MODEL SELECTION

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
March 20, 2017

CURSE OF DIMENSIONALITY

CURSE OF DIMENSIONALITY

- k-NN might yield much better results than a linear model, especially once we have chosen a good k.
- Maybe we won't need anything else?
- Let's see how k-NN behaves in high dimension (which is very realistic).

CURSE OF DIMENSIONALITY

- Let us look for nearest neighbors for a point in a unit hypercube. Suppose that the original distribution was uniform.
- To cover share α of test example, we have to cover (in expectation) a share α of the volume, and the expected length of the side of a hypercube neighborhood in dimension p will be $e_{p}(\alpha)=\alpha^{1 / p}$.
- E.g., in dimension $10 e_{10}(0.1)=0.8, e_{10}(0.01)=0.63$, i.e., to cover 1% of the volume we have to take a neighborhood of length more than $\frac{1}{2}$ w.r.t. each coordinate!
- This is bad for k-NN computationally too: it's hard to reject with a small number of coordinates, and fast algorithms don't work well.

CURSE OF DIMENSIONALITY

- The second problem from the curse of dimensionality: consider N points uniformly distributed in a unit ball of dimension p.
- The mean distance to zero is

$$
d(p, N)=\left(1-\frac{1}{2}^{1 / N}\right)^{1 / p}
$$

e.g., in dimension 10 for $N=500 d \approx 0.52$, i.e., more than $\frac{1}{2}$.

- Most points are closer to the "sides" of the support than to other points, which is bad for k-NN: we extrapolate instead of interpolating.

CURSE OF DIMENSIONALITY

- Third phenomenon: problems in optimization.
- To approximately optimize a function of d variables on a grid with step ϵ, we will need approx. $\left(\frac{1}{\epsilon}\right)^{d}$ function computations.
- Numerical integration: to integrate a function up to ϵ, we will need $\left(\frac{1}{\epsilon}\right)^{d}$ computations.

CURSE OF DIMENSIONALITY

- Dense sets become very sparse. E.g., to get the density created in dimension 1 with $N=100$ points we will need 100^{10} points in dimension 10.
- The behaviour of functions also becomes more complicated as dimension grows: to construct regressions in high dimension with the same accuracy one might need exponentially more points than in low dimension.
- While a, say, linear model does not have any such effects, it's not subject to the curse of dimensionality.

CURSE OF DIMENSIONALITY

- One more example: a normally distributed value will be concentrated in a thin shell.

Exercise. Convert the density of a Gaussian into polar coordinates and check this statement.

EQUIVALENT KERNEL

EQUIVALENT KERNEL

- In linear regression we had

$$
\begin{aligned}
p(t \mid \mathbf{t}, \alpha, \beta) & =\mathcal{N}\left(t \mid \mu_{N}^{\top} \phi(\mathbf{x}), \sigma_{N}^{2}\right), \\
\text { where } \sigma_{N}^{2} & =\frac{1}{\beta}+\phi(\mathbf{x})^{\top} \Sigma_{N} \phi(\mathbf{x}) .
\end{aligned}
$$

- Let us rewrite the mean of the posterior as (recall that $\left.\mu_{N}=\beta \Sigma_{N} \Phi^{\top} \mathbf{t}\right)$:

$$
\begin{aligned}
y\left(\mathbf{x}, \mu_{N}\right)=\mu_{N}^{\top} \phi(\mathbf{x})=\beta \phi(\mathbf{x})^{\top} \Sigma_{N} \Phi^{\top} \mathbf{t} & = \\
& =\sum_{n=1}^{N} \beta \phi(\mathbf{x})^{\top} \Sigma_{N} \phi\left(\mathbf{x}_{n}\right) t_{n}
\end{aligned}
$$

EQUIVALENT KERNEL

- $y\left(\mathbf{x}, \mu_{N}\right)=\sum_{n=1}^{N} \beta \phi(\mathbf{x})^{\top} \Sigma_{N} \phi\left(\mathbf{x}_{n}\right) t_{n}$.
- And the prediction can be rewritten as

$$
y\left(\mathbf{x}, \mu_{N}\right)=\sum_{n=1}^{N} k\left(\mathbf{x}, \mathbf{x}_{n}\right) t_{n}
$$

- I.e., we predict the next point as a linear combination of values in known points.
- Function $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\beta \phi(\mathbf{x})^{\top} \Sigma_{N} \phi\left(\mathbf{x}^{\prime}\right)$ is called the equivalent kernel.

$$
\Rightarrow
$$

EQUIVALENT KERNEL

EQUIVALENT KERNEL

- Equivalent kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is localized around \mathbf{x} as a function of x^{\prime}, i.e., every point has the largest influence nearby and then less and less (but it's not monotone!).
- We could simply define the kernel from the outset and predict with it without any ϕ functions - this is an important idea for the future.
Exercise. Prove that $\sum_{n=1}^{N} k\left(\mathbf{x}, \mathbf{x}_{n}\right)=1$.

