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reminder

• We have already considered the logistic sigmoid:

𝑝(𝒞1 ∣ x) = 𝑝(x ∣ 𝒞1)𝑝(𝒞1)
𝑝(x ∣ 𝒞1)𝑝(𝒞1) + 𝑝(x ∣ 𝒞2)𝑝(𝒞2) = 1

1 + 𝑒−𝑎 = 𝜎(𝑎),

where 𝑎 = ln 𝑝(x ∣ 𝒞1)𝑝(𝒞1)
𝑝(x ∣ 𝒞2)𝑝(𝒞2) , 𝜎(𝑎) = 1

1 + 𝑒−𝑎 .

• We have derived LDA and QDA, and trained them with maximal
likelihood.
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two classes

• Let’s go back to classification.
• Two classes, the posterior is the logistic sigmoid of a linear
function:

𝑝(𝒞1 ∣ 𝜙) = 𝑦(𝜙) = 𝜎(w⊤𝜙), 𝑝(𝒞2 ∣ 𝜙) = 1 − 𝑝(𝒞1 ∣ 𝜙).

• Logistic regression is when we optimize w directly.
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two classes

• For a dataset {𝜙𝑛, 𝑡𝑛}, 𝑡𝑛 ∈ {0, 1}, 𝜙𝑛 = 𝜙(x𝑛):

𝑝(t ∣ w) =
𝑁

∏
𝑛=1

𝑦𝑡𝑛𝑛 (1 − 𝑦𝑛)1−𝑡𝑛 , 𝑦𝑛 = 𝑝(𝒞1 ∣ 𝜙𝑛).

• We look for maximal likelihood parameters by minimizing
− ln 𝑝(t ∣ w):

𝐸(w) = − ln 𝑝(t ∣ w) = −
𝑁

∑
𝑛=1

[𝑡𝑛 ln 𝑦𝑛 + (1 − 𝑡𝑛) ln(1 − 𝑦𝑛)] .
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two classes

• Since 𝜎′ = 𝜎(1 − 𝜎), we take the gradient:

∇𝐸(w) =
𝑁

∑
𝑛=1

(𝑦𝑛 − 𝑡𝑛)𝜙𝑛.

• If we now perform gradient descent, we get the separating
surface.

• Note that if the data are actually separable, we could get heavy
overfitting: ‖w‖ → ∞, and the sigmoid turns into a Heaviside
function.

• We have to regularize.
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irls

• Logistic regression does not yield a closed form solution
because of the sigmoid.

• But function 𝐸(w) is convex, and we can use Newton–Raphson’s
method: use local quadratic approximation to the loss function
on each step:

wnew = wold − H−1∇𝐸(w),

where H (Hessian) is the matrix of second derivatives for 𝐸(w).
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irls

• Aside: let us apply Newton–Raphson’s method to regular linear
regression with quadratic error:

∇𝐸(w) =
𝑁

∑
𝑛=1

(w⊤𝜙𝑛 − 𝑡𝑛) 𝜙𝑛 = Φ⊤Φw − Φ⊤t,

∇∇𝐸(w) =
𝑁

∑
𝑛=1

𝜙𝑛𝜙⊤
𝑛 = Φ⊤Φ,

and the optimization step will be

wnew = wold − (Φ⊤Φ)−1 [Φ⊤Φwold − Φ⊤t] =
= (Φ⊤Φ)−1 Φ⊤t,

i.e., we get a solution in one step.
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irls

• For logistic regression:

∇𝐸(w) =
𝑁

∑
𝑛=1

(𝑦𝑛 − 𝑡𝑛) 𝜙𝑛 = Φ⊤ (y − t) ,

H = ∇∇𝐸(w) =
𝑁

∑
𝑛=1

𝑦𝑛(1 − 𝑦𝑛)𝜙𝑛𝜙⊤
𝑛 = Φ⊤𝑅Φ

for a diagonal matrix 𝑅 с 𝑅𝑛𝑛 = 𝑦𝑛(1 − 𝑦𝑛).
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irls

• Optimization step formula:

wnew = wold − (Φ⊤𝑅Φ)−1 Φ⊤ (y − t) = (Φ⊤𝑅Φ)−1 Φ⊤𝑅z,

where z = Φwold − 𝑅−1 (y − t).
• This is like a weighted least squares optimization problem with
matrix of weights 𝑅.

• Hence the title: iterative reweighted least squares (IRLS).
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several classes

• In case of several classes

𝑝(𝒞𝑘 ∣ 𝜙) = 𝑦𝑘(𝜙) = 𝑒𝑎𝑘

∑𝑗 𝑒𝑎𝑗
for 𝑎𝑘 = w⊤

𝑘 𝜙.

