

$$
p(\theta \mid s+\alpha, f+\beta) \propto \theta^{s+\alpha-1}(1-\theta)^{f+\beta-1} .
$$

- At this stage, we can forget about complicated formulas, we have found a very simple learning rule.

BETA DISTRIBUTION

MULTINOMIAL DISTRIBUTION

- Simple generalizatoin: consider the multinomial distribution with n trials, k categories, and suppose that x_{i} of experiments fell into category i.
- Parameters θ_{i} show the probability of getting into category i :

$$
p(x \mid \theta)=\binom{n}{x_{1}, \ldots, x_{n}} \theta_{1}^{x_{1}} \theta_{2}^{x_{2}} \ldots \theta_{k}^{x_{k}} .
$$

- The conjugate prior here is the Dirichlet distribution:

$$
p(\theta \mid \alpha) \propto \theta_{1}^{\alpha_{1}-1} \theta_{2}^{\alpha_{2}-1} \ldots \theta_{k}^{\alpha_{k}-1}
$$

MULTINOMIAL DISTRIBUTION

- The conjugate prior here is the Dirichlet distribution:

$$
p(\theta \mid \alpha) \propto \theta_{1}^{\alpha_{1}-1} \theta_{2}^{\alpha_{2}-1} \ldots \theta_{k}^{\alpha_{k}-1} .
$$

Exercise. Prove that after getting the data x_{1}, \ldots, x_{k} hyperparameters change into

$$
p(\theta \mid x, \alpha)=p(\theta \mid x+\alpha) \propto \theta_{1}^{x_{1}+\alpha_{1}-1} \theta_{2}^{x_{2}+\alpha_{2}-1} \ldots \theta_{k}^{x_{k}+\alpha_{k}-1}
$$

DIRICHLET DISTRIBUTION

LEAST SQUARES ESTIMATION

LEAST SQUARES ESTIMATION

- Linear model: consider a linear function

$$
y(\mathbf{x}, \mathbf{w})=w_{0}+\sum_{j=1}^{p} x_{j} w_{j}=\mathbf{x}^{\top} \mathbf{w}, \quad \mathbf{x}=\left(1, x_{1}, \ldots, x_{p}\right) .
$$

- For a vector of inputs $\mathbf{x}^{\top}=\left(x_{1}, \ldots, x_{p}\right)$ we will predict the output y as

$$
\hat{y}(\mathbf{x})=\hat{w}_{0}+\sum_{j=1}^{p} x_{j} \hat{w}_{j}=\mathbf{x}^{\top} \hat{\mathbf{w}} .
$$

LEAST SQUARES ESTIMATION

- How do we find optimal parameters $\hat{\mathbf{w}}$ by training data of the form $\left(\mathbf{x}_{i}, y_{i}\right)_{i=1}^{N}$?
- Least squares estimation: let us minimize

$$
\operatorname{RSS}(\mathbf{w})=\sum_{i=1}^{N}\left(y_{i}-\mathbf{x}_{i}^{\top} \mathbf{w}\right)^{2} .
$$

- How would you minimize this function?

LEAST SQUARES ESTIMATION

- Actually, we can do it exactly:

$$
\operatorname{RSS}(\mathbf{w})=(\mathbf{y}-\mathbf{X w})^{\top}(\mathbf{y}-\mathbf{X} \mathbf{w})
$$

where \mathbf{X} is an $N \times p$ matrix, differentiate w.r.t. w, get

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

if $\mathbf{X}^{\top} \mathbf{X}$ is nondegenerate.

- $\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}$ is called the Moore-Penrose pseudo-inverse of matrix \mathbf{X}; the correct generalization of the notion of inverse to non-square matrices.
- By the way, how do you take derivatives (gradients) with respect to vectors?
- How many points do we need to train this model?

