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curse of dimensionality



curse of dimensionality

• 𝑘-NN might yield much better results than a linear model,
especially once we have chosen a good 𝑘.

• Maybe we won’t need anything else?
• Let’s see how 𝑘-NN behaves in high dimension (which is very
realistic).
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curse of dimensionality

• Let us look for nearest neighbors for a point in a unit
hypercube. Suppose that the original distribution was uniform.

• To cover share 𝛼 of test example, we have to cover (in
expectation) a share 𝛼 of the volume, and the expected length
of the side of a hypercube neighborhood in dimension 𝑝 will be
𝑒𝑝(𝛼) = 𝛼1/𝑝.

• E.g., in dimension 10 𝑒10(0.1) = 0.8, 𝑒10(0.01) = 0.63, i.e., to cover
1% of the volume we have to take a neighborhood of length
more than 1

2 w.r.t. each coordinate!
• This is bad for 𝑘-NN computationally too: it’s hard to reject with
a small number of coordinates, and fast algorithms don’t work
well.
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curse of dimensionality

• The second problem from the curse of dimensionality: consider
𝑁 points uniformly distributed in a unit ball of dimension 𝑝.

• The mean distance to zero is

𝑑(𝑝, 𝑁) = (1 − 1
2

1/𝑁
)

1/𝑝

,

e.g., in dimension 10 for 𝑁 = 500 𝑑 ≈ 0.52, i.e., more than 1
2 .

• Most points are closer to the “sides” of the support than to
other points, which is bad for 𝑘-NN: we extrapolate instead of
interpolating.
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curse of dimensionality

• Third phenomenon: problems in optimization.
• To approximately optimize a function of 𝑑 variables on a grid
with step 𝜖, we will need approx. ( 1𝜖 )𝑑 function computations.

• Numerical integration: to integrate a function up to 𝜖, we will
need ( 1𝜖 )𝑑 computations.
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curse of dimensionality

• Dense sets become very sparse. E.g., to get the density created
in dimension 1 with 𝑁 = 100 points we will need 10010 points in
dimension 10.

• The behaviour of functions also becomes more complicated as
dimension grows: to construct regressions in high dimension
with the same accuracy one might need exponentially more
points than in low dimension.

• While a, say, linear model does not have any such effects, it’s
not subject to the curse of dimensionality.

3



curse of dimensionality

• One more example: a normally distributed value will be
concentrated in a thin shell.

Exercise. Convert the density of a Gaussian into polar coordinates and check this
statement.
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equivalent kernel

• In linear regression we had

𝑝(𝑡 ∣ t, 𝛼, 𝛽) = 𝒩(𝑡 ∣ 𝜇⊤
𝑁𝜙(x), 𝜎2

𝑁),

where 𝜎2
𝑁 = 1

𝛽 + 𝜙(x)⊤Σ𝑁𝜙(x).

• Let us rewrite the mean of the posterior as (recall that
𝜇𝑁 = 𝛽Σ𝑁Φ⊤t):

𝑦(x, 𝜇𝑁) = 𝜇⊤
𝑁𝜙(x) = 𝛽𝜙(x)⊤Σ𝑁Φ⊤t =

=
𝑁

∑
𝑛=1

𝛽𝜙(x)⊤Σ𝑁𝜙(x𝑛)𝑡𝑛.
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equivalent kernel

• 𝑦(x, 𝜇𝑁) = ∑𝑁
𝑛=1 𝛽𝜙(x)⊤Σ𝑁𝜙(x𝑛)𝑡𝑛.

• And the prediction can be rewritten as

𝑦(x, 𝜇𝑁) =
𝑁

∑
𝑛=1

𝑘(x, x𝑛)𝑡𝑛.

• I.e., we predict the next point as a linear combination of values
in known points.

• Function 𝑘(x, x′) = 𝛽𝜙(x)⊤Σ𝑁𝜙(x′) is called the equivalent
kernel.
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equivalent kernel
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equivalent kernel
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equivalent kernel

• Equivalent kernel 𝑘(x, x′) is localized around x as a function of
x′, i.e., every point has the largest influence nearby and then
less and less (but it’s not monotone!).

