KERNEL TRICK AND RVMS

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
March 22, 2017

SVM AND NONLINEAR FUNCTIONS

NONLINEAR FUNCTIONS

- Often we have to use nonlinear functions for separation.
-What do we do?

NONLINEAR FUNCTIONS

- We already know the answer: use linear classification in a space of larger dimension (feature space), which we obtain by adding nonlinear features.
- E.g., to get a polynomial surface we introduce a new variable for each monomial of the corresponding degree.
- E.g., to get quadratic functions in two-dimensional space $[r, s]$, we pass to a five-dimensional space:

$$
[r, s] \longrightarrow\left[r, s, r s, r^{2}, s^{2}\right] .
$$

- Formally, we define $\theta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{5}: \theta(r, s)=\left(r, s, r s, r^{2}, s^{2}\right)$. The classification function is now

$$
f(\vec{x})=\operatorname{sign}(\theta(\vec{w}) \cdot \theta(\vec{x})-b)
$$

- Linear separation in this new space corresponds to quadratic separation in the original space.

PROBLEMS WITH THIS APPROACH

- First, the number of variables grows exponentially.
- Second, overfitting becomes a problem again.
- But note that in essence we are done. Only technical problems remain: how do we handle the huge dimension?

MAIN IDEA OF THE KERNEL TRICK

- The original scheme of SVM operation is as follows:
- input vector \vec{x} is transformed by θ to an input vector in the (very high dimensional) feature space;
- in this large space we compute support vectors and solve the linear separation problem;
- then classify the input vector with this problem.
- This is impossible to do directly: the dimension is too large.

MAIN IDEA OF THE KERNEL TRICK

- But it turns out that certain steps here can be swapped:
- compute support vectors in the original low-dimensional space;
- multiply them there (we'll see what it means shortly);
- and only then make a linear transformation of the result to classify a new input vector.
- Wtf? :)

PROBLEM SETTING

- We remind that the problem is

$$
\begin{aligned}
& \min _{\alpha}\left\{\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j}\left(\vec{x}_{i} \cdot \vec{x}_{j}\right)-\sum_{i=1}^{m} \alpha_{i}\right. \\
& \text { where } \left.\sum_{i=1}^{m} y_{i} \alpha_{i}=0, \quad 0 \leq \alpha_{i} \leq C .\right\}
\end{aligned}
$$

PROBLEM SETTING

- We now want to introduce a mapping $\theta: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}, N>n$. We get:

$$
\begin{aligned}
& \min _{\alpha}\left\{\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j}\left(\theta\left(\vec{x}_{i}\right) \cdot \theta\left(\vec{x}_{j}\right)\right)-\sum_{i=1}^{m} \alpha_{i}\right. \\
& \left.\qquad \text { where } \sum_{i=1}^{m} y_{i} \alpha_{i}=0, \quad 0 \leq \alpha_{i} \leq C .\right\}
\end{aligned}
$$

HILBERT--SCHMIDT--MERCER'S THEORY

- Let's recall a bit of functional analysis.
- We want to generalize the notion of a scalar product, introduce a new function that will compute the scalar product of vectors in the feature space directly:

$$
k(\vec{u}, \vec{v}):=\theta(\vec{u}) \cdot \theta(\vec{v})
$$

HILBERT--SCHMIDT--MERCER'S THEORY

- First result: any symmetric function $k(\vec{u}, \vec{v}) \in L_{2}$ can be represented as

$$
k(\vec{u}, \vec{v})=\sum_{i=1}^{\infty} \lambda_{i} \theta_{i}(\vec{u}) \cdot \theta_{i}(\vec{v}),
$$

where $\lambda_{i} \in \mathbb{R}$ are eigenvalues, and θ_{i} are eigenvectors of the integral operator with kernel k, i.e.,

$$
\int k(\vec{u}, \vec{v}) \theta_{i}(\vec{u}) \mathrm{d} \vec{u}=\lambda_{i} \theta_{i}(\vec{v}) .
$$

HILBERT--SCHMIDT--MERCER'S THEORY

- In order for k to define a scalar product, it suffices that its eigenvalues are all positive.
- Eigenvalues are positive iff (Mercer's theorem)

$$
\iint k(\vec{u}, \vec{v}) g(\vec{u}) g(\vec{v}) \mathrm{d} \vec{u} \mathrm{~d} \vec{v}>0
$$

for all g such that $\int g^{2}(\vec{u}) \mathrm{d} \vec{u}<\infty$.

