
kernel trick and rvms

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
March 22, 2017

svm and nonlinear functions

nonlinear functions

• Often we have to use nonlinear functions for separation.
• What do we do?

3

nonlinear functions

• We already know the answer: use linear classification in a space
of larger dimension (feature space), which we obtain by adding
nonlinear features.

• E.g., to get a polynomial surface we introduce a new variable for
each monomial of the corresponding degree.

4

example

• E.g., to get quadratic functions in two-dimensional space [𝑟, 𝑠],
we pass to a five-dimensional space:

[𝑟, 𝑠] ⟶ [𝑟, 𝑠, 𝑟𝑠, 𝑟2, 𝑠2].

• Formally, we define 𝜃 ∶ ℝ2 → ℝ5: 𝜃(𝑟, 𝑠) = (𝑟, 𝑠, 𝑟𝑠, 𝑟2, 𝑠2). The
classification function is now

𝑓(⃗𝑥) = sign(𝜃(𝑤⃗) ⋅ 𝜃(⃗𝑥) − 𝑏).

• Linear separation in this new space corresponds to quadratic
separation in the original space.

5

problems with this approach

• First, the number of variables grows exponentially.
• Second, overfitting becomes a problem again.
• But note that in essence we are done. Only technical problems
remain: how do we handle the huge dimension?

6

main idea of the kernel trick

• The original scheme of SVM operation is as follows:
• input vector 𝑥⃗ is transformed by 𝜃 to an input vector in the (very
high dimensional) feature space;

• in this large space we compute support vectors and solve the
linear separation problem;

• then classify the input vector with this problem.

• This is impossible to do directly: the dimension is too large.

7

main idea of the kernel trick

• But it turns out that certain steps here can be swapped:
• compute support vectors in the original low-dimensional space;
• multiply them there (we’ll see what it means shortly);
• and only then make a linear transformation of the result to
classify a new input vector.

• Wtf? :)

8

problem setting

• We remind that the problem is

min
𝛼

{1
2

𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗 (⃗𝑥𝑖 ⋅ ⃗𝑥𝑗) −
𝑚

∑
𝑖=1

𝛼𝑖,

where
𝑚

∑
𝑖=1

𝑦𝑖𝛼𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶.}

9

problem setting

• We now want to introduce a mapping 𝜃 ∶ ℝ𝑛 → ℝ𝑁 , 𝑁 > 𝑛. We
get:

min
𝛼

{1
2

𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗 (𝜃(⃗𝑥𝑖) ⋅ 𝜃(⃗𝑥𝑗)) −
𝑚

∑
𝑖=1

𝛼𝑖,

where
𝑚

∑
𝑖=1

𝑦𝑖𝛼𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶.}

9

hilbert--schmidt--mercer's theory

• Let’s recall a bit of functional analysis.
• We want to generalize the notion of a scalar product, introduce
a new function that will compute the scalar product of vectors
in the feature space directly:

𝑘(𝑢⃗, ⃗𝑣) ∶= 𝜃(𝑢⃗) ⋅ 𝜃(⃗𝑣).

10

hilbert--schmidt--mercer's theory

• First result: any symmetric function 𝑘(𝑢⃗, ⃗𝑣) ∈ 𝐿2 can be
represented as

𝑘(𝑢⃗, ⃗𝑣) =
∞

∑
𝑖=1

𝜆𝑖𝜃𝑖(𝑢⃗) ⋅ 𝜃𝑖(⃗𝑣),

where 𝜆𝑖 ∈ ℝ are eigenvalues, and 𝜃𝑖 are eigenvectors of the
integral operator with kernel 𝑘, i.e.,

∫ 𝑘(𝑢⃗, ⃗𝑣)𝜃𝑖(𝑢⃗)d𝑢⃗ = 𝜆𝑖𝜃𝑖(⃗𝑣).

10

hilbert--schmidt--mercer's theory

• In order for 𝑘 to define a scalar product, it suffices that its
eigenvalues are all positive.

• Eigenvalues are positive iff (Mercer’s theorem)

∫ ∫ 𝑘(𝑢⃗, ⃗𝑣)𝑔(𝑢⃗)𝑔(⃗𝑣)d𝑢⃗d ⃗𝑣 > 0

for all 𝑔 such that ∫ 𝑔2(𝑢⃗)d𝑢⃗ < ∞.
• And that’s all. Now we can instead of computing 𝜃(𝑢⃗) ⋅ 𝜃(⃗𝑣)
simply use a suitable kernel 𝑘(𝑢⃗, ⃗𝑣) in the quadratic
programming problem.

