LOGISTIC REGRESSION

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
March 17, 2017

- We have already considered the logistic sigmoid:

$$
\begin{gathered}
p\left(\mathcal{C}_{1} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)}{p\left(\mathbf{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)+p\left(\mathbf{x} \mid \mathcal{C}_{2}\right) p\left(\mathcal{C}_{2}\right)}=\frac{1}{1+e^{-a}}=\sigma(a), \\
\text { where } a=\ln \frac{p\left(\mathbf{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)}{p\left(\mathbf{x} \mid \mathcal{C}_{2}\right) p\left(\mathcal{C}_{2}\right)}, \quad \sigma(a)=\frac{1}{1+e^{-a}} .
\end{gathered}
$$

- We have derived LDA and QDA, and trained them with maximal likelihood.
- Let's go back to classification.
- Two classes, the posterior is the logistic sigmoid of a linear function:

$$
p\left(\mathcal{C}_{1} \mid \phi\right)=y(\phi)=\sigma\left(\mathbf{w}^{\top} \phi\right), \quad p\left(\mathcal{C}_{2} \mid \phi\right)=1-p\left(\mathcal{C}_{1} \mid \phi\right) .
$$

- Logistic regression is when we optimize w directly.
- For a dataset $\left\{\phi_{n}, t_{n}\right\}, t_{n} \in\{0,1\}, \phi_{n}=\phi\left(\mathbf{x}_{n}\right)$:

$$
p(\mathbf{t} \mid \mathbf{w})=\prod_{n=1}^{N} y_{n}^{t_{n}}\left(1-y_{n}\right)^{1-t_{n}}, \quad y_{n}=p\left(\mathcal{C}_{1} \mid \phi_{n}\right) .
$$

- We look for maximal likelihood parameters by minimizing
$-\ln p(\mathbf{t} \mid \mathbf{w})$:

$$
E(\mathbf{w})=-\ln p(\mathbf{t} \mid \mathbf{w})=-\sum_{n=1}^{N}\left[t_{n} \ln y_{n}+\left(1-t_{n}\right) \ln \left(1-y_{n}\right)\right] .
$$

- Since $\sigma^{\prime}=\sigma(1-\sigma)$, we take the gradient:

$$
\nabla E(\mathbf{w})=\sum_{n=1}^{N}\left(y_{n}-t_{n}\right) \phi_{n} .
$$

- If we now perform gradient descent, we get the separating surface.
- Note that if the data are actually separable, we could get heavy overfitting: $\|\mathbf{w}\| \rightarrow \infty$, and the sigmoid turns into a Heaviside function.
- We have to regularize.
- Logistic regression does not yield a closed form solution because of the sigmoid.
- But function $E(\mathbf{w})$ is convex, and we can use Newton-Raphson's method: use local quadratic approximation to the loss function on each step:

$$
\mathbf{w}^{\text {new }}=\mathbf{w}^{\mathrm{old}}-\mathbf{H}^{-1} \nabla E(\mathbf{w}),
$$

where \mathbf{H} (Hessian) is the matrix of second derivatives for $E(\mathbf{w})$.

- Aside: let us apply Newton-Raphson's method to regular linear regression with quadratic error:

$$
\begin{aligned}
\nabla E(\mathbf{w}) & =\sum_{n=1}^{N}\left(\mathbf{w}^{\top} \phi_{n}-t_{n}\right) \phi_{n}=\Phi^{\top} \Phi \mathbf{w}-\Phi^{\top} \mathbf{t} \\
\nabla \nabla E(\mathbf{w}) & =\sum_{n=1}^{N} \phi_{n} \phi_{n}^{\top}=\Phi^{\top} \Phi
\end{aligned}
$$

and the optimization step will be

$$
\begin{aligned}
\mathbf{w}^{\text {new }}=\mathbf{w}^{\text {old }}-\left(\Phi^{\top} \Phi\right)^{-1}\left[\Phi^{\top} \Phi \mathbf{w}^{\text {old }}-\Phi^{\top} \mathbf{t}\right]= & \\
& =\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \mathbf{t}
\end{aligned}
$$

i.e., we get a solution in one step.

