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SVM FOR LINEAR CLASSIFICATION




PROBLEM SETTING

- Support vector machines solve the classification problem.
- Again, each data point lies in the n-dimensional space R™.

- Formally, we have points z;, i = 1..m, and points have labels
y; = +1.

- The question is to separate the data with an
(n — 1)=-dimensional hyperplane and find that hyperplane.

- Is that all?



PROBLEM SETTING

- Not quite; we also want to separate with this hyperplane as well
as possible.

- l.e, the two separated classes should be as far as possible from
the hyperplane.

- Practical too: then small disturbances in the hyperplane won't
gurt anything.



EXAMPLE




CONVEX HULLS

- Find two points in convex hulls of the data and use the
perpendicular bisector between them.

- Formally this turns into a quadratic optimization problem:

min{|c—d|2, Wherec:g oz, d= E aixl}
[
y;=—1

y;=1

given that Z oy = Z o; =10, >0.

y;=1 y;=—1

- We can solve this with general optimization algorithms.



EXAMPLE




MAXIMIZING THE MARGIN

- Or we could maximize the margin between two parallel support
planes and then use the parallel one in the middle.

- A'support hyperplane for a set of points X is a hyperplane such
that all points from X lie on the same side of this hyperplane.

- Formally speaking, the distance from point x to hyperplane
y(X) = WTX —+ Wy = 0 equals h/(ix‘)\

Iwl -



MAXIMIZING THE MARGIN

- Distance from point x to hyperplane y(x) = w'x + w, = 0
equals =l

Twl -
- All points have correct classification: t,y(x,,) > 0 (t,, € {—1,1}).
- And we want to find

.ty
arg max min =
v " ]

1

= argmax_ {|w| min [t,(w'x, + wo)]} .



MAXIMIZING THE MARGIN

s argmax o {m min,, [t,(w'x, + wo)]} . That's hard!
- But we can renormalize w!

- Let's renormalize so that min,, [t,,(W'x, + w,)] = 1.



EXAMPLE




MAXIMIZING THE MARGIN

- We also get a quadratic programming problem:

1 .
min {§\|w\|2} given that ¢, (w'x, + wy) > 1
w,



RESULTS

- We get good results. SVMs often find stable solutions, which
solves overfitting to a large extent and leads to better
predictions.

- In a sense, solutions with “thick” hyperplanes between the data
contain more information than “thin” ones because there are
fewer “thick” ones.
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EXAMPLE




DUAL OPTIMIZATION PROBLEMS

- Let’s recall what dual problems are.

- Direct optimization problem:
min {f(x)} given that h(z) =0, g(z) <0, z € X.

- For the dual problem we introduce parameters A corresponding
to equalities; u, to inequalities.



DUAL OPTIMIZATION PROBLEMS

- Direct optimization problem:
min {f(x)} given that h(z) =0, g(z) <0, z € X.

- Dual optimization problem:

min {¢(\, p)} given that u > 0,
where ¢(\, ) = mlIgl)f( {f(@)+ATh(z)+u'g(z)}.



DUAL OPTIMIZATION PROBLEMS

- Then, if (A, z) is an admissible solution of the dual problem, and
z is an admissible solution of the direct problem, then

o\ ) = inf {f(x) + ATh(z) + &' g(x)} <
< f(@) + XTh(Z) + T 9(@) < f(@).

- This is called weak duality (only <), but equality also holds in
many cases.



DUAL OPTIMIZATION PROBLEMS

- For linear programming the direct problem is
minc'x given that Az = b, z € X = {z < 0}.
- Then the dual problem is
P(\) = ig%{cﬂc +AT(b— Ax)} =

=T+ ,i;;fo {(c" =ATA)z} =

ATh, ifeT —ATA>0,
—oo otherwise.



