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- We have already considered the logistic sigmoid:

- p(x | €1)p(Cy) _ L = el
P = eTE (@) + plx | Cpp@) ~ Trea O
where a — In PEL€P(C) o(a) = !

p(x | Co)p(Cy)’ C lte?

- We have derived LDA and QDA, and trained them with maximal
likelihood.



TWO CLASSES

- Let's go back to classification.
- Two classes, the posterior is the logistic sigmoid of a linear
function:

p(Cy 1 9) =y(¢) =0a(w'd), p(Cy|¢)=1—p(Cy]|9)

- Logistic regression is when we optimize w directly.



TWO CLASSES

- For a dataset {¢_,t,}, t, € {0,1}, ¢ = ¢(x,,):

N
plt | w) = H y(1—y,) ", 4y, =p(Cy | 9,).

- We look for maximal likelihood parameters by minimizing
—lnp(t|w):
N

E(w)=—1Inp(t [t,Iny, + (1 —t,)In(l—y,)].
=

n



TWO CLASSES

- Since 0’ = o(1 — o), we take the gradient:

N

n=1
- If we now perform gradient descent, we get the separating
surface.

- Note that if the data are actually separable, we could get heavy
overfitting: |w| — oo, and the sigmoid turns into a Heaviside
function.

- We have to regularize.



IRLS

- Logistic regression does not yield a closed form solution
because of the sigmoid.

- But function E(w) is convex, and we can use Newton-Raphson'’s
method: use local quadratic approximation to the loss function

on each step:
whew — gold _ H71VE(W),

where H (Hessian) is the matrix of second derivatives for E(w).



IRLS

- Aside: let us apply Newton-Raphson’s method to regular linear
regression with quadratic error:

M=

VEw)=) (w'¢ —t,)p = dw—a't,
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M=

VVE(wW)=> ¢ ¢' =o',

n
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and the optimization step will be
W — wold _ (97d) " [0 dwold — B Tt] —
= (®0) 't

i.e., we get a solution in one step.



IRLS

- For logistic regression:

I
M=

3
Il
—

H=VVE(w)
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Un(1—y,)0,6' =" R®
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for a diagonal matrix R ¢ R,,,, = y,,(1 —y,,).



IRLS

- Optimization step formula:
wrew — wold _ (TR®) ' &' (y—t) = (' RD) " @' Ry,

where z = dw°d — R (y — t).

- This is like a weighted least squares optimization problem with
matrix of weights R.

- Hence the title: iterative reweighted least squares (IRLS).



SEVERAL CLASSES

- In case of several classes

(€4 6) = 1(6) = S for @ = wlo.

J

- Consider the ML estimate again; first,

yp

5a. = e (F=d1—y;).



SEVERAL CLASSES

- Let us now write the likelihood: for a 1-of-K coding scheme we
have target vector t,, and likelihood

N K N K
(T | Wy, Wg) = H Hp(ek | ¢,,,,)t"k = H Hyr:;@k
n=1 k=1 n=1k=1
for y,, = yk(9, ); taking the log, we get
N K
Ewy,...,wg)=—Inp(T | wy,...,wg) = —ZZtnklnynk, 7

ol
Il

n=1 1

N
Vo, B30 W5) = =D (Yg — tg) &,

J
n=1



SEVERAL CLASSES

- Again, we can optimize with Newton-Raphson’s method; the
Hessian is

vwkijE<wl7"'7 Zy'nk yn]) ¢n¢;



PROBIT REGRASSION

- What if we have a different sigmoid?
- The same setting: two classes, p(t =1 |a) = f(a),a=w'¢, fis
the activation function.

- Consider an activation function with threshold o: for each ¢ we
compute a, =w'¢ ,and

t,=1, ifa, >0,
t,=0, ifa, <6é.



PROBIT REGRASSION

- If 0 is taken by distribution p(#), this corresponds to
fla)= [ ployes.

- Suppose, e.g, that p(6) is a Gaussian with zero mean and unit
variance. Then

ﬂ@Zﬂ@z/anmJM&



PROBIT REGRASSION

- This is called the probit function; it's non-elementary, related to

2 @ 92
erf(a) = ﬁ/ e =db:
0

B(a) = % {1 + \}ﬁerf(a)] .

- Probit regrassion is the model with probit activation function.






LAPLACE APPROXIMATION AND
BAYESIAN LOGISTIC REGRESSION




LAPLACE APPROXIMATION

- An aside: how do we approximate a complex distribution with a
simpler one?

- E.g, how do we approximate a distribution near its maximum
with a Gaussian? (a very natural idea)

- Let's first consider the distribution of a single continuous
variable p(z) = £ f(2).



LAPLACE APPROXIMATION

- Step 1: find the maximum z,,.
- Step 2: decompose into Taylor series

1 1 . d?
n f(z) ~n f(zy) — §A(z —zy)%, where A = —@hlf(z) |

- Step 3: approximate
f(2) = f(zo)em 2P,

and it will be a Gaussian after normalization.



LAPLACE APPROXIMATION

- This can be generalized to the multidimensional case

p(z) = 4 f(2):
f(Z) ~ f(zo)efé(zfzo)TA(zfzo)’
where A = —VV1n f(z)

‘z:zo .

Exercise. What is the normalizing constant here?



LAPLACE APPROXIMATION
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MODEL COMPARISON WITH LAPLACE APPROXIMATION

- Having understood Laplace approximation, let us apply it first to
model selection.

- To compare models from {M,}£ , by the test set D we estimate
the posterior

p(M; | D) o< p(M;)p(D | M;).