- For logistic regression:

$$
\begin{array}{r}
\nabla E(\mathbf{w})=\sum_{n=1}^{N}\left(y_{n}-t_{n}\right) \phi_{n}=\Phi^{\top}(\mathbf{y}-\mathbf{t}), \\
\mathbf{H}=\nabla \nabla E(\mathbf{w})=\sum_{n=1}^{N} y_{n}\left(1-y_{n}\right) \phi_{n} \phi_{n}^{\top}=\Phi^{\top} R \Phi
\end{array}
$$

for a diagonal matrix $R \subset R_{n n}=y_{n}\left(1-y_{n}\right)$.

- Optimization step formula:

$$
\mathbf{w}^{\text {new }}=\mathbf{w}^{\text {old }}-\left(\Phi^{\top} R \Phi\right)^{-1} \Phi^{\top}(\mathbf{y}-\mathbf{t})=\left(\Phi^{\top} R \Phi\right)^{-1} \Phi^{\top} R \mathbf{z}
$$

where $\mathbf{z}=\Phi \mathbf{w}^{\text {old }}-R^{-1}(\mathbf{y}-\mathbf{t})$.

- This is like a weighted least squares optimization problem with matrix of weights R.
- Hence the title: iterative reweighted least squares (IRLS).

SEVERAL CLASSES

- In case of several classes

$$
p\left(\mathcal{C}_{k} \mid \phi\right)=y_{k}(\phi)=\frac{e^{a_{k}}}{\sum_{j} e^{a_{j}}} \text { for } a_{k}=\mathbf{w}_{k}^{\top} \phi .
$$

- Consider the ML estimate again; first,

$$
\frac{\partial y_{k}}{\partial a_{j}}=y_{k}\left([k=j]-y_{j}\right) .
$$

SEVERAL CLASSES

- Let us now write the likelihood: for a 1-of- K coding scheme we have target vector \mathbf{t}_{n} and likelihood

$$
p\left(\mathbf{T} \mid \mathbf{w}_{1}, \ldots, \mathbf{w}_{K}\right)=\prod_{n=1}^{N} \prod_{k=1}^{K} p\left(\mathcal{C}_{k} \mid \phi_{n}\right)^{t_{n k}}=\prod_{n=1}^{N} \prod_{k=1}^{K} y_{n k}^{t_{n k}}
$$

for $y_{n k}=y_{k}\left(\phi_{n}\right)$; taking the log, we get

$$
\begin{gathered}
E\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{K}\right)=-\ln p\left(\mathbf{T} \mid \mathbf{w}_{1}, \ldots, \mathbf{w}_{K}\right)=-\sum_{n=1}^{N} \sum_{k=1}^{K} t_{n k} \ln y_{n k}, n \\
\nabla_{\mathbf{w}_{j}} E\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{K}\right)=-\sum_{n=1}^{N}\left(y_{n j}-t_{n j}\right) \phi_{n} .
\end{gathered}
$$

SEVERAL CLASSES

- Again, we can optimize with Newton-Raphson's method; the Hessian is

$$
\nabla_{\mathbf{w}_{k}} \nabla_{\mathbf{w}_{j}} E\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{K}\right)=-\sum_{n=1}^{N} y_{n k}\left([k=j]-y_{n j}\right) \phi_{n} \phi_{n}^{\top} .
$$

PROBIT REGRASSION

-What if we have a different sigmoid?

- The same setting: two classes, $p(t=1 \mid a)=f(a), a=\mathbf{w}^{\top} \phi, f$ is the activation function.
- Consider an activation function with threshold θ : for each ϕ_{n} we compute $a_{n}=\mathbf{w}^{\top} \phi_{n}$, and

$$
\begin{cases}t_{n}=1, & \text { if } a_{n} \geq \theta, \\ t_{n}=0, & \text { if } a_{n}<\theta\end{cases}
$$

PROBIT REGRASSION

- If θ is taken by distribution $p(\theta)$, this corresponds to

$$
f(a)=\int_{-\infty}^{a} p(\theta) \mathrm{d} \theta
$$

- Suppose, e.g., that $p(\theta)$ is a Gaussian with zero mean and unit variance. Then

$$
f(a)=\Phi(a)=\int_{-\infty}^{a} \mathcal{N}(\theta \mid 0,1) \mathrm{d} \theta
$$

- This is called the probit function; it's non-elementary, related to

$$
\begin{aligned}
& \operatorname{erf}(a)=\frac{2}{\sqrt{\pi}} \int_{0}^{a} e^{-\frac{\theta^{2}}{2}} \mathrm{~d} \theta \\
& \Phi(a)=\frac{1}{2}\left[1+\frac{1}{\sqrt{2}} \operatorname{erf}(a)\right]
\end{aligned}
$$

- Probit regrassion is the model with probit activation function.