10

hilbert--schmidt--mercer's theory

• Thus, the problem now looks as follows:

min
𝛼

{1
2

𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝑘(⃗𝑥𝑖, ⃗𝑥𝑗) −
𝑚

∑
𝑖=1

𝛼𝑖,

where
𝑚

∑
𝑖=1

𝑦𝑖𝛼𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶.}

• By simply changing the kernel 𝑘, we can compute very different
separating surfaces.

• Conditions for 𝑘 to be a suitable kernel are given by Mercer’s
theorem.

10

sample kernels

• Consider the kernel

𝑘(𝑢⃗, ⃗𝑣) = (𝑢⃗ ⋅ ⃗𝑣)2.

• Which feature space does it correspond to?

11

sample kernels

• We get that

𝑘(𝑢⃗, ⃗𝑣) = (𝑢⃗ ⋅ ⃗𝑣)2 =
= (𝑢2

1, 𝑢2
2,

√
2𝑢1𝑢2) ⋅ (𝑣2

1, 𝑣2
2,

√
2𝑣1𝑣2) .

• That is, a linear surface in the new feature space corresponds to
a quadratic surface in the original (e.g., an ellipse).

11

sample kernels

• A natural generalization: kernel 𝑘(𝑢⃗, ⃗𝑣) = (𝑢⃗ ⋅ ⃗𝑣)𝑑 defines a space
whose axes correspond to all uniform monomials of degree 𝑑.

• How can we make a space corresponding to an arbitrary
polynomial surface, not necessarily uniform?

11

sample kernels

• Easy:
𝑘(𝑢⃗, ⃗𝑣) = (𝑢⃗ ⋅ ⃗𝑣 + 1)𝑑.

• Now linear separation in the feature space exactly corresponds
to polynomial separation in the base space.

11

sample kernels

• Radial basis functions:

𝑘(𝑢⃗, ⃗𝑣) = 𝑒− ||𝑢⃗−𝑣⃗||2
2𝜎 .

• Two-level perceptron:

𝑘(𝑢⃗, ⃗𝑣) = 𝑜(𝜂𝑢⃗ ⋅ ⃗𝑣 + 𝑐),

where 𝑜 is a sigmoid function.

11

example

12

resume

• Here is the algorithm we get in the end.
1. Choose parameter 𝐶, which shows the tradeoff between

minimizing error and maximizing margin.
2. Choose a kernel and its parameters if it has any.
3. Solve the quadratic programming problem.
4. By the resulting values of support vectors find 𝑤0 (how?).
5. Classify new points as

𝑓(𝑥⃗) = sign(∑
𝑖

𝑦𝑖𝛼𝑖𝑘(𝑥⃗, 𝑥⃗𝑖) − 𝑤0).

13

in practice

• In practice:
• small 𝐶 – simpler separating surface, few support vectors;
• large 𝐶 – more complex separating surface, lots of support
vectors.

• For the RBF kernel:
• small 𝛾 – support vectors have far-reaching influence, the model
is simpler;

• large 𝛾 – support vectors influence only near, the model is more
complex.

14

𝜈-svm

• Another variant for inseparable data – 𝜈-SVM [Schölkopf et al.,
2000].

• We maximize

𝐿(a) = −1
2 ∑

𝑛
∑
𝑚

𝑎𝑛𝑎𝑚𝑡𝑛𝑡𝑚𝑘 (x𝑛, x𝑚)

under constraints

0 ≤ 𝑎𝑛 ≤ 1
𝑁 , ∑

𝑛
𝑎𝑛𝑡𝑛 = 0, ∑

𝑛
𝑎𝑛 ≥ 𝜈.

• Parameter 𝜈 can be interpreted as an upper bound on the
fraction of errors.

15

svm for classification

16

svm with several classes

• How can we generalize SVM to several classes?
• Possibilities (all of them far from perfect):

• train one against all and classify 𝑦(x) = max𝑘 𝑦𝑘(x) (the problem
becomes imbalanced, and 𝑦𝑘(x) are actually incomparable);

• try to construct a single function for all 𝐾 SVMs, but then training
slows down significantly;

• train 𝐾(𝐾 − 1)/2 pairwise classifiers and then count their votes;
• DAGSVM: organize pairwise classifiers into a graph and classify by
walking along paths in this graph;

• and so on; unfortunately, there is no one true way to get an SVM
with several classes.