• Consider the ML estimate again; first,

𝜕𝑦𝑘
𝜕𝑎𝑗

= 𝑦𝑘 ([𝑘 = 𝑗] − 𝑦𝑗) .
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several classes

• Let us now write the likelihood: for a 1-of-𝐾 coding scheme we
have target vector t𝑛 and likelihood

𝑝(T ∣ w1, … , w𝐾) =
𝑁

∏
𝑛=1

𝐾
∏
𝑘=1

𝑝(𝒞𝑘 ∣ 𝜙𝑛)𝑡𝑛𝑘 =
𝑁

∏
𝑛=1

𝐾
∏
𝑘=1

𝑦𝑡𝑛𝑘
𝑛𝑘

for 𝑦𝑛𝑘 = 𝑦𝑘(𝜙𝑛); taking the log, we get

𝐸(w1, … , w𝐾) = − ln 𝑝(T ∣ w1, … , w𝐾) = −
𝑁

∑
𝑛=1

𝐾
∑
𝑘=1

𝑡𝑛𝑘 ln 𝑦𝑛𝑘, и

∇w𝑗
𝐸(w1, … , w𝐾) = −

𝑁
∑
𝑛=1

(𝑦𝑛𝑗 − 𝑡𝑛𝑗) 𝜙𝑛.
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several classes

• Again, we can optimize with Newton–Raphson’s method; the
Hessian is

∇w𝑘
∇w𝑗

𝐸(w1, … , w𝐾) = −
𝑁

∑
𝑛=1

𝑦𝑛𝑘 ([𝑘 = 𝑗] − 𝑦𝑛𝑗) 𝜙𝑛𝜙⊤
𝑛 .
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probit regrassion

• What if we have a different sigmoid?
• The same setting: two classes, 𝑝(𝑡 = 1 ∣ 𝑎) = 𝑓(𝑎), 𝑎 = w⊤𝜙, 𝑓 is
the activation function.

• Consider an activation function with threshold 𝜃: for each 𝜙𝑛 we
compute 𝑎𝑛 = w⊤𝜙𝑛, and

{𝑡𝑛 = 1, if 𝑎𝑛 ≥ 𝜃,
𝑡𝑛 = 0, if 𝑎𝑛 < 𝜃.
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probit regrassion

• If 𝜃 is taken by distribution 𝑝(𝜃), this corresponds to

𝑓(𝑎) = ∫
𝑎

−∞
𝑝(𝜃)d𝜃.

• Suppose, e.g., that 𝑝(𝜃) is a Gaussian with zero mean and unit
variance. Then

𝑓(𝑎) = Φ(𝑎) = ∫
𝑎

−∞
𝒩 (𝜃 ∣ 0, 1) d𝜃.
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probit regrassion

• This is called the probit function; it’s non-elementary, related to

erf(𝑎) = 2√𝜋 ∫
𝑎

0
𝑒− 𝜃2

2 d𝜃 ∶

Φ(𝑎) = 1
2 [1 + 1√

2
erf(𝑎)] .

• Probit regrassion is the model with probit activation function.
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𝜎 и Φ

7



laplace approximation and
bayesian logistic regression



laplace approximation

• An aside: how do we approximate a complex distribution with a
simpler one?

• E.g., how do we approximate a distribution near its maximum
with a Gaussian? (a very natural idea)

• Let’s first consider the distribution of a single continuous
variable 𝑝(𝑧) = 1

𝑍 𝑓(𝑧).
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laplace approximation

• Step 1: find the maximum 𝑧0.
• Step 2: decompose into Taylor series

ln 𝑓(𝑧) ≈ ln 𝑓(𝑧0) − 1
2𝐴(𝑧 − 𝑧0)2, where 𝐴 = − 𝑑2

𝑑𝑧2 ln 𝑓(𝑧) ∣𝑧=𝑧0
.

• Step 3: approximate

𝑓(𝑧) ≈ 𝑓(𝑧0)𝑒− 𝐴
2 (𝑧−𝑧0)2 ,

and it will be a Gaussian after normalization.
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laplace approximation

• This can be generalized to the multidimensional case
𝑝(z) = 1

𝑍 𝑓(z):
𝑓(z) ≈ 𝑓(z0)𝑒− 1

2 (z−z0)⊤A(z−z0),

where A = −∇∇ ln 𝑓(z) ∣𝑧=𝑧0
.