LAPLACE APPROXIMATION AND BAYESIAN LOGISTIC REGRESSION

LAPLACE APPROXIMATION

- An aside: how do we approximate a complex distribution with a simpler one?
- E.g., how do we approximate a distribution near its maximum with a Gaussian? (a very natural idea)
- Let's first consider the distribution of a single continuous variable $p(z)=\frac{1}{Z} f(z)$.

LAPLACE APPROXIMATION

- Step 1: find the maximum z_{0}.
- Step 2: decompose into Taylor series

$$
\ln f(z) \approx \ln f\left(z_{0}\right)-\frac{1}{2} A\left(z-z_{0}\right)^{2}, \text { where } A=-\left.\frac{d^{2}}{d z^{2}} \ln f(z)\right|_{z=z_{0}} .
$$

- Step 3: approximate

$$
f(z) \approx f\left(z_{0}\right) e^{-\frac{A}{2}\left(z-z_{0}\right)^{2}},
$$

and it will be a Gaussian after normalization.

LAPLACE APPROXIMATION

- This can be generalized to the multidimensional case $p(\mathbf{z})=\frac{1}{Z} f(\mathbf{z})$:

$$
\begin{aligned}
& f(\mathbf{z}) \approx f\left(\mathbf{z}_{0}\right) e^{-\frac{1}{2}\left(\mathbf{z}-\mathbf{z}_{0}\right)^{\top} \mathbf{A}\left(\mathbf{z}-\mathbf{z}_{0}\right)} \text {, } \\
& \text { where } \mathbf{A}=-\left.\nabla \nabla \ln f(\mathbf{z})\right|_{z=z_{0}} .
\end{aligned}
$$

Exercise. What is the normalizing constant here?

LAPLACE APPROXIMATION

- Having understood Laplace approximation, let us apply it first to model selection.
- To compare models from $\left\{\mathcal{M}_{i}\right\}_{i=1}^{L}$, by the test set D we estimate the posterior

$$
p\left(\mathcal{M}_{i} \mid D\right) \propto p\left(\mathcal{M}_{i}\right) p\left(D \mid \mathcal{M}_{i}\right)
$$

- If a model is defined parametrically, we get $p\left(D \mid \mathcal{M}_{i}\right)=\int p\left(D \mid \theta, \mathcal{M}_{i}\right) p\left(\theta \mid \mathcal{M}_{i}\right) d \theta$.
- This is the probability to generate D if we choose model parameters according to its prior; the denominator from Bayes' theorem:

$$
p\left(\theta \mid \mathcal{M}_{i}, D\right)=\frac{p\left(D \mid \theta, \mathcal{M}_{i}\right) p\left(\theta \mid \mathcal{M}_{i}\right)}{p\left(D \mid \mathcal{M}_{i}\right)}
$$

MODEL COMPARISON WITH LAPLACE APPROXIMATION

- Earlier we approximated it with a nearly piecewise constant function.
- Let us now approximate with a Gaussian; integrating, we get

$$
Z=\int f(\mathbf{z}) d \mathbf{z} \approx \int f\left(\mathbf{z}_{0}\right) e^{-\frac{1}{2}\left(\mathbf{z}-\mathbf{z}_{0}\right)^{\top} \mathbf{A}\left(\mathbf{z}-\mathbf{z}_{0}\right)} d \mathbf{z}=f\left(\mathbf{z}_{0}\right) \frac{(2 \pi)^{M / 2}}{|\mathbf{A}|^{1 / 2}}
$$

- And we have $Z=p(D), f(\theta)=p(D \mid \theta) p(\theta)$.

MODEL COMPARISON WITH LAPLACE APPROXIMATION

- We get

$$
\ln p(D) \approx \ln p\left(D \mid \theta_{\mathrm{MAP}}\right)+\ln P\left(\theta_{\mathrm{MAP}}\right)+\frac{M}{2} \ln (2 \pi)-\frac{1}{2} \ln |\mathbf{A}|
$$

- $\ln P\left(\theta_{\mathrm{MAP}}\right)+\frac{M}{2} \ln (2 \pi)-\frac{1}{2} \ln |\mathbf{A}|$ is called the Occam's factor.
- $\mathbf{A}=-\nabla \nabla \ln p\left(D \mid \theta_{\mathrm{MAP}}\right) p\left(\theta_{\mathrm{MAP}}\right)=-\nabla \nabla \ln p\left(\theta_{\mathrm{MAP}} \mid D\right)$.
- We get

$$
\ln p(D) \approx \ln p\left(D \mid \theta_{\mathrm{MAP}}\right)+\ln P\left(\theta_{\mathrm{MAP}}\right)+\frac{M}{2} \ln (2 \pi)-\frac{1}{2} \ln |\mathbf{A}| .
$$