BAYESIAN REGRESSION

- Let us now try to formalize linear regression in the framework of Bayesian inference.
- Main assumption: the noise (error in the data) is distributed normally, i.e., variable t that we observe is

$$
t=y(\mathbf{x}, \mathbf{w})+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

In other words,

$$
p\left(t \mid \mathbf{x}, \mathbf{w}, \sigma^{2}\right)=\mathcal{N}\left(t \mid y(\mathbf{x}, \mathbf{w}), \sigma^{2}\right)
$$

- Here y can be an arbitrary function.

BAYESIAN REGRESSION

- Btw, a natural generalization (not even a generalization) is to consider linear regression with feature functions:

$$
y(\mathbf{x}, \mathbf{w})=w_{0}+\sum_{j=1}^{M-1} w_{j} \phi_{j}(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x})
$$

(M parameters, $M-1$ feature functions, $\phi_{0}(\mathbf{x})=1$).

BAYESIAN REGRESSION

- Feature functions ϕ_{i} can be
- the result of some separate feature extraction process;
- extension of the linear model to nonlinear dependencies (e.g., $\phi_{j}(x)=x^{j}$;
- local functions that are significantly nonzero only in a small region, e.g., Gaussian feature functions $\left.\phi_{j}(\mathbf{x})=e^{-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}}\right)$;

BAYESIAN REGRESSION

- Consider a dataset $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ with correct answers $\mathbf{t}=\left\{t_{1}, \ldots, t_{N}\right\}$.
- We assume that the data points are independent identically distributed:

$$
p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)=\prod_{n=1}^{N} \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\top} \phi\left(\mathbf{x}_{n}\right), \sigma^{2}\right)
$$

- We take the logarithm (we omit \mathbf{X} below for brevity):

$$
\ln p\left(\mathbf{t} \mid \mathbf{w}, \sigma^{2}\right)=-\frac{N}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(t_{n}-\mathbf{w}^{\top} \phi\left(\mathbf{x}_{n}\right)\right)^{2}
$$

BAYESIAN REGRESSION

- We take the logarithm (we omit \mathbf{X} below for brevity):

$$
\ln p\left(\mathbf{t} \mid \mathbf{w}, \sigma^{2}\right)=-\frac{N}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(t_{n}-\mathbf{w}^{\top} \phi\left(\mathbf{x}_{n}\right)\right)^{2} .
$$

- And we see that to maximize the likelihood w.r.t. w we need to minimze mean squared error!

$$
\nabla_{\mathbf{w}} \ln p\left(\mathbf{t} \mid \mathbf{w}, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(t_{n}-\mathbf{w}^{\top} \phi\left(\mathbf{x}_{n}\right)\right) \phi\left(\mathbf{x}_{n}\right)
$$

BAYESIAN REGRESSION

- Solving the system of equations $\nabla \ln p\left(\mathbf{t} \mid \mathbf{w}, \sigma^{2}\right)=0$, we get the same result as above:

$$
\mathbf{w}_{M L}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \mathbf{t} .
$$

- Здесь $\Phi=\left(\phi_{j}\left(\mathbf{x}_{i}\right)\right)_{i, j}$.

BAYESIAN REGRESSION

- Now we can also maximize the likelihood w.r.t. σ^{2}; we get

$$
\sigma_{M L}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(t_{n}-\mathbf{w}_{M L}^{\top} \phi\left(\mathbf{x}_{n}\right)\right)^{2}
$$

i.e., sample variance of the data around the predicted value.

REGULARIZATION AS A PRIOR

IN PREVIOUS INSTALLMENTS...

- Bayes theorem:

$$
p(\theta \mid D)=\frac{p(\theta) p(D \mid \theta)}{p(D)}
$$

- Two main problems of Bayesian inference:
- find the posterior distribution

$$
p(\theta \mid D) \propto p(D \mid \theta) p(\theta)
$$

(and/or find the maximal a posteriori hypothesis $\arg \max _{\theta} p(\theta \mid D)$);

- find the predictive distribution:

$$
p(x \mid D) \propto \int_{\theta \in \Theta} p(x \mid \theta) p(D \mid \theta) p(\theta) \mathrm{d} \theta .
$$

- We already know that least squares estimation corresponds to maximal likelihood for normally distributed noise.