Exercise. What is the normalizing constant here?
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laplace approximation
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model comparison with laplace approximation

• Having understood Laplace approximation, let us apply it first to
model selection.

• To compare models from {ℳ𝑖}𝐿
𝑖=1, by the test set 𝐷 we estimate

the posterior

𝑝(ℳ𝑖 ∣ 𝐷) ∝ 𝑝(ℳ𝑖)𝑝(𝐷 ∣ ℳ𝑖).

• If a model is defined parametrically, we get
𝑝(𝐷 ∣ ℳ𝑖) = ∫ 𝑝(𝐷 ∣ 𝜃, ℳ𝑖)𝑝(𝜃 ∣ ℳ𝑖)𝑑𝜃.

• This is the probability to generate 𝐷 if we choose model
parameters according to its prior; the denominator from Bayes’
theorem:

𝑝(𝜃 ∣ ℳ𝑖, 𝐷) = 𝑝(𝐷 ∣ 𝜃, ℳ𝑖)𝑝(𝜃 ∣ ℳ𝑖)
𝑝(𝐷 ∣ ℳ𝑖)

.
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model comparison with laplace approximation

• Earlier we approximated it with a nearly piecewise constant
function.

• Let us now approximate with a Gaussian; integrating, we get

𝑍 = ∫ 𝑓(z)𝑑z ≈ ∫ 𝑓(z0)𝑒− 1
2 (z−z0)⊤A(z−z0)𝑑z = 𝑓(z0) (2𝜋)𝑀/2

|A|1/2 .

• And we have 𝑍 = 𝑝(𝐷), 𝑓(𝜃) = 𝑝(𝐷 ∣ 𝜃)𝑝(𝜃).
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model comparison with laplace approximation

• We get

ln 𝑝(𝐷) ≈ ln 𝑝(𝐷 ∣ 𝜃MAP) + ln 𝑃(𝜃MAP) + 𝑀
2 ln(2𝜋) − 1

2 ln |A|.

• ln 𝑃 (𝜃MAP) + 𝑀
2 ln(2𝜋) − 1

2 ln |A| is called the Occam’s factor.
• A = −∇∇ ln 𝑝(𝐷 ∣ 𝜃MAP)𝑝(𝜃MAP) = −∇∇ ln 𝑝(𝜃MAP ∣ 𝐷).
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model comparison with laplace approximation

• We get

ln 𝑝(𝐷) ≈ ln 𝑝(𝐷 ∣ 𝜃MAP) + ln 𝑃(𝜃MAP) + 𝑀
2 ln(2𝜋) − 1

2 ln |A|.

• If the Gaussian prior 𝑝(𝜃) is wide enough, and A has full rank,
we can roughly approximate (prove it!) as

ln 𝑝(𝐷) ≈ ln 𝑝(𝐷 ∣ 𝜃MAP) − 1
2𝑀 ln 𝑁,

where 𝑀 is the number of parameters, 𝑁 is the number of
points in 𝐷, and we have omitted additive constants.

• This is called the Bayesian information criterion (BIC), or
Schwarz criterion.
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bayesiasn logistic regression

• And now the full Bayesian treatment.
• Logistic regression is not as simple as linear regression: we
can’t get an exact answer out of a product of logistic sigmoids.

• We’ll make a Laplace approximation.
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bayesiasn logistic regression

• Gaussian prior:
𝑝(w) = 𝒩(w ∣ 𝜇0, Σ0).

• The posterior is then

𝑝(w ∣ t) ∝𝑝(w)𝑝(t ∣ w), и

ln 𝑝(w ∣ t) = − 1
2 (w − 𝜇0)⊤ Σ−1

0 (w − 𝜇0)

+
𝑁

∑
𝑛=1

[𝑡𝑛 ln 𝑦𝑛 + (1 − 𝑡𝑛) ln(1 − 𝑦𝑛)] + const,

where 𝑦𝑛 =𝜎(w⊤𝜙𝑛).
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bayesiasn logistic regression

• To approximate, we first find the maximum wMAP, and then the
covariance matrix is the matrix of second derivatives

Σ𝑁 = −∇∇ ln 𝑝(w ∣ t) = Σ−1
0 +

𝑁
∑
𝑛=1

𝑦𝑛(1 − 𝑦𝑛)𝜙𝑛𝜙⊤
𝑛 .

• Our approximation is now

𝑞(w) = 𝒩(w ∣ wMAP, Σ𝑁).
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bayesiasn logistic regression

• And we can now get the Bayesian prediction:

𝑝(𝒞1 ∣ 𝜙, t) = ∫ 𝑝(𝒞1 ∣ 𝜙, w)𝑝(w ∣ t)𝑑w ≈ ∫ 𝜎(w⊤𝜙)𝑞(w)dw.