BAYESIAN MODEL COMPARISON

BAYESIAN MODEL COMPARISON

- As the number of parameters increases, overfitting begins.
- How do we choose a model without overfitting? How can we compare models with different number of parameters?
- Bayesian approach: let's just compare $p(\mathcal{M} \mid D)$. :)

BAYESIAN MODEL COMPARISON

- Suppose we have a set of models $\left\{\mathcal{M}_{i}\right\}_{i=1}^{L}$.
- A model is a probability distribution over D.
- And we can estimate the posterior

$$
p\left(\mathcal{M}_{i} \mid D\right) \propto p\left(\mathcal{M}_{i}\right) p\left(D \mid \mathcal{M}_{i}\right) .
$$

BAYESIAN MODEL COMPARISON

- If we know the posterior, we can make a prediction:

$$
p(t \mid \mathbf{x}, D)=\sum_{i=1}^{L} p\left(t \mid \mathbf{x}, \mathcal{M}_{i}, \mathcal{D}\right) p\left(\mathcal{M}_{i} \mid D\right)
$$

- Model selection is when we approximate the prediction by choosing the most probable model (a posteriori).

BAYESIAN MODEL COMPARISON

- If the models are defined parametrically with \mathbf{w}, we have

$$
p\left(D \mid \mathcal{M}_{i}\right)=\int p\left(D \mid \mathbf{w}, \mathcal{M}_{i}\right) p\left(\mathbf{w} \mid \mathcal{M}_{i}\right) d \mathbf{w} .
$$

- This is the probability to generate D if we choose model parameters with its prior and then sample the data.
- Exactly the denominator from the Bayes' theorem:

$$
p\left(\mathbf{w} \mid \mathcal{M}_{i}, D\right)=\frac{p\left(D \mid \mathbf{w}, \mathcal{M}_{i}\right) p\left(\mathbf{w} \mid \mathcal{M}_{i}\right)}{p\left(D \mid \mathcal{M}_{i}\right)} .
$$

BAYESIAN MODEL COMPARISON

- Suppose that the model has a single parameter w, and the posterior is a sharp peak around $w_{\text {MAP }}$ of width $\Delta w_{\text {posterior }}$.
- Then we can approximate $p(D)=\int p(D \mid w) p(w) d w$ as the value in the maximum times the width.
- Let's also assume that the prior distribution is flat, $p(w)=\frac{1}{\Delta w_{\text {prior }}}$.

APPROXIMATING $p(d)$

APPROXIMATING $p(d)$

- Then we get

$$
\begin{aligned}
p(D) & =\int p(D \mid w) p(w) d w \approx p\left(D \mid w_{\text {MAP }}\right) \frac{\Delta w_{\text {posterior }}}{\Delta w_{\text {prior }}} \\
\ln p(D) & \approx \ln p\left(D \mid w_{\mathrm{MAP}}\right)+\ln \left(\frac{\Delta w_{\text {posterior }}}{\Delta w_{\text {prior }}}\right)
\end{aligned}
$$

- This means that we add a penalty for "too narrow" posteriors... that is, precisely the penalty for overfitting!
- For a model of M parameters, if we assume that they have identical $\Delta w_{\text {posterior }}$ we get

$$
\ln p(D) \approx \ln p\left(D \mid w_{\mathrm{MAP}}\right)+M \ln \left(\frac{\Delta w_{\text {posterior }}}{\Delta w_{\text {prior }}}\right) .
$$

ANOTHER VIEW

- In other words: let's see what kinds of datasets can be generated by a certain model.
- A simple model (e.g., linear) generates similar datasets, "few" different datasets, and so has high $p(D \mid \mathcal{M})$.
- A complicated model (e.g., degree 9 poly) generates "many" different datasets, and so has low $p(D \mid \mathcal{M})$.
- But a complicated model can express datasets that a simple one cannot; so in total we should choose a "middle ground"

APPROXIMATING $p(d)$

THE CORRECT ANSWER IS BETTER

- Sanity check: we have introduced strange-looking penalties; but will the true correct answer $p\left(D \mid \mathcal{M}_{\text {true }}\right)$ be actually optimal in this sense?
- For a specific dataset, not necessarily.
- But averageing over all datasets sampled from the true distribution $p\left(D \mid \mathcal{M}_{\text {true }}\right)$...