• We could simply define the kernel from the outset and predict
with it without any 𝜙 functions — this is an important idea for
the future.

Exercise. Prove that ∑𝑁
𝑛=1 𝑘(x, x𝑛) = 1.

7



bayesian model comparison



bayesian model comparison

• As the number of parameters increases, overfitting begins.
• How do we choose a model without overfitting? How can we
compare models with different number of parameters?

• Bayesian approach: let’s just compare 𝑝(ℳ ∣ 𝐷). :)
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bayesian model comparison

• Suppose we have a set of models {ℳ𝑖}𝐿
𝑖=1.

• A model is a probability distribution over 𝐷.
• And we can estimate the posterior

𝑝(ℳ𝑖 ∣ 𝐷) ∝ 𝑝(ℳ𝑖)𝑝(𝐷 ∣ ℳ𝑖).
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bayesian model comparison

• If we know the posterior, we can make a prediction:

𝑝(𝑡 ∣ x, 𝐷) =
𝐿

∑
𝑖=1

𝑝(𝑡 ∣ x, ℳ𝑖, 𝒟)𝑝(ℳ𝑖 ∣ 𝐷).

• Model selection is when we approximate the prediction by
choosing the most probable model (a posteriori).
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bayesian model comparison

• If the models are defined parametrically with w, we have

𝑝(𝐷 ∣ ℳ𝑖) = ∫ 𝑝(𝐷 ∣ w, ℳ𝑖)𝑝(w ∣ ℳ𝑖)𝑑w.

• This is the probability to generate 𝐷 if we choose model
parameters with its prior and then sample the data.

• Exactly the denominator from the Bayes’ theorem:

𝑝(w ∣ ℳ𝑖, 𝐷) = 𝑝(𝐷 ∣ w, ℳ𝑖)𝑝(w ∣ ℳ𝑖)
𝑝(𝐷 ∣ ℳ𝑖)

.
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bayesian model comparison

• Suppose that the model has a single parameter 𝑤, and the
posterior is a sharp peak around 𝑤MAP of width Δ𝑤posterior.

• Then we can approximate 𝑝(𝐷) = ∫ 𝑝(𝐷 ∣ 𝑤)𝑝(𝑤)𝑑𝑤 as the value
in the maximum times the width.

• Let’s also assume that the prior distribution is flat,
𝑝(𝑤) = 1

∆𝑤prior
.
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approximating 𝑝(𝑑)
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approximating 𝑝(𝑑)

• Then we get

𝑝(𝐷) = ∫ 𝑝(𝐷 ∣ 𝑤)𝑝(𝑤)𝑑𝑤 ≈ 𝑝 (𝐷 ∣ 𝑤MAP) Δ𝑤posterior
Δ𝑤prior

,

ln 𝑝(𝐷) ≈ ln 𝑝 (𝐷 ∣ 𝑤MAP) + ln (Δ𝑤posterior
Δ𝑤prior

) .

• This means that we add a penalty for “too narrow” posteriors...
that is, precisely the penalty for overfitting!

• For a model of 𝑀 parameters, if we assume that they have
identical Δ𝑤posterior we get

ln 𝑝(𝐷) ≈ ln 𝑝 (𝐷 ∣ 𝑤MAP) + 𝑀 ln (Δ𝑤posterior
Δ𝑤prior

) .
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another view

• In other words: let’s see what kinds of datasets can be
generated by a certain model.

• A simple model (e.g., linear) generates similar datasets, “few”
different datasets, and so has high 𝑝(𝐷 ∣ ℳ).

• A complicated model (e.g., degree 9 poly) generates “many”
different datasets, and so has low 𝑝(𝐷 ∣ ℳ).

• But a complicated model can express datasets that a simple
one cannot; so in total we should choose a “middle ground”
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approximating 𝑝(𝑑)
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the correct answer is better

• Sanity check: we have introduced strange-looking penalties; but
will the true correct answer 𝑝(𝐷 ∣ ℳtrue) be actually optimal in
this sense?