- And that's all. Now we can instead of computing $\theta(\vec{u}) \cdot \theta(\vec{v})$ simply use a suitable kernel $k(\vec{u}, \vec{v})$ in the quadratic programming problem.

HILBERT--SCHMIDT--MERCER'S THEORY

- Thus, the problem now looks as follows:

$$
\begin{aligned}
& \min _{\alpha}\left\{\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} k\left(\vec{x}_{i}, \vec{x}_{j}\right)-\sum_{i=1}^{m} \alpha_{i},\right. \\
& \text { where } \left.\sum_{i=1}^{m} y_{i} \alpha_{i}=0, \quad 0 \leq \alpha_{i} \leq C\right\}
\end{aligned}
$$

- By simply changing the kernel k, we can compute very different separating surfaces.
- Conditions for k to be a suitable kernel are given by Mercer's theorem.

SAMPLE KERNELS

- Consider the kernel

$$
k(\vec{u}, \vec{v})=(\vec{u} \cdot \vec{v})^{2} .
$$

- Which feature space does it correspond to?

SAMPLE KERNELS

- We get that

$$
k(\vec{u}, \vec{v})=(\vec{u} \cdot \vec{v})^{2}=\quad=\left(u_{1}^{2}, u_{2}^{2}, \sqrt{2} u_{1} u_{2}\right) \cdot\left(v_{1}^{2}, v_{2}^{2}, \sqrt{2} v_{1} v_{2}\right) .
$$

- That is, a linear surface in the new feature space corresponds to a quadratic surface in the original (e.g., an ellipse).

SAMPLE KERNELS

- A natural generalization: kernel $k(\vec{u}, \vec{v})=(\vec{u} \cdot \vec{v})^{d}$ defines a space whose axes correspond to all uniform monomials of degree d.
- How can we make a space corresponding to an arbitrary polynomial surface, not necessarily uniform?

SAMPLE KERNELS

- Easy:

$$
k(\vec{u}, \vec{v})=(\vec{u} \cdot \vec{v}+1)^{d} .
$$

- Now linear separation in the feature space exactly corresponds to polynomial separation in the base space.

SAMPLE KERNELS

- Radial basis functions:

$$
k(\vec{u}, \vec{v})=e^{-\frac{\|\vec{u}-\vec{v}\|^{2}}{2 \sigma}} .
$$

- Two-level perceptron:

$$
k(\vec{u}, \vec{v})=o(\eta \vec{u} \cdot \vec{v}+c),
$$

where o is a sigmoid function.

RESUME

- Here is the algorithm we get in the end.

1. Choose parameter C, which shows the tradeoff between minimizing error and maximizing margin.
2. Choose a kernel and its parameters if it has any.
3. Solve the quadratic programming problem.
4. By the resulting values of support vectors find w_{0} (how?).
5. Classify new points as

$$
f(\vec{x})=\operatorname{sign}\left(\sum_{i} y_{i} \alpha_{i} k\left(\vec{x}, \vec{x}_{i}\right)-w_{0}\right) .
$$

IN PRACTICE

- In practice:
- small C - simpler separating surface, few support vectors;
- large C - more complex separating surface, lots of support vectors.
- For the RBF kernel:
- small γ - support vectors have far-reaching influence, the model is simpler;
- large γ - support vectors influence only near, the model is more complex.
- Another variant for inseparable data - ν-SVM [Schölkopf et al., 2000].
- We maximize

$$
L(\mathbf{a})=-\frac{1}{2} \sum_{n} \sum_{m} a_{n} a_{m} t_{n} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
$$

under constraints

$$
0 \leq a_{n} \leq \frac{1}{N}, \sum_{n} a_{n} t_{n}=0, \sum_{n} a_{n} \geq \nu
$$

- Parameter ν can be interpreted as an upper bound on the fraction of errors.