THE CORRECT ANSWER IS BETTER

- ...we get

$$
\mathrm{E}\left[\ln \frac{p\left(D \mid \mathcal{M}_{\text {true }}\right)}{p(D \mid \mathcal{M})}\right]=\int p\left(D \mid \mathcal{M}_{\text {true }}\right) \ln \frac{p\left(D \mid \mathcal{M}_{\text {true }}\right)}{p(D \mid \mathcal{M})} d D
$$

- This is called Kullback-Leibler divergence between distributions $p\left(D \mid \mathcal{M}_{\text {true }}\right)$ and $p(D \mid \mathcal{M})$.
Exercise. Prove that the Kullback-Leibler divergence is always nonnegative, i.e., $p\left(D \mid \mathcal{M}_{\text {true }}\right) \geq p(D \mid \mathcal{M})$ for every \mathcal{M}.
- But we can do better than just a flat plateau! Let's try Laplace approximation for this case.
- Again, to compare models $\left\{\mathcal{M}_{i}\right\}_{i=1}^{L}$, we evaluate with test set D the posterior

$$
p\left(\mathcal{M}_{i} \mid D\right) \propto p\left(\mathcal{M}_{i}\right) p\left(D \mid \mathcal{M}_{i}\right)
$$

- If the models are parametric then
$p\left(D \mid \mathcal{M}_{i}\right)=\int p\left(D \mid \theta, \mathcal{M}_{i}\right) p\left(\theta \mid \mathcal{M}_{i}\right) d \theta$.
- This is the probability to generate D if we choose model parameters according to its prior, the Bayes theorem's denominator:

$$
p\left(\theta \mid \mathcal{M}_{i}, D\right)=\frac{p\left(D \mid \theta, \mathcal{M}_{i}\right) p\left(\theta \mid \mathcal{M}_{i}\right)}{p\left(D \mid \mathcal{M}_{i}\right)}
$$

MODEL COMPARISON WITH LAPLACE APPROXIMATION

- Let's approximate with a Gaussian; integrating, we get

$$
Z=\int f(\mathbf{z}) d \mathbf{z} \approx \int f\left(\mathbf{z}_{0}\right) e^{-\frac{1}{2}\left(\mathbf{z}-\mathbf{z}_{0}\right)^{\top} \mathbf{A}\left(\mathbf{z}-\mathbf{z}_{0}\right)} d \mathbf{z}=f\left(\mathbf{z}_{0}\right) \frac{(2 \pi)^{M / 2}}{|\mathbf{A}|^{1 / 2}} .
$$

- And we have $Z=p(D), f(\theta)=p(D \mid \theta) p(\theta)$.

MODEL COMPARISON WITH LAPLACE APPROXIMATION

- We get

$$
\ln p(D) \approx \ln p\left(D \mid \theta_{\mathrm{MAP}}\right)+\ln P\left(\theta_{\mathrm{MAP}}\right)+\frac{M}{2} \ln (2 \pi)-\frac{1}{2} \ln |\mathbf{A}|
$$

- $\ln P\left(\theta_{\mathrm{MAP}}\right)+\frac{M}{2} \ln (2 \pi)-\frac{1}{2} \ln |\mathbf{A}|$ is called the Occam's factor.
- $\mathbf{A}=-\nabla \nabla \ln p\left(D \mid \theta_{\mathrm{MAP}}\right) p\left(\theta_{\mathrm{MAP}}\right)=-\nabla \nabla \ln p\left(\theta_{\mathrm{MAP}} \mid D\right)$.
- We get

$$
\ln p(D) \approx \ln p\left(D \mid \theta_{\mathrm{MAP}}\right)+\ln P\left(\theta_{\mathrm{MAP}}\right)+\frac{M}{2} \ln (2 \pi)-\frac{1}{2} \ln |\mathbf{A}| .
$$

- If the Gaussian prior $p(\theta)$ is sufficiently wide, and \mathbf{A} has full rank, we can roughly approximate as (prove it!)

$$
\ln p(D) \approx \ln p\left(D \mid \theta_{\mathrm{MAP}}\right)-\frac{1}{2} M \ln N
$$

where M is the number of parameters, N is the number of points in D, and we have omitted additive constants.

- This is called the Bayesian information criterion (BIC), or Schwarz criterion.

Thank you for your attention!