• For a specific dataset, not necessarily.
• But averageing over all datasets sampled from the true
distribution 𝑝(𝐷 ∣ ℳtrue)...
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the correct answer is better

• ...we get

E [ln 𝑝(𝐷 ∣ ℳtrue)
𝑝(𝐷 ∣ ℳ) ] = ∫ 𝑝(𝐷 ∣ ℳtrue) ln 𝑝(𝐷 ∣ ℳtrue)

𝑝(𝐷 ∣ ℳ) 𝑑𝐷.

• This is called Kullback-Leibler divergence between distributions
𝑝(𝐷 ∣ ℳtrue) and 𝑝(𝐷 ∣ ℳ).

Exercise. Prove that the Kullback-Leibler divergence is always nonnegative, i.e.,
𝑝(𝐷 ∣ ℳtrue) ≥ 𝑝(𝐷 ∣ ℳ) for every ℳ.
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model comparison with laplace approximation

• But we can do better than just a flat plateau! Let’s try Laplace
approximation for this case.

• Again, to compare models {ℳ𝑖}𝐿
𝑖=1, we evaluate with test set 𝐷

the posterior

𝑝(ℳ𝑖 ∣ 𝐷) ∝ 𝑝(ℳ𝑖)𝑝(𝐷 ∣ ℳ𝑖).

• If the models are parametric then
𝑝(𝐷 ∣ ℳ𝑖) = ∫ 𝑝(𝐷 ∣ 𝜃, ℳ𝑖)𝑝(𝜃 ∣ ℳ𝑖)𝑑𝜃.

• This is the probability to generate 𝐷 if we choose model
parameters according to its prior, the Bayes theorem’s
denominator:

𝑝(𝜃 ∣ ℳ𝑖, 𝐷) = 𝑝(𝐷 ∣ 𝜃, ℳ𝑖)𝑝(𝜃 ∣ ℳ𝑖)
𝑝(𝐷 ∣ ℳ𝑖)

.
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model comparison with laplace approximation

• Let’s approximate with a Gaussian; integrating, we get

𝑍 = ∫ 𝑓(z)𝑑z ≈ ∫ 𝑓(z0)𝑒− 1
2 (z−z0)⊤A(z−z0)𝑑z = 𝑓(z0) (2𝜋)𝑀/2

|A|1/2 .

• And we have 𝑍 = 𝑝(𝐷), 𝑓(𝜃) = 𝑝(𝐷 ∣ 𝜃)𝑝(𝜃).
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model comparison with laplace approximation

• We get

ln 𝑝(𝐷) ≈ ln 𝑝(𝐷 ∣ 𝜃MAP) + ln 𝑃(𝜃MAP) + 𝑀
2 ln(2𝜋) − 1

2 ln |A|.

• ln 𝑃 (𝜃MAP) + 𝑀
2 ln(2𝜋) − 1

2 ln |A| is called the Occam’s factor.
• A = −∇∇ ln 𝑝(𝐷 ∣ 𝜃MAP)𝑝(𝜃MAP) = −∇∇ ln 𝑝(𝜃MAP ∣ 𝐷).
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model comparison with laplace approximation

• We get

ln 𝑝(𝐷) ≈ ln 𝑝(𝐷 ∣ 𝜃MAP) + ln 𝑃(𝜃MAP) + 𝑀
2 ln(2𝜋) − 1

2 ln |A|.

• If the Gaussian prior 𝑝(𝜃) is sufficiently wide, and A has full
rank, we can roughly approximate as (prove it!)

ln 𝑝(𝐷) ≈ ln 𝑝(𝐷 ∣ 𝜃MAP) − 1
2𝑀 ln 𝑁,

where 𝑀 is the number of parameters, 𝑁 is the number of
points in 𝐷, and we have omitted additive constants.

• This is called the Bayesian information criterion (BIC), or
Schwarz criterion.
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thank you!

Thank you for your attention!
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