- If the Gaussian prior $p(\theta)$ is wide enough, and \mathbf{A} has full rank, we can roughly approximate (prove it!) as

$$
\ln p(D) \approx \ln p\left(D \mid \theta_{\mathrm{MAP}}\right)-\frac{1}{2} M \ln N
$$

where M is the number of parameters, N is the number of points in D, and we have omitted additive constants.

- This is called the Bayesian information criterion (BIC), or Schwarz criterion.

BAYESIASN LOGISTIC REGRESSION

- And now the full Bayesian treatment.
- Logistic regression is not as simple as linear regression: we can't get an exact answer out of a product of logistic sigmoids.
- We'll make a Laplace approximation.

BAYESIASN LOGISTIC REGRESSION

- Gaussian prior:

$$
p(\mathbf{w})=\mathcal{N}\left(\mathbf{w} \mid \mu_{0}, \Sigma_{0}\right) .
$$

- The posterior is then

$$
\begin{aligned}
p(\mathbf{w} \mid \mathbf{t}) & \propto p(\mathbf{w}) p(\mathbf{t} \mid \mathbf{w}), \text { и } \\
\ln p(\mathbf{w} \mid \mathbf{t}) & =-\frac{1}{2}\left(\mathbf{w}-\mu_{0}\right)^{\top} \Sigma_{0}^{-1}\left(\mathbf{w}-\mu_{0}\right) \\
& +\sum_{n=1}^{N}\left[t_{n} \ln y_{n}+\left(1-t_{n}\right) \ln \left(1-y_{n}\right)\right]+\text { const }, \\
\text { where } y_{n} & =\sigma\left(\mathbf{w}^{\top} \phi_{n}\right) .
\end{aligned}
$$

BAYESIASN LOGISTIC REGRESSION

- To approximate, we first find the maximum $\mathbf{w}_{\text {MAP }}$, and then the covariance matrix is the matrix of second derivatives

$$
\Sigma_{N}=-\nabla \nabla \ln p(\mathbf{w} \mid \mathbf{t})=\Sigma_{0}^{-1}+\sum_{n=1}^{N} y_{n}\left(1-y_{n}\right) \phi_{n} \phi_{n}^{\top}
$$

- Our approximation is now

$$
q(\mathbf{w})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{w}_{\mathrm{MAP}}, \Sigma_{N}\right)
$$

BAYESIASN LOGISTIC REGRESSION

- And we can now get the Bayesian prediction:

$$
p\left(\mathcal{C}_{1} \mid \phi, \mathbf{t}\right)=\int p\left(\mathcal{C}_{1} \mid \phi, \mathbf{w}\right) p(\mathbf{w} \mid \mathbf{t}) d \mathbf{w} \approx \int \sigma\left(\mathbf{w}^{\top} \phi\right) q(\mathbf{w}) \mathrm{d} \mathbf{w} .
$$

- Note that $\sigma\left(\mathbf{w}^{\top} \phi\right)$ depends on wonly via its projection on ϕ.
- We denote $a=\mathbf{w}^{\top} \phi$:

$$
\sigma\left(\mathbf{w}^{\top} \phi\right)=\int \delta\left(a-\mathbf{w}^{\top} \phi\right) \sigma(a) \mathrm{d} a .
$$

BAYESIASN LOGISTIC REGRESSION

- $\sigma\left(\mathbf{w}^{\top} \phi\right)=\int \delta\left(a-\mathbf{w}^{\top} \phi\right) \sigma(a) \mathrm{d} a$, and therefore

$$
\begin{aligned}
\int \sigma\left(\mathbf{w}^{\top} \phi\right) q(\mathbf{w}) d \mathbf{w} & =\int \sigma(a) p(a) \mathrm{d} a \\
\text { where } p(a) & =\int \delta\left(a-\mathbf{w}^{\top} \phi\right) q(\mathbf{w}) \mathrm{d} \mathbf{w}
\end{aligned}
$$

- $p(a)$ is the marginalization of Gaussian $q(\mathbf{w})$, where we integrate over everything which is orthogonal to ϕ.

