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CURSE OF DIMENSIONALITY




CURSE OF DIMENSIONALITY

- k-NN might yield much better results than a linear mode|,
especially once we have chosen a good k.

- Maybe we won't need anything else?

- Let's see how k-NN behaves in high dimension (which is very
realistic).



CURSE OF DIMENSIONALITY

- Let us look for nearest neighbors for a point in a unit
hypercube. Suppose that the original distribution was uniform.

- To cover share o of test example, we have to cover (in
expectation) a share « of the volume, and the expected length
of the side of a hypercube neighborhood in dimension p will be
e,(a) = all?,

- Eg, in dimension 10 e;4(0.1) = 0.8, ¢14(0.01) = 0.63, i.e., to cover
1% of the volume we have to take a neighborhood of length
more than 1 w.rt. each coordinate!

- This is bad for k-NN computationally too: it's hard to reject with
a small number of coordinates, and fast algorithms don’t work
well.



CURSE OF DIMENSIONALITY

- The second problem from the curse of dimensionality: consider
N points uniformly distributed in a unit ball of dimension p.

- The mean distance to zero is

11/N 1/p

e.g, in dimension 10 for N = 500 d ~ 0.52, i.e., more than 1.

- Most points are closer to the “sides” of the support than to
other points, which is bad for k-NN: we extrapolate instead of
interpolating.



CURSE OF DIMENSIONALITY

- Third phenomenon: problems in optimization.

- To approximately optimize a function of d variables on a grid
. . d . .
with step ¢, we will need approx. (1)" function computations.

€

- Numerical integration: to integrate a function up to ¢, we will
need (%)d computations.



CURSE OF DIMENSIONALITY

- Dense sets become very sparse. E.g., to get the density created
in dimension 1 with N = 100 points we will need 100'° points in
dimension 10.

- The behaviour of functions also becomes more complicated as
dimension grows: to construct regressions in high dimension
with the same accuracy one might need exponentially more
points than in low dimension.

- While a, say, linear model does not have any such effects, it's
not subject to the curse of dimensionality.



CURSE OF DIMENSIONALITY

- One more example: a normally distributed value will be
concentrated in a thin shell.
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Exercise. Convert the density of a Gaussian into polar coordinates and check this

statement.
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EQUIVALENT KERNEL

- In linear regression we had

Pt |t B) = N(t | pyo(x),0%),
where 0%, = % + ¢(x) TS yo(x).

- Let us rewrite the mean of the posterior as (recall that
v =BEN®Tt):

Y(x, ) = pld(x) = B(x) NPTt =
N
}: (%) Eno(x,)t,
n=1



EQUIVALENT KERNEL

y(X, MN) = Zn 1 B(b( )TZN¢<Xn)tn

- And the prediction can be rewritten as

k(x

Mz

XMN:

n=1

- l.e., we predict the next point as a linear combination of values
in known points.

- Function k(x,x’) = B¢ (x) "8 yo(x') is called the equivalent
kernel.
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EQUIVALENT KERNEL
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EQUIVALENT KERNEL

- Equivalent kernel k(x,x”) is localized around x as a function of
x’, i.e., every point has the largest influence nearby and then
less and less (but it's not monotonel).

- We could simply define the kernel from the outset and predict
with it without any ¢ functions — this is an important idea for

the future.
Exercise. Prove that 27  k(x,x,,) = 1.
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BAYESIAN MODEL COMPARISON

- As the number of parameters increases, overfitting begins.

- How do we choose a model without overfitting? How can we
compare models with different number of parameters?

- Bayesian approach: let's just compare p(M | D). :)



BAYESIAN MODEL COMPARISON

- Suppose we have a set of models {M;}£ .
- A model is a probability distribution over D.

- And we can estimate the posterior

p(M; | D) o< p(M;)p(D | M;).



BAYESIAN MODEL COMPARISON

- If we know the posterior, we can make a prediction:

L
p(t|x,D) = p(t|xM;D)p(M; | D).

i=1

- Model selection is when we approximate the prediction by
choosing the most probable model (a posteriori).



BAYESIAN MODEL COMPARISON

- If the models are defined parametrically with w, we have
p(D120) = [ 5D w2 )p(w | 2, )aw.

