
support vector machines

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
March 21, 2017



svm for linear classification



problem setting

• Support vector machines solve the classification problem.
• Again, each data point lies in the 𝑛–dimensional space ℝ𝑛.
• Formally, we have points 𝑥𝑖, 𝑖 = 1..𝑚, and points have labels

𝑦𝑖 = ±1.
• The question is to separate the data with an

(𝑛 − 1)–dimensional hyperplane and find that hyperplane.
• Is that all?
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problem setting

• Not quite; we also want to separate with this hyperplane as well
as possible.

• I.e., the two separated classes should be as far as possible from
the hyperplane.

• Practical too: then small disturbances in the hyperplane won’t
gurt anything.
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example
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convex hulls

• Find two points in convex hulls of the data and use the
perpendicular bisector between them.

• Formally this turns into a quadratic optimization problem:

min
𝛼

{||𝑐 − 𝑑||2, where 𝑐 = ∑
𝑦𝑖=1

𝛼𝑖𝑥𝑖, 𝑑 = ∑
𝑦𝑖=−1

𝛼𝑖𝑥𝑖}

given that ∑
𝑦𝑖=1

𝛼𝑖 = ∑
𝑦𝑖=−1

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0.

• We can solve this with general optimization algorithms.
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maximizing the margin

• Or we could maximize the margin between two parallel support
planes and then use the parallel one in the middle.

• A support hyperplane for a set of points 𝑋 is a hyperplane such
that all points from 𝑋 lie on the same side of this hyperplane.

• Formally speaking, the distance from point x to hyperplane
𝑦(x) = w⊤x + 𝑤0 = 0 equals |𝑦(x)|

‖w‖ .
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maximizing the margin

• Distance from point x to hyperplane 𝑦(x) = w⊤x + 𝑤0 = 0
equals |𝑦(x)|

‖w‖ .
• All points have correct classification: 𝑡𝑛𝑦(x𝑛) > 0 (𝑡𝑛 ∈ {−1, 1}).
• And we want to find

arg maxw,𝑤0
min

𝑛
𝑡𝑛𝑦(x𝑛)

‖w‖ =

= arg maxw,𝑤0
{ 1

‖w‖ min
𝑛

[𝑡𝑛(w⊤x𝑛 + 𝑤0)]} .
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maximizing the margin

• arg maxw,𝑤0
{ 1

‖w‖ min𝑛 [𝑡𝑛(w⊤x𝑛 + 𝑤0)]} . That’s hard!
• But we can renormalize w!
• Let’s renormalize so that min𝑛 [𝑡𝑛(w⊤x𝑛 + 𝑤0)] = 1.
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maximizing the margin

• We also get a quadratic programming problem:

min
�⃗�,𝑏

{1
2||w||2} given that 𝑡𝑛(w⊤x𝑛 + 𝑤0) ≥ 1.
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results

• We get good results. SVMs often find stable solutions, which
solves overfitting to a large extent and leads to better
predictions.

• In a sense, solutions with “thick” hyperplanes between the data
contain more information than “thin” ones because there are
fewer “thick” ones.
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dual optimization problems

• Let’s recall what dual problems are.
• Direct optimization problem:

min {𝑓(𝑥)} given that ℎ(𝑥) = 0, 𝑔(𝑥) ≤ 0, 𝑥 ∈ 𝑋.

• For the dual problem we introduce parameters 𝜆 corresponding
to equalities; 𝜇, to inequalities.
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dual optimization problems

• Direct optimization problem:

min {𝑓(𝑥)} given that ℎ(𝑥) = 0, 𝑔(𝑥) ≤ 0, 𝑥 ∈ 𝑋.

• Dual optimization problem:

min {𝜙(𝜆, 𝜇)} given that 𝜇 ≥ 0,
where 𝜙(𝜆, 𝜇) = inf

𝑥∈𝑋
{𝑓(𝑥) + 𝜆⊤ℎ(𝑥) + 𝜇⊤𝑔(𝑥)} .
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dual optimization problems

• Then, if (�̄�, ̄𝜇) is an admissible solution of the dual problem, and
̄𝑥 is an admissible solution of the direct problem, then

𝜙(�̄�, ̄𝜇) = inf
𝑥∈𝑋

{𝑓(𝑥) + �̄�⊤ℎ(𝑥) + ̄𝜇⊤𝑔(𝑥)} ≤

≤ 𝑓( ̄𝑥) + �̄�⊤ℎ( ̄𝑥) + ̄𝜇⊤𝑔( ̄𝑥) ≤ 𝑓( ̄𝑥).

• This is called weak duality (only ≤), but equality also holds in
many cases.
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dual optimization problems

• For linear programming the direct problem is

min 𝑐⊤𝑥 given that 𝐴𝑥 = 𝑏, 𝑥 ∈ 𝑋 = {𝑥 ≤ 0}.

• Then the dual problem is

𝜙(𝜆) = inf
𝑥≥0

{𝑐⊤𝑥 + 𝜆⊤(𝑏 − 𝐴𝑥)} =

= 𝜆⊤𝑏 + inf
𝑥≥0

{(𝑐⊤ − 𝜆⊤𝐴)𝑥} =

= {𝜆⊤𝑏, if 𝑐⊤ − 𝜆⊤𝐴 ≥ 0,
−∞ otherwise.
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dual optimization problems

• For linear programming the direct problem is

min {𝑐⊤𝑥} given that 𝐴𝑥 = 𝑏, 𝑥 ∈ 𝑋 = {𝑥 ≤ 0}.