BAYESIASN LOGISTIC REGRESSION

- $p(a)$ is the marginalization of Gaussian $q(\mathbf{w})$, where we integrate over everything which is orthogonal to ϕ.
- Hence, $p(a)$ is a Gaussian too, and we can find its parameters

$$
\begin{aligned}
\mu_{a} & =\mathrm{E}[a]=\int a p(a) \mathrm{d} a=\int q(\mathbf{w}) \mathbf{w}^{\top} \phi \mathrm{d} \mathbf{w}=\mathbf{w}_{\mathrm{MAP}}^{\top} \phi, \\
\sigma_{a}^{2} & =\int\left(a^{2}-\mathrm{E}[a]\right)^{2} p(a) \mathrm{d} a= \\
& =\int q(\mathbf{w})\left[\left(\mathbf{w}^{\top} \phi\right)^{2}-\left(\mu_{N}^{\top} \phi\right)^{2}\right]^{2} \mathrm{~d} \mathbf{w}=\phi^{\top} \Sigma_{N} \phi .
\end{aligned}
$$

- Thus, we get that

$$
p\left(\mathcal{C}_{1} \mid \mathbf{t}\right)=\int \sigma(a) p(a) \mathrm{d} a=\int \sigma(a) \mathcal{N}\left(a \mid \mu_{a}, \sigma_{a}^{2}\right) \mathrm{d} a .
$$

BAYESIASN LOGISTIC REGRESSION

- $p\left(\mathcal{C}_{1} \mid \mathbf{t}\right)=\int \sigma(a) \mathcal{N}\left(a \mid \mu_{a}, \sigma_{a}^{2}\right) \mathrm{d} a$.
- This integral is not easy to take, because sigmoid is hard, but we can approximate it by approximating $\sigma(a)$ with the probit:

$$
\sigma(a) \approx \Phi(\lambda a) \text { for } \lambda=\sqrt{\pi / 8} .
$$

Exercise. Prove that $\lambda=\sqrt{\pi / 8}$ y σ and Φ have the same slope at zero.

BAYESIASN LOGISTIC REGRESSION

- And if we pass to the probit function, its convolution with a Gaussian will be another probit:

$$
\int \Phi(\lambda a) \mathcal{N}\left(a \mid \mu, \sigma^{2}\right) \mathrm{d} a=\Phi\left(\frac{\mu}{\sqrt{\frac{1}{\lambda^{2}}+\sigma^{2}}}\right)
$$

Exercise. Prove it.

BAYESIASN LOGISTIC REGRESSION

- As a result, we get the approximation

$$
\begin{aligned}
\int \sigma(a) \mathcal{N}\left(a \mid \mu, \sigma^{2}\right) \mathrm{d} a & \approx \sigma\left(\kappa\left(\sigma^{2}\right) \mu\right), \\
\text { where } \kappa\left(\sigma^{2}\right) & =\frac{1}{\sqrt{1+\frac{\pi}{8} \sigma^{2}}} .
\end{aligned}
$$

BAYESIASN LOGISTIC REGRESSION

- And now, putting it all together, we get the predictive distribution:

$$
\begin{aligned}
p\left(\mathcal{C}_{1} \mid \phi, \mathbf{t}\right) & =\sigma\left(\kappa\left(\sigma_{a}^{2}\right) \mu_{a}\right), \text { where } \\
\mu_{a} & =\mathbf{w}_{\mathrm{MAP}}^{\top} \phi, \\
\sigma_{a}^{2} & =\phi^{\top} \Sigma_{N} \phi, \\
\kappa\left(\sigma^{2}\right) & =\frac{1}{\sqrt{1+\frac{\pi}{8} \sigma^{2}}} .
\end{aligned}
$$

- By the way, the separating hyperplane $p\left(\mathcal{C}_{1} \mid \phi, \mathbf{t}\right)=\frac{1}{2}$ is defined by equation $\mu_{a}=0$, and it's the same as just using $\mathbf{w}_{\text {MAP }}$.
- The difference is important only for more complex criteria.

LOSS FUNCTIONS IN CLASSIFICATION

- And a different look at classification: different methods differ by which loss function they optimize.
- Classification has a problem with the "correct" error function, i.e., misclassification rate:
- it's not differentiable everywhere,
- and its derivative is useless.
- Let us look at different loss functions; we have seen several of them, but there are lots more.

LOSS FUNCTIONS IN CLASSIFICATION

Thank you for your attention!