• Note that 𝜎(w⊤𝜙) depends on w only via its projection on 𝜙.
• We denote 𝑎 = w⊤𝜙:

𝜎(w⊤𝜙) = ∫ 𝛿(𝑎 − w⊤𝜙)𝜎(𝑎)d𝑎.
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bayesiasn logistic regression

• 𝜎(w⊤𝜙) = ∫ 𝛿(𝑎 − w⊤𝜙)𝜎(𝑎)d𝑎, and therefore

∫ 𝜎(w⊤𝜙)𝑞(w)𝑑w = ∫ 𝜎(𝑎)𝑝(𝑎)d𝑎,

where 𝑝(𝑎) = ∫ 𝛿(𝑎 − w⊤𝜙)𝑞(w)dw.

• 𝑝(𝑎) is the marginalization of Gaussian 𝑞(w), where we integrate
over everything which is orthogonal to 𝜙.

12



bayesiasn logistic regression

• 𝑝(𝑎) is the marginalization of Gaussian 𝑞(w), where we integrate
over everything which is orthogonal to 𝜙.

• Hence, 𝑝(𝑎) is a Gaussian too, and we can find its parameters

𝜇𝑎 =E[𝑎] = ∫ 𝑎𝑝(𝑎)d𝑎 = ∫ 𝑞(w)w⊤𝜙dw = w⊤
MAP𝜙,

𝜎2
𝑎 = ∫ (𝑎2 − E[𝑎])2 𝑝(𝑎)d𝑎 =

= ∫ 𝑞(w) [(w⊤𝜙)2 − (𝜇⊤
𝑁𝜙)2]2 dw = 𝜙⊤Σ𝑁𝜙.

• Thus, we get that

𝑝(𝒞1 ∣ t) = ∫ 𝜎(𝑎)𝑝(𝑎)d𝑎 = ∫ 𝜎(𝑎)𝒩(𝑎 ∣ 𝜇𝑎, 𝜎2
𝑎)d𝑎.
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bayesiasn logistic regression

• 𝑝(𝒞1 ∣ t) = ∫ 𝜎(𝑎)𝒩(𝑎 ∣ 𝜇𝑎, 𝜎2
𝑎)d𝑎.

• This integral is not easy to take, because sigmoid is hard, but we
can approximate it by approximating 𝜎(𝑎) with the probit:
𝜎(𝑎) ≈ Φ(𝜆𝑎) for 𝜆 = √𝜋/8.

Exercise. Prove that 𝜆 = √𝜋/8 у 𝜎 and Φ have the same slope at zero.

12



bayesiasn logistic regression

• And if we pass to the probit function, its convolution with a
Gaussian will be another probit:

∫ Φ(𝜆𝑎)𝒩(𝑎 ∣ 𝜇, 𝜎2)d𝑎 = Φ ⎛⎜⎜
⎝

𝜇
√ 1

𝜆2 + 𝜎2
⎞⎟⎟
⎠

.

Exercise. Prove it.
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bayesiasn logistic regression

• As a result, we get the approximation

∫ 𝜎(𝑎)𝒩(𝑎 ∣ 𝜇, 𝜎2)d𝑎 ≈𝜎 (𝜅(𝜎2)𝜇) ,

where 𝜅(𝜎2) = 1
√1 + 𝜋

8 𝜎2 .
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bayesiasn logistic regression

• And now, putting it all together, we get the predictive
distribution:

𝑝(𝒞1 ∣ 𝜙, t) =𝜎 (𝜅(𝜎2
𝑎)𝜇𝑎) , where

𝜇𝑎 =w⊤
MAP𝜙,

𝜎2
𝑎 =𝜙⊤Σ𝑁𝜙,

𝜅(𝜎2) = 1
√1 + 𝜋

8 𝜎2 .

• By the way, the separating hyperplane 𝑝(𝒞1 ∣ 𝜙, t) = 1
2 is defined

by equation 𝜇𝑎 = 0, and it’s the same as just using wMAP.
• The difference is important only for more complex criteria.
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loss functions in classification

• And a different look at classification: different methods differ by
which loss function they optimize.

• Classification has a problem with the “correct” error function,
i.e., misclassification rate:

• it’s not differentiable everywhere,
• and its derivative is useless.

• Let us look at different loss functions; we have seen several of
them, but there are lots more.
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loss functions in classification
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thank you!

Thank you for your attention!
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