DUAL OPTIMIZATION PROBLEMS

- For linear programming the direct problem is
min {c'z} giventhat Az =b, z € X = {z <0}
- Dual problem:

max {b'A} giventhat ATA < ¢, A are unbounded.



DUAL OPTIMIZATION PROBLEMS

- For quadratic programming the direct problem is
: 1 T T ;
min | 52 Qx +c'x ¢ given that Az < b,

where Q is a positive semidefinite matrix (i.e, 2TQx > 0 for
every x).

- Dual problem (check!):
max {%uTDM +u'd— %CTQ’lc} given that ¢ > 0,

where D = —AQ AT (negative definite matrix),
d=—-b—AQ 'c.



DUAL PROBLEM K SVM

- In the case of SVMs we introduce Lagrange multipliers:
L(W>w07 7HW“2 Z& W X + wO) - 1] (o2 > 0.

- Taking derivatives w.r.t. w and w,, we equate to zero and get

W= E an nXn>
0= E a,t,.
n
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DUAL PROBLEM K SVM

- Substituting into L(w, w,, ), we get

Z o, — = Z Z Qg tat, (X0%,,)

given thata,, > 0, _a,t, = 0.

n

- This is the dual problem which we use in SVMs.
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PREDICTION AND KKT

- For prediction we look at the sign of y(x):

N
y(X) = Z antnxTXn + Wop-
n=1

- So the predictions depend on all points x,,?!..



PREDICTION AND KKT

- ..not. ;) KKT (Karush-Kuhn-Tucker) conditions:

o, >0,
tny(xn) =1l > 07
- i.e, the actual prediction depends on a small number of support

vectors for which ¢,y(x,,) = 1 (they are exactly at the boundary
of the separating surface).



PROBLEM SETTING

- All these methods work when the data are actually linearly
separable.

- What if they are not? At least a little?

- First question: what do we do in the first approach, with convex
hulls?



REDUCED CONVEX HULLS

- We can consider reduced convex hulls where coefficients are
bounded stronger than just by 1:

- Then for sufficiently small D reduced convex hulls will be
disjoint, and we can find the optimal hyperplane between them.

- The reductions are much stronger around single outliers than in
dense regions.



EXAMPLE
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FOR THE SUPPORT VECTORS

- For the support vectors we also have to change something.
What exactly?
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FOR THE SUPPORT VECTORS

- For the support vectors we also have to change something.
What exactly?

- We add to the objective function a nonnegative new error term,
called slack:

m
i b|[2 + C .
g}gi{Ilel + EIZ}

=

given that ¢, (w - Z; — wy) + 2z; > 1.

- This is the direct problem...
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EXAMPLE
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DUAL REFORMULATION

- ..and this is the dual:

m
mm{ ZZQI‘J%Q] ¥J) —Zai,
i—1

=il 9=

where 3 "t,0; =0, 0<a; < O.}

- This is most often used in SVM theory.

- The only difference from the linearly separable case is the
upper bound C on ay, i.e, on the influence of every point.
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RESUME

- Support vector machines are a great fit for linear classification.

- But we need to solve a quadratic programming problem, which
may be prohibitively complex.

- Practical note: usually requires normalization/whitening of the
data.
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SVM AND EMPIRICAL RISK

- Another look at SVM: what is the basic classification problem?

- The goal is to minimize empirical risk, i.e., the number of wrong
answers:

Z [y; # ] = mvgn.

n

- And if the function is linear with parameters w, wy, it is
equivalent to

Z [fl (X;EW — u)o) < O} — min.

n

- We call the value M; = x| w — w, the margin.
- Hard to optimize directly...
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SVM AND EMPIRICAL RISK

- .50 we replace with an upper bound:

S OIM <01 <Y (1—M,) min.

n

- And add a regularizer for stability:

1
) < — M. i 2 in.
E [M, < 0] < En (1—M;)+ 50 [w]* — min

n

- Et voila: we've got the SVM problem again!
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THANK YOU!

Thank you for your attention!
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