17

one-class svm

• On the other hand, SVM can be used with one class.
• How and why?

18

one-class svm

• On the other hand, SVM can be used with one class.
• How and why?
• We can encircle a high density region, find the boundary with an
SVM.

• And this is how we can find outliers in the data.
• The problem would be to find the smallest surface (e.g., a
sphere) that contains all points except fraction 𝜈.

18

svm for regression

• SVM can be used for regression, and it will preserve sparsity (i.e.,
the fact that SVM depends only on support vectors).

• In our common linear regression we minimized

1
2

𝑁
∑
𝑛=1

(𝑦𝑛 − 𝑡𝑛)2 + 𝜆
2 ‖w‖2.

• In SVM we say that if we are in an 𝜖-neighborhood of the correct
answer, then the error is zero.

19

svm for regression

• 𝜖-insensitive error function:

𝐸𝜖(𝑦(x) − 𝑡) = {0, |𝑦(x) − 𝑡| < 𝜖,
|𝑦(x) − 𝑡| − 𝜖 otherwise.

• The problem is now to minimize

𝐶
𝑁

∑
𝑛=1

𝐸𝜖 (𝑦(x𝑛) − 𝑡𝑛) + 𝜆
2 ‖w‖2.

19

svm for regression

• To reformulate, we need two slack variables for both sides of the
“tube”:

𝑦(x𝑛) − 𝜖 ≤ 𝑡𝑛 ≤ 𝑦(x𝑛) + 𝜖

turns into

𝑡𝑛 ≤ 𝑦(x𝑛) + 𝜖 + 𝜉𝑛,
𝑡𝑛 ≥ 𝑦(x𝑛) − 𝜖 − ̂𝜉𝑛,

and we optimize

𝐶
𝑁

∑
𝑛=1

𝐸𝜖 (𝜉𝑛 + ̂𝜉𝑛) + 𝜆
2 ‖w‖2.

19

svm for regression

• The dual problem is now

𝐿(a, ̂a) = −1
2 ∑

𝑛
∑
𝑚

(𝑎𝑛 − ̂𝑎𝑛) (𝑎𝑚 − ̂𝑎𝑚) 𝑘 (x𝑛, x𝑚) −

− 𝜖
𝑛

∑
𝑛=1

(𝑎𝑛 + ̂𝑎𝑛) +
𝑁

∑
𝑛=1

(𝑎𝑛 − ̂𝑎𝑛) 𝑡𝑛,

and we minimize it over 𝑎𝑛, ̂𝑎𝑛 with conditions

0 ≤ 𝑎𝑛 ≤ 𝐶,
0 ≤ ̂𝑎𝑛 ≤ 𝐶,

𝑁
∑
𝑛=1

(𝑎𝑛 − ̂𝑎𝑛) = 0.

19

svm for regression

• When we solve this problem, we will be able to predict new
values as

𝑦(x) =
𝑁

∑
𝑛=1

(𝑎𝑛 − ̂𝑎𝑛) 𝑘(x, x𝑛) + 𝑏,

where 𝑏 can be found as

𝑏 = 𝑡𝑛 − 𝜖 − w⊤𝜙(x𝑛) =

= 𝑡𝑛 − 𝜖 −
𝑁

∑
𝑚=1

(𝑎𝑚 − ̂𝑎𝑚) 𝑘(x𝑛, x𝑚).

19

svm for regression

• And KKT conditions turn into

𝑎𝑛 (𝜖 + 𝜉𝑛 + 𝑦(x𝑛) − 𝑡𝑛) = 0,
̂𝑎𝑛 (𝜖 + ̂𝜉𝑛 − 𝑦(x𝑛) + 𝑡𝑛) = 0,

(𝐶 − 𝑎𝑛)𝜉𝑛 = 0,
(𝐶 − ̂𝑎𝑛) ̂𝜉𝑛 = 0.

• This implies that either 𝑎𝑛 or ̂𝑎𝑛 are always 0, and at least one
of them is not zero only if the point lies at or beyond the
boundary of the “tube”.

• We’ve got a solution that depends only on “support vectors”
again.