SVM FOR CLASSIFICATION

SVM WITH SEVERAL CLASSES

- How can we generalize SVM to several classes?
- Possibilities (all of them far from perfect):
- train one against all and classify $y(\mathrm{x})=\max _{k} y_{k}(\mathrm{x})$ (the problem becomes imbalanced, and $y_{k}(\mathbf{x})$ are actually incomparable);
- try to construct a single function for all K SVMs, but then training slows down significantly;
- train $K(K-1) / 2$ pairwise classifiers and then count their votes;
- DAGSVM: organize pairwise classifiers into a graph and classify by walking along paths in this graph;
- and so on; unfortunately, there is no one true way to get an SVM with several classes.

ONE-CLASS SVM

- On the other hand, SVM can be used with one class.
- How and why?

ONE-CLASS SVM

- On the other hand, SVM can be used with one class.
- How and why?
- We can encircle a high density region, find the boundary with an SVM.
- And this is how we can find outliers in the data.
- The problem would be to find the smallest surface (e.g., a sphere) that contains all points except fraction ν.

SVM FOR REGRESSION

- SVM can be used for regression, and it will preserve sparsity (i.e., the fact that SVM depends only on support vectors).
- In our common linear regression we minimized

$$
\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-t_{n}\right)^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2} .
$$

- In SVM we say that if we are in an ϵ-neighborhood of the correct answer, then the error is zero.

SVM FOR REGRESSION

- ϵ-insensitive error function:

$$
E_{\epsilon}(y(\mathbf{x})-t)= \begin{cases}0, & |y(\mathbf{x})-t|<\epsilon \\ |y(\mathbf{x})-t|-\epsilon & \text { otherwise }\end{cases}
$$

- The problem is now to minimize

$$
C \sum_{n=1}^{N} E_{\epsilon}\left(y\left(\mathbf{x}_{n}\right)-t_{n}\right)+\frac{\lambda}{2}\|\mathbf{w}\|^{2} .
$$

SVM FOR REGRESSION

- To reformulate, we need two slack variables for both sides of the "tube":

$$
y\left(\mathbf{x}_{n}\right)-\epsilon \leq t_{n} \leq y\left(\mathbf{x}_{n}\right)+\epsilon
$$

turns into

$$
\begin{aligned}
& t_{n} \leq y\left(\mathbf{x}_{n}\right)+\epsilon+\xi_{n} \\
& t_{n} \geq y\left(\mathbf{x}_{n}\right)-\epsilon-\hat{\xi}_{n}
\end{aligned}
$$

and we optimize

$$
C \sum_{n=1}^{N} E_{\epsilon}\left(\xi_{n}+\hat{\xi}_{n}\right)+\frac{\lambda}{2}\|\mathbf{w}\|^{2} .
$$

SVM FOR REGRESSION

- The dual problem is now

$$
\begin{aligned}
& L(\mathbf{a}, \hat{\mathbf{a}})=-\frac{1}{2} \sum_{n} \sum_{m}\left(a_{n}-\hat{a}_{n}\right)\left(a_{m}-\hat{a}_{m}\right) k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)- \\
&-\epsilon \sum_{n=1}^{n}\left(a_{n}+\hat{a}_{n}\right)+\sum_{n=1}^{N}\left(a_{n}-\hat{a}_{n}\right) t_{n},
\end{aligned}
$$

and we minimize it over a_{n}, \hat{a}_{n} with conditions

$$
\begin{aligned}
0 & \leq a_{n} \leq C, \\
0 & \leq \hat{a}_{n} \leq C, \\
\sum_{n=1}^{N}\left(a_{n}-\hat{a}_{n}\right) & =0 .
\end{aligned}
$$