POLYNOMIAL APPROXIMATION

- We considered regression with feature functions:

$$
f(\mathbf{x}, \mathbf{w})=w_{0}+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x}) .
$$

- Let us see an example of such a regression for $\phi_{j}(x)=x^{j}$, i.e.,

$$
f(x, \mathbf{w})=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M} .
$$

- And we will minimize the mean squared error, as above.

RMS VALUES

IF WE CAN COLLECT MORE DATA...

IF WE CAN COLLECT MORE DATA...

VALUES OF COEFFICIENTS

	$M=0$	$M=1$	$M=6$	$M=9$
w_{0}^{\star}	0.19	0.82	0.31	0.35
w_{1}^{\star}		-1.27	7.99	232.37
w_{2}^{\star}			-25.43	-5321.83
w_{3}^{\star}			17.37	48568.31
w_{4}^{\star}				-231639.30
w_{5}^{\star}				640042.26
w_{6}^{\star}				-1061800.52
w_{7}^{\star}				1042400.18
w_{8}^{\star}				-557682.99
w_{9}^{\star}				125201.43

REGULARIZATION

- We see that coefficients grow a lot; this is very improbable.
- Let's try to combat this in a very straightforward way: add the size of the coefficients to the error function.

REGULARIZATION

- Before (for test examples $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$):

$$
\operatorname{RSS}(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{N}\left(f\left(x_{i}, \mathbf{w}\right)-y_{i}\right)^{2}
$$

- After:

$$
\operatorname{RSS}(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{N}\left(f\left(x_{i}, \mathbf{w}\right)-y_{i}\right)^{2}+\frac{\alpha}{2}\|\mathbf{w}\|^{2},
$$

where α is the regularization coefficient (we now have to choose it somehow).

- How do we optimize this error function?

REGULARIZATION

- Exactly the same: write

$$
\operatorname{RSS}(\mathbf{w})=\frac{1}{2}(\mathbf{y}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{y}-\mathbf{X} \mathbf{w})+\frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w}
$$

and take the derivative:

$$
\mathbf{w}^{*}=\left(\mathbf{X}^{\top} \mathbf{X}+\alpha \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

- This is called ridge regression; by the way, adding $\alpha \mathbf{I}$ to a matrix of incomplete rank makes it invertible; this was the original motivation for ridge regression and for regularization.

RIDGE REGRESSION: $\ln \alpha=-\infty$

RIDGE REGRESSION: $\ln \alpha=0$

RIDGE REGRESSION: COEFFICIENTS

	$\ln \lambda=-\infty$	$\ln \lambda=-18$	$\ln \lambda=0$
w_{0}^{\star}	0.35	0.35	0.13
w_{1}^{\star}	232.37	4.74	-0.05
w_{2}^{\star}	-5321.83	-0.77	-0.06
w_{3}^{\star}	48568.31	-31.97	-0.05
w_{4}^{\star}	-231639.30	-3.89	-0.03
w_{5}^{\star}	640042.26	55.28	-0.02
w_{6}^{\star}	-1061800.52	41.32	-0.01
w_{7}^{\star}	1042400.18	-45.95	-0.00
w_{8}^{\star}	-557682.99	-91.53	0.00
w_{9}^{\star}	125201.43	72.68	0.01

RIDGE REGRESSION: RMS

OTHER FORMS OF REGULARIZATION

- Why exactly $\frac{\alpha}{2}\|\mathbf{w}\|^{2}$?
- We will see an answer shortly, but in general it's not necessary.
- Lasso regression regularizes with L_{1} norm rather than L_{2} :

$$
\operatorname{RSS}(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{N}\left(f\left(x_{i}, \mathbf{w}\right)-y_{i}\right)^{2}+\alpha \sum_{j=0}^{M}\left|w_{j}\right| .
$$

- There are other kinds of regularizers too; more on that later.

Thank you for your attention!