19

svm for regression

• Again, we can reformulate as 𝜈-SVM, where the parameter is
more intuitively clear: instead of the tube width 𝜖 we consider 𝜈,
the fraction of points outside the tube; then we minimize

𝐿(a) = −1
2 ∑

𝑛
∑
𝑚

(𝑎𝑛 − ̂𝑎𝑛) (𝑎𝑚 − ̂𝑎𝑚) 𝑘 (x𝑛, x𝑚)+
𝑁

∑
𝑛=1

(𝑎𝑛 − ̂𝑎𝑛) 𝑡𝑛

under constraints

0 ≤ 𝑎𝑛 ≤ 𝐶
𝑁 , ∑𝑁

𝑛=1 (𝑎𝑛 − ̂𝑎𝑛) = 0,
0 ≤ ̂𝑎𝑛 ≤ 𝐶

𝑁 , ∑𝑁
𝑛=1 (𝑎𝑛 + ̂𝑎𝑛) ≤ 𝜈𝐶.

19

svm for regression

20

rvm

problem setting

• SVM is great. But there still are drawbacks:
• SVM outputs are solutions, and posterior probabilities are hard to
get;

• SVM works for two classes, hard to generalize;
• parameter 𝐶 (and 𝜈, and/or 𝜖) has to be tuned, no general answer;
• kernels have to satisfy the conditions of Mercer’s theorem.

• Now we will (briefly) consider the Bayesian counterpart of SVM:
relevance vector machines (RVM).

22

rvm for regression

• It is more convenient to formulate RVM for regression.
• Recall the usual linear model:

𝑝(𝑡 ∣ x, w, 𝛽) = 𝒩(𝑡 ∣ 𝑦(x), 𝛽−1), where

𝑦(x) =
𝑀

∑
𝑖=1

𝑤𝑖𝜙𝑖(x) = w⊤𝜙(x).

23

rvm for regression

• RVM is a variation of such a model, which tries to work as an
SVM.

• Consider
𝑦(x) =

𝑁
∑
𝑛=1

𝑤𝑛𝑘(x, x𝑛) + 𝑏.

• That is, we look for the solution as a linear combination of
kernels from the very beginning (recall “equivalent kernel” for
linear regression), but unlike SVM there are no restrictions on
the kernel now.

23

rvm for regression

• For 𝑁 observations of vector x (we denote them by X) with
values t we get the likelihood

𝑝(t ∣ X, w, 𝛽) =
𝑁

∏
𝑛=1

𝑝(𝑡𝑛 ∣ x𝑛, w, 𝛽−1).

• The prior distribution is normal too, but instead of a single
hyperparameter for all weights we consider a separate
hyperparameter for every one:

𝑝(w ∣ 𝛼) =
𝑀
∏
𝑖=1

𝒩(𝑤𝑖 ∣ 0, 𝛼−1
𝑖).

23

rvm for regression

• Separate hyperparameters:

𝑝(w ∣ 𝛼) =
𝑀
∏
𝑖=1

𝒩(𝑤𝑖 ∣ 0, 𝛼−1
𝑖).

• The idea is that when we maximize the posterior, most 𝛼𝑖 will
simply tend to infinity, and the corresponding weights will be
zero.

23

rvm for regression

• We know the posterior:

𝑝(w ∣ t, X, 𝛼, 𝛽) = 𝒩(w ∣ m, Σ), where

m = 𝛽ΣΦ⊤t,
Σ = (A + 𝛽Φ⊤Φ)−1 ,

where A = diag(𝛼1, … , 𝛼𝑀), and Φ in our case is K, a symmetric
matrix with elements 𝑘(x𝑛, x𝑚).

23

rvm for regression

• How do we find 𝛼 and 𝛽? We need to maximize the marginal
likelihood of the dataset

𝑝(t ∣ X, 𝛼, 𝛽) = ∫ 𝑝(t ∣ X, w, 𝛽)𝑝(w ∣ 𝛼)𝑑w.

• This is a convolution of two Gaussians:

ln 𝑝(t ∣ X, 𝛼, 𝛽) = ln 𝒩(t ∣ 0, C) =

= −1
2 [𝑁 ln(2𝜋) + ln |C| + t⊤C−1t] , where C = 𝛽−1I+ΦA−1Φ⊤.

• How do we optimize this?

23

rvm for regression

• Computing the derivatives, we get

𝛼𝑖 = 𝛾𝑖
𝑚2

𝑖
,

𝛽−1 = ‖t − Φm‖2

𝑁 − ∑𝑖 𝛾𝑖
,

where 𝛾𝑖 = 1 − 𝛼𝑖Σ𝑖𝑖.
• Now we can simply iteratively recompute 𝛼, 𝛽 from m, Σ and
vice versa, until convergence.