SVM FOR REGRESSION

- When we solve this problem, we will be able to predict new values as

$$
y(\mathbf{x})=\sum_{n=1}^{N}\left(a_{n}-\hat{a}_{n}\right) k\left(\mathbf{x}, \mathbf{x}_{n}\right)+b
$$

where b can be found as

$$
\begin{aligned}
b=t_{n}-\epsilon-\mathbf{w}^{\top} \phi\left(\mathbf{x}_{n}\right)= & \\
& =t_{n}-\epsilon-\sum_{m=1}^{N}\left(a_{m}-\hat{a}_{m}\right) k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
\end{aligned}
$$

SVM FOR REGRESSION

- And KKT conditions turn into

$$
\begin{aligned}
a_{n}\left(\epsilon+\xi_{n}+y\left(\mathbf{x}_{n}\right)-t_{n}\right) & =0, \\
\hat{a}_{n}\left(\epsilon+\hat{\xi}_{n}-y\left(\mathbf{x}_{n}\right)+t_{n}\right) & =0, \\
\left(C-a_{n}\right) \xi_{n} & =0, \\
\left(C-\hat{a}_{n}\right) \hat{\xi}_{n} & =0 .
\end{aligned}
$$

- This implies that either a_{n} or \hat{a}_{n} are always 0 , and at least one of them is not zero only if the point lies at or beyond the boundary of the "tube".
- We've got a solution that depends only on "support vectors" again.

SVM FOR REGRESSION

- Again, we can reformulate as ν-SVM, where the parameter is more intuitively clear: instead of the tube width ϵ we consider ν, the fraction of points outside the tube; then we minimize
$L(\mathbf{a})=-\frac{1}{2} \sum_{n} \sum_{m}\left(a_{n}-\hat{a}_{n}\right)\left(a_{m}-\hat{a}_{m}\right) k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)+\sum_{n=1}^{N}\left(a_{n}-\hat{a}_{n}\right) t_{n}$
under constraints

$$
\begin{array}{ll}
0 \leq a_{n} \leq \frac{C}{N}, & \sum_{n=1}^{N}\left(a_{n}-\hat{a}_{n}\right)=0 \\
0 \leq \hat{a}_{n} \leq \frac{C}{N}, & \sum_{n=1}^{N}\left(a_{n}+\hat{a}_{n}\right) \leq \nu C
\end{array}
$$

SVM FOR REGRESSION

RVM

PROBLEM SETTING

- SVM is great. But there still are drawbacks:
- SVM outputs are solutions, and posterior probabilities are hard to get;
- SVM works for two classes, hard to generalize;
- parameter C (and ν, and/or ϵ) has to be tuned, no general answer;
- kernels have to satisfy the conditions of Mercer's theorem.
- Now we will (briefly) consider the Bayesian counterpart of SVM: relevance vector machines (RVM).

RVM FOR REGRESSION

- It is more convenient to formulate RVM for regression.
- Recall the usual linear model:

$$
\begin{gathered}
p(t \mid \mathbf{x}, \mathbf{w}, \beta)=\mathcal{N}\left(t \mid y(\mathbf{x}), \beta^{-1}\right), \text { where } \\
y(\mathbf{x})=\sum_{i=1}^{M} w_{i} \phi_{i}(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x}) .
\end{gathered}
$$

RVM FOR REGRESSION

- RVM is a variation of such a model, which tries to work as an SVM.
- Consider

$$
y(\mathbf{x})=\sum_{n=1}^{N} w_{n} k\left(\mathbf{x}, \mathbf{x}_{n}\right)+b .
$$

- That is, we look for the solution as a linear combination of kernels from the very beginning (recall "equivalent kernel" for linear regression), but unlike SVM there are no restrictions on the kernel now.

RVM FOR REGRESSION

- For N observations of vector \mathbf{x} (we denote them by \mathbf{X}) with values \mathbf{t} we get the likelihood

$$
p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta)=\prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{x}_{n}, \mathbf{w}, \beta^{-1}\right)
$$

- The prior distribution is normal too, but instead of a single hyperparameter for all weights we consider a separate hyperparameter for every one:

$$
p(\mathbf{w} \mid \alpha)=\prod_{i=1}^{M} \mathcal{N}\left(w_{i} \mid 0, \alpha_{i}^{-1}\right) .
$$

RVM FOR REGRESSION

- Separate hyperparameters:

$$
p(\mathbf{w} \mid \alpha)=\prod_{i=1}^{M} \mathcal{N}\left(w_{i} \mid 0, \alpha_{i}^{-1}\right) .
$$

- The idea is that when we maximize the posterior, most α_{i} will simply tend to infinity, and the corresponding weights will be zero.