- If a model is defined parametrically, we get
p(D|M;) = fp(D | 6,20,)p(6 | M;)do.

- This is the probability to generate D if we choose model
parameters according to its prior; the denominator from Bayes'
theorem: (D1 6,3,)p(6 | M)

p ) M4 )P i

p((9|.7V[i,D)— p(D|MZ) .
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MODEL COMPARISON WITH LAPLACE APPROXIMATION

- Earlier we approximated it with a nearly piecewise constant
function.
- Let us now approximate with a Gaussian; integrating, we get
' e T (271_)]\1/2
7= /f(z>dz ~ /f(zo)e 3aso) A=) gy = f(zo)W'

- And we have Z = p(D), f(0) = p(D | 6)p(0).

1



MODEL COMPARISON WITH LAPLACE APPROXIMATION

- We get

M 1

hlp(D) =~ hlp(D | 91\/1AP) + In P(HI\/IAP) + 7 111(271') — 5 In |A|

* InP(Oypp) + Y In(27) — L 1In|A] is called the Occam’s factor.
*A=—-VVinp(D | Oyap)p(fmar) = —VVInp(Oyap | D).

1



MODEL COMPARISON WITH LAPLACE APPROXIMATION

- We get

M 1

hlp(D) =~ hlp(D | 91\/1AP) + In P(HI\/IAP) + 7 111(271') — 5 In |A|

- If the Gaussian prior p(#) is wide enough, and A has full rank,
we can roughly approximate (prove it!) as

1
Inp(D) ~ Inp(D | Oyap) — 5]”111 N,

where M is the number of parameters, NV is the number of
points in D, and we have omitted additive constants.

- This is called the Bayesian information criterion (BIC), or
Schwarz criterion.

1



BAYESIASN LOGISTIC REGRESSION

- And now the full Bayesian treatment.

- Logistic regression is not as simple as linear regression: we
can’t get an exact answer out of a product of logistic sigmoids.

- We'll make a Laplace approximation.



BAYESIASN LOGISTIC REGRESSION

- Gaussian prior:

- The posterior is then

p(w | t) ocp(w)p(t [ w), 1

tnp(w | 6) =~ 5 (w—p,) Tg" (w— )
N
+Zt Iny, +(1—1¢,)In(1 —y,)] + const,

where y,, =a(w' ?,)-



BAYESIASN LOGISTIC REGRESSION

- To approximate, we first find the maximum wy;,p, and then the
covariance matrix is the matrix of second derivatives

Yy =—VVinp(w|t) =%;! +Zyn Y)9, ¢ o

- Our approximation is now

q(w) = N(W [ Wyap, Xn)-



BAYESIASN LOGISTIC REGRESSION

- And we can now get the Bayesian prediction:
p(€1 168 = [ b€y | Gwplw | tdw~ [ o(wTg)gw)dw.

- Note that o(w'¢) depends on w only via its projection on ¢.
- We denote a = w' ¢:

o(w'e) = /5(a —w'¢)o(a)da.



BAYESIASN LOGISTIC REGRESSION

- o(w'¢) = [d(a—w'p)o(a)da, and therefore
[ o oramdw = [ otapla)da,
where p(a) 2/(5(a —w'¢)q(w)dw.

- p(a) is the marginalization of Gaussian ¢(w), where we integrate
over everything which is orthogonal to ¢.



BAYESIASN LOGISTIC REGRESSION

p(a) is the marginalization of Gaussian ¢(w), where we integrate
over everything which is orthogonal to ¢.

- Hence, p(a) is a Gaussian too, and we can find its parameters

o =Bl = [ ap(a)da = [ a(wwTodw = w], 00,

= / g(w) [(WT9)% — (u} )% dw = 6" Sy

- Thus, we get that

p(C; | t) = / o(a)p(a)da = / ()N (a | g 02)da.



BAYESIASN LOGISTIC REGRESSION

“p(Cy | t) = [a(a)N(a] pg,07)da.
- This integral is not easy to take, because sigmoid is hard, but we
can approximate it by approximating o(a) with the probit:

o(a) = ®(Aa) for A = \/7/8.

Exercise. Prove that A = \/7/8y o and ® have the same slope at zero.



BAYESIASN LOGISTIC REGRESSION

- And if we pass to the probit function, its convolution with a
Gaussian will be another probit:

/@(Aa)]\/(a | u,0%)da = ® S -
e

Exercise. Prove it.



BAYESIASN LOGISTIC REGRESSION

- As a result, we get the approximation

/‘O'((L>N(LL | py0?)da ~o (k(o?)u),
1

1+ Zo2

where k(0?) =



BAYESIASN LOGISTIC REGRESSION

- And now, putting it all together, we get the predictive
distribution:

p(Cy | ¢,t) =0 (k(07)p,) , where
:u’a :W&Apd)»
Ul% :¢T2N¢a
1
k(0?) =———.
V1+ Zo?
- By the way, the separating hyperplane p(C, | ¢,t) = 1 is defined
by equation p, = 0, and it's the same as just using wy;ap-

- The difference is important only for more complex criteria.



LOSS FUNCTIONS IN CLASSIFICATION

- And a different look at classification: different methods differ by
which loss function they optimize.

- Classification has a problem with the “correct” error function,
i.e., misclassification rate:

- it's not differentiable everywhere,
- and its derivative is useless.

- Let us look at different loss functions; we have seen several of
them, but there are lots more.



LOSS FUNCTIONS IN CLASSIFICATION

Comparison of Losses

9 — Binomial Deviance
— Classification Error
8 Exponential
—Hinge
T — Logit
Quadratic

14



THANK YOU!

Thank you for your attention!
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