• Dual problem:

max {𝑏⊤𝜆} given that 𝐴⊤𝜆 ≤ 𝑐, 𝜆 are unbounded.
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dual optimization problems

• For quadratic programming the direct problem is

min {1
2𝑥⊤𝑄𝑥 + 𝑐⊤𝑥} given that 𝐴𝑥 ≤ 𝑏,

where 𝑄 is a positive semidefinite matrix (i.e., 𝑥⊤𝑄𝑥 ≥ 0 for
every 𝑥).

• Dual problem (check!):

max {1
2𝜇⊤𝐷𝜇 + 𝜇⊤𝑑 − 1

2𝑐⊤𝑄−1𝑐} given that 𝑐 ≥ 0,

where 𝐷 = −𝐴𝑄−1𝐴⊤ (negative definite matrix),
𝑑 = −𝑏 − 𝐴𝑄−1𝑐.
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dual problem к svm

• In the case of SVMs we introduce Lagrange multipliers:

𝐿(w, 𝑤0, 𝛼) = 1
2‖w‖2 − ∑

𝑛
𝛼𝑛 [𝑡𝑛(w⊤x𝑛 + 𝑤0) − 1] , 𝛼𝑛 ≥ 0.

• Taking derivatives w.r.t. w and 𝑤0, we equate to zero and get

w = ∑
𝑛

𝛼𝑛𝑡𝑛x𝑛,

0 = ∑
𝑛

𝛼𝑛𝑡𝑛.
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dual problem к svm

• Substituting into 𝐿(w, 𝑤0, 𝛼), we get

𝐿(𝛼) = ∑
𝑛

𝛼𝑛 − 1
2 ∑

𝑛
∑
𝑚

𝛼𝑛𝛼𝑚𝑡𝑛𝑡𝑚 (x⊤
𝑛x𝑚)

given that 𝛼𝑛 ≥ 0, ∑
𝑛

𝛼𝑛𝑡𝑛 = 0.

• This is the dual problem which we use in SVMs.
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prediction and kkt

• For prediction we look at the sign of 𝑦(x):

𝑦(x) =
𝑁

∑
𝑛=1

𝛼𝑛𝑡𝑛x⊤x𝑛 + 𝑤0.

• So the predictions depend on all points x𝑛?!..
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prediction and kkt

• ...not. :) KKT (Karush–Kuhn–Tucker) conditions:

𝛼𝑛 ≥ 0,
𝑡𝑛𝑦(x𝑛) − 1 ≥ 0,

𝛼𝑛 (𝑡𝑛𝑦(x𝑛) − 1) = 0.

• i.e., the actual prediction depends on a small number of support
vectors for which 𝑡𝑛𝑦(x𝑛) = 1 (they are exactly at the boundary
of the separating surface).
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problem setting

• All these methods work when the data are actually linearly
separable.

• What if they are not? At least a little?
• First question: what do we do in the first approach, with convex
hulls?
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reduced convex hulls

• We can consider reduced convex hulls where coefficients are
bounded stronger than just by 1:

𝑐 = ∑
𝑦𝑖=1

𝛼𝑖𝑥𝑖, 0 ≤ 𝛼𝑖 ≤ 𝐷.

• Then for sufficiently small 𝐷 reduced convex hulls will be
disjoint, and we can find the optimal hyperplane between them.

• The reductions are much stronger around single outliers than in
dense regions.
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for the support vectors

• For the support vectors we also have to change something.
What exactly?
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for the support vectors

• For the support vectors we also have to change something.
What exactly?

• We add to the objective function a nonnegative new error term,
called slack:

min
�⃗�,𝑤0

{||�⃗�||2 + 𝐶
𝑚

∑
𝑖=1

𝑧𝑖}

given that 𝑡𝑖(�⃗� ⋅ ⃗𝑥𝑖 − 𝑤0) + 𝑧𝑖 ≥ 1.

• This is the direct problem...
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dual reformulation

• ...and this is the dual:

min
𝛼

{1
2

𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑡𝑖𝑡𝑗𝛼𝑖𝛼𝑗 ( ⃗𝑥𝑖 ⋅ ⃗𝑥𝑗) −
𝑚

∑
𝑖=1

𝛼𝑖,

where
𝑚

∑
𝑖=1

𝑡𝑖𝛼𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶.}

• This is most often used in SVM theory.
• The only difference from the linearly separable case is the
upper bound 𝐶 on 𝛼𝑗, i.e., on the influence of every point.
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resume

• Support vector machines are a great fit for linear classification.
• But we need to solve a quadratic programming problem, which
may be prohibitively complex.

• Practical note: usually requires normalization/whitening of the
data.
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svm and empirical risk

• Another look at SVM: what is the basic classification problem?
• The goal is to minimize empirical risk, i.e., the number of wrong
answers:

∑
𝑛

[𝑦𝑖 ≠ 𝑡𝑖] → min
w

.

• And if the function is linear with parameters w, 𝑤0, it is
equivalent to

∑
𝑛

[𝑡𝑖 (x⊤
𝑛w − 𝑤0) < 0] → min

w
.

• We call the value 𝑀𝑖 = x⊤
𝑛w − 𝑤0 the margin.

• Hard to optimize directly...
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svm and empirical risk

• ...so we replace with an upper bound:

∑
𝑛

[𝑀𝑖 < 0] ≤ ∑
𝑛

(1 − 𝑀𝑖) → min
w

.

• And add a regularizer for stability:

∑
𝑛

[𝑀𝑖 < 0] ≤ ∑
𝑛

(1 − 𝑀𝑖) + 1
2𝐶 ‖w‖2 → min

w
.

• Et voila: we’ve got the SVM problem again!
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thank you!

Thank you for your attention!

24


	SVM for linear classification