RVM FOR REGRESSION

- We know the posterior:

$$
\begin{gathered}
p(\mathbf{w} \mid \mathbf{t}, \mathbf{X}, \alpha, \beta)=\mathcal{N}(\mathbf{w} \mid \mathbf{m}, \Sigma), \text { where } \\
\mathbf{m}=\beta \Sigma \Phi^{\top} \mathbf{t} \\
\Sigma=\left(\mathbf{A}+\beta \Phi^{\top} \Phi\right)^{-1},
\end{gathered}
$$

where $\mathbf{A}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{M}\right)$, and Φ in our case is \mathbf{K}, a symmetric matrix with elements $k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)$.

RVM FOR REGRESSION

- How do we find α and β ? We need to maximize the marginal likelihood of the dataset

$$
p(\mathbf{t} \mid \mathbf{X}, \alpha, \beta)=\int p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta) p(\mathbf{w} \mid \alpha) d \mathbf{w} .
$$

- This is a convolution of two Gaussians:

$$
\begin{aligned}
& \ln p(\mathbf{t} \mid \mathbf{X}, \alpha, \beta)=\ln \mathcal{N}(\mathbf{t} \mid 0, \mathbf{C})= \\
= & -\frac{1}{2}\left[N \ln (2 \pi)+\ln |\mathbf{C}|+\mathbf{t}^{\top} \mathbf{C}^{-1} \mathbf{t}\right], \text { where } \mathbf{C}=\beta^{-1} \mathbf{I}+\Phi \mathbf{A}^{-1} \Phi^{\top} .
\end{aligned}
$$

- How do we optimize this?

RVM FOR REGRESSION

- Computing the derivatives, we get

$$
\begin{aligned}
\alpha_{i} & =\frac{\gamma_{i}}{m_{i}^{2}} \\
\beta^{-1} & =\frac{\|\mathbf{t}-\Phi \mathbf{m}\|^{2}}{N-\sum_{i} \gamma_{i}},
\end{aligned}
$$

where $\gamma_{i}=1-\alpha_{i} \Sigma_{i i}$.

- Now we can simply iteratively recompute α, β from \mathbf{m}, Σ and vice versa, until convergence.

RVM FOR REGRESSION

- As a result, most α_{i} usually grow unboundedly, and the corresponding weights can be assumed to be zero.
- The rest are called relevance vectors, usually very few of those.
- If we now find α^{*}, β^{*}, we can predict in new points as

$$
\begin{array}{r}
p\left(t \mid \mathbf{x}, \mathbf{X}, \mathbf{t}, \alpha^{*}, \beta^{*}\right)=\int p\left(t \mid \mathbf{x}, \mathbf{w}, \beta^{*}\right) p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \alpha^{*}, \beta^{*}\right) d \mathbf{w}= \\
=\mathcal{N}\left(t \mid \mathbf{m}^{\top} \phi(\mathbf{x}), \sigma^{2}(\mathbf{x})\right)
\end{array}
$$

where $\sigma^{2}(\mathbf{x})=\left(\beta^{*}\right)^{-1}+\phi(\mathbf{x})^{\top} \Sigma \phi(\mathbf{x})$.

RVM FOR REGRESSION

RVM FOR CLASSIFICATION

- We can do the same for classification. Consider binary classification, $t \in\{0,1\}$:

$$
y(\mathbf{x}, \mathbf{w})=\sigma\left(\mathbf{w}^{\top} \phi(\mathbf{x})\right) .
$$

- We add here, again, a prior distribution with different α_{i} for each weight:

$$
p(\mathbf{w} \mid \alpha)=\prod_{i=1}^{M} \mathcal{N}\left(w_{i} \mid 0, \alpha_{i}^{-1}\right)
$$

- Idea: initialize α, compute Laplace approximation to the posterior, maximize, get new α, and so on.