- This is the probability to generate D if we choose model
parameters with its prior and then sample the data.

- Exactly the denominator from the Bayes' theorem:

(D | w, M;)p(w | Mz)

_bp




BAYESIAN MODEL COMPARISON

- Suppose that the model has a single parameter w, and the
posterior is a sharp peak around wy;ap Of width Aw

posterior®

- Then we can approximate p(D) = [ p(D | w)p(w)dw as the value
in the maximum times the width.

- Let’s also assume that the prior distribution is flat,
p(w) = A L

Wprior




APPROXIMATING p(d)
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APPROXIMATING p(d)

- Then we get

A/wposterior
Aw ’

prior

p(D) = / p(D | w)p(w)dw ~ p (D | wyap)

1 D 1 D 1 Au}posterior
np(D) ~ Inp (D | wypp) + In Aw )

prior

- This means that we add a penalty for “too narrow” posteriors...
that is, precisely the penalty for overfitting!

- For a model of M parameters, if we assume that they have
identical Aw,ogterior WE g€t

Aw,_ o
np(D) ~Inp (D | wysp) + MIn (W) .
w

prior
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ANOTHER VIEW

- In other words: let's see what kinds of datasets can be
generated by a certain model.

- Asimple model (e.g, linear) generates similar datasets, “few”
different datasets, and so has high p(D | M).

- A complicated model (e.g,, degree 9 poly) generates “many”
different datasets, and so has low p(D | M).

- But a complicated model can express datasets that a simple
one cannot; so in total we should choose a “middle ground”



APPROXIMATING p(d)

p(D)

M.




THE CORRECT ANSWER IS BETTER

- Sanity check: we have introduced strange-looking penalties; but
will the true correct answer p(D | M,,,.) be actually optimal in
this sense?

- For a specific dataset, not necessarily.

- But averageing over all datasets sampled from the true
distribution p(D | M i14e) -

14



THE CORRECT ANSWER IS BETTER

- ..we get

p<D|Mtrue) _ np(D|Mtrue)
E[lnp(D|M) ]—/p(D]V[tme)l 7p(D|M) dD.

- This is called Kullback-Leibler divergence between distributions
p(D ‘ Mtrue) and p(D ‘ M)

Exercise. Prove that the Kullback-Leibler divergence is always nonnegative, i.e.,
p(D ‘ Mtrue) 2 p(D | M) fOI' every M
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MODEL COMPARISON WITH LAPLACE APPROXIMATION

- But we can do better than just a flat plateau! Let's try Laplace
approximation for this case.

- Again, to compare models {M;}L |, we evaluate with test set D
the posterior

p(M; | D) o< p(M;)p(D | M;).

- If the models are parametric then
p(D|M;) = fp(D | 6, 2;)p(0 | M;)do.

- This is the probability to generate D if we choose model
parameters according to its prior, the Bayes theorem’s
denominator:

p(D | 8, M;)p(6 | M,)




MODEL COMPARISON WITH LAPLACE APPROXIMATION

- Let's approximate with a Gaussian; integrating, we get

' o o\ M/2
7= /f(z)dz ~ /f(zo)ej(rzo) Aetoldz = f<z0)(A)1/2 :

- And we have Z = p(D), f(0) =p(D | 6)p(0).



MODEL COMPARISON WITH LAPLACE APPROXIMATION

- We get

M 1

hlp(D) =~ hlp(D | 91\/1AP) + In P(HI\/IAP) + 7 111(271') — 5 In |A|

* InP(Oypp) + Y In(27) — L 1In|A] is called the Occam’s factor.
*A=—-VVinp(D | Oyap)p(fmar) = —VVInp(Oyap | D).



MODEL COMPARISON WITH LAPLACE APPROXIMATION

- We get

M 1

hlp(D) =~ hlp(D | 91\/1AP) + In P(HI\/IAP) + 7 111(271') — 5 In |A|

- If the Gaussian prior p(@) is sufficiently wide, and A has full
rank, we can roughly approximate as (prove it!)

1
Inp(D) ~ Inp(D | Oyap) — 5]”111 N,

where M is the number of parameters, NV is the number of
points in D, and we have omitted additive constants.

- This is called the Bayesian information criterion (BIC), or
Schwarz criterion.



THANK YOU!

Thank you for your attention!
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