23

rvm for regression

• As a result, most 𝛼𝑖 usually grow unboundedly, and the
corresponding weights can be assumed to be zero.

• The rest are called relevance vectors, usually very few of those.
• If we now find 𝛼∗, 𝛽∗, we can predict in new points as

𝑝(𝑡 ∣ x, X, t, 𝛼∗, 𝛽∗) = ∫ 𝑝(𝑡 ∣ x, w, 𝛽∗)𝑝(w ∣ X, t, 𝛼∗, 𝛽∗)𝑑w =

= 𝒩(𝑡 ∣ m⊤𝜙(x), 𝜎2(x)),

where 𝜎2(x) = (𝛽∗)−1 + 𝜙(x)⊤Σ𝜙(x).

23

rvm for regression

24

rvm for classification

• We can do the same for classification. Consider binary
classification, 𝑡 ∈ {0, 1}:

𝑦(x, w) = 𝜎(w⊤𝜙(x)).

• We add here, again, a prior distribution with different 𝛼𝑖 for
each weight:

𝑝(w ∣ 𝛼) =
𝑀
∏
𝑖=1

𝒩(𝑤𝑖 ∣ 0, 𝛼−1
𝑖).

• Idea: initialize 𝛼, compute Laplace approximation to the
posterior, maximize, get new 𝛼, and so on.

25

rvm for classification

• Posterior:

ln 𝑝(w ∣ t, 𝛼) = ln (𝑝(t ∣ w)𝑝(w ∣ 𝛼)) − ln 𝑝(t ∣ 𝛼) =

=
𝑁

∑
𝑛=1

[𝑡𝑛 ln 𝑦𝑛 + (1 − 𝑡𝑛) ln(1 − 𝑦𝑛)] − 1
2w⊤Aw + const.

• We can maximize it with IRLS:

∇ ln 𝑝(w ∣ t, 𝛼) = Φ⊤ (t − y) − Aw,
∇∇ ln 𝑝(w ∣ t, 𝛼) = − (Φ⊤BΦ + A) ,

where B is a diagonal matrix with elements 𝑏𝑛 = 𝑦𝑛(1 − 𝑦𝑛).

25

rvm for classification

• Laplace approximation results from ∇ ln 𝑝(w ∣ t, 𝛼), and we get

w∗ = A−1Φ⊤ (t − y) ,
Σ = (Φ⊤BΦ + A)−1 ,

and the predictive distribution is

𝑝(t ∣ 𝛼) = ∫ 𝑝(t ∣ w)𝑝(w ∣ 𝛼)𝑑w ≈

≈ 𝑝(t ∣ w∗)𝑝(w∗ ∣ 𝛼)(2𝜋)𝑀/2|Σ|1/2.

25

rvm for classification

• 𝑝(t ∣ 𝛼) = ∫ 𝑝(t ∣ w)𝑝(w ∣ 𝛼)𝑑w ≈ 𝑝(t ∣ w∗)𝑝(w∗ ∣ 𝛼)(2𝜋)𝑀/2|Σ|1/2.
• We now optimize it w.r.t. 𝛼: take the derivative and get

−1
2(𝑤∗

𝑖)2 + 1
2𝛼𝑖

− 1
2Σ𝑖𝑖 = 0, i.e.,

𝛼𝑖 = 𝛾𝑖
(𝑤∗

𝑖)2 , 𝛾𝑖 = 1 − 𝛼𝑖Σ𝑖𝑖.

• i.e., we get the same formula as for regression.

25

before: svm

26

after: rvm

27

after: rvm

28

rvm for several classes

• And we get a very natural generalization to several classes:

𝑎𝑘 = w⊤
𝑘 x, 𝑦𝑘(x) = 𝑒𝑎𝑘

∑𝑗 𝑒𝑎𝑗
.

• And then nothing changes.

29

comparing svm and rvm

• RVM looks better, and usually is.
• Main drawback: RVM training is much longer (even though SVM
training is long enough by itself).

• But even this is not really a drawback because SVM needs
cross-validation to tune parameters, and RVM is much faster to
apply to new points because there are usually fewer support
vectors.

30

thank you!

Thank you for your attention!

31

	SVM and nonlinear functions
	RVM
	RVM for regression