RVM FOR CLASSIFICATION

- Posterior:

$$
\begin{aligned}
& \ln p(\mathbf{w} \mid \mathbf{t}, \alpha)=\ln (p(\mathbf{t} \mid \mathbf{w}) p(\mathbf{w} \mid \alpha))-\ln p(\mathbf{t} \mid \alpha)= \\
& \quad=\sum_{n=1}^{N}\left[t_{n} \ln y_{n}+\left(1-t_{n}\right) \ln \left(1-y_{n}\right)\right]-\frac{1}{2} \mathbf{w}^{\top} \mathbf{A} \mathbf{w}+\text { const. }
\end{aligned}
$$

- We can maximize it with IRLS:

$$
\begin{aligned}
\nabla \ln p(\mathbf{w} \mid \mathbf{t}, \alpha) & =\Phi^{\top}(\mathbf{t}-\mathbf{y})-\mathbf{A w}, \\
\nabla \nabla \ln p(\mathbf{w} \mid \mathbf{t}, \alpha) & =-\left(\Phi^{\top} \mathbf{B} \Phi+\mathbf{A}\right)
\end{aligned}
$$

where \mathbf{B} is a diagonal matrix with elements $b_{n}=y_{n}\left(1-y_{n}\right)$.

RVM FOR CLASSIFICATION

- Laplace approximation results from $\nabla \ln p(\mathbf{w} \mid \mathbf{t}, \alpha)$, and we get

$$
\begin{aligned}
\mathbf{w}^{*} & =\mathbf{A}^{-1} \Phi^{\top}(\mathbf{t}-\mathbf{y}), \\
\Sigma & =\left(\Phi^{\top} \mathbf{B} \Phi+\mathbf{A}\right)^{-1},
\end{aligned}
$$

and the predictive distribution is

$$
\begin{aligned}
p(\mathbf{t} \mid \alpha)=\int p(\mathbf{t} \mid \mathbf{w}) p(\mathbf{w} \mid \alpha) d \mathbf{w} & \approx \\
& \approx p\left(\mathbf{t} \mid \mathbf{w}^{*}\right) p\left(\mathbf{w}^{*} \mid \alpha\right)(2 \pi)^{M / 2}|\Sigma|^{1 / 2}
\end{aligned}
$$

RVM FOR CLASSIFICATION

- $p(\mathbf{t} \mid \alpha)=\int p(\mathbf{t} \mid \mathbf{w}) p(\mathbf{w} \mid \alpha) d \mathbf{w} \approx p\left(\mathbf{t} \mid \mathbf{w}^{*}\right) p\left(\mathbf{w}^{*} \mid \alpha\right)(2 \pi)^{M / 2}|\Sigma|^{1 / 2}$.
- We now optimize it w.r.t. α : take the derivative and get

$$
\begin{gathered}
-\frac{1}{2}\left(w_{i}^{*}\right)^{2}+\frac{1}{2 \alpha_{i}}-\frac{1}{2} \Sigma_{i i}=0, \text { i.e., } \\
\alpha_{i}=\frac{\gamma_{i}}{\left(w_{i}^{*}\right)^{2}}, \quad \gamma_{i}=1-\alpha_{i} \Sigma_{i i}
\end{gathered}
$$

- i.e., we get the same formula as for regression.

BEFORE: SVM

AFTER: RVM

AFTER: RVM

RVM FOR SEVERAL CLASSES

- And we get a very natural generalization to several classes:

$$
a_{k}=\mathbf{w}_{k}^{\top} \mathbf{x}, \quad y_{k}(\mathbf{x})=\frac{e^{a_{k}}}{\sum_{j} e^{a_{j}}}
$$

- And then nothing changes.

COMPARING SVM AND RVM

- RVM looks better, and usually is.
- Main drawback: RVM training is much longer (even though SVM training is long enough by itself).
- But even this is not really a drawback because SVM needs cross-validation to tune parameters, and RVM is much faster to apply to new points because there are usually fewer support vectors.

Thank you for your attention!

