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clustering



problem setting

• Clustering — typical unsupervised learning problem: partition
objects into several groups so that objects in one group are
similar and between different groups are different.

• By “similar” and “different” we usually mean proximity w.r.t.
some metric.
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a bit more formally

• Given a set 𝑋 = {𝑥1, … , 𝑥𝑛} and a distance function 𝜌 between
the points.

• Split 𝑋 into disjoint subsets (clusters) so that each subset has
similar objects, and objects from different subsets are
significantly different.
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hierarchical clustering

• Hierarchical clustering idea:
• start with points 𝑥1, 𝑥2, … , 𝑥𝑛, each point is a cluster;
• join two nearest points in a cluster;
• repeat.

• The result is a tree of clusters, and we can choose the best
clustering however we want.

• All clear?
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single-link vs. complete-link

• How do we compute the distance between clusters?
• Single-link clustering: take the minimal distance between pairs
of objects.

• Complete-link clustering: take the maximal distance between
pairs of objects (or average, it’s similar in practice).
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clustering with graph theory

• Some clustering ideas come from graph theory.
• Consider a complete graph with weights equal to distances
between objects.

• Choose a threshold 𝑟 and throw out all edges with weight > 𝑟.
• The connectivity components will be the clusters.
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minimal spanning tree

• Minimal spanning tree: a minimal weight tree that contains all
vertices for a (connected) graph.

• Kruskal’s algorithm, Boruvka’s algorithm...
• To use it for clustering, we construct the MST and then throw out
edges with maximal weight.
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em algorithm



problem setting

• Often the data has latent (missing) variables.
• We have the result of sampling a distribution, but some of the
parameters are not known.

• We can treat latent variables as random values and look for the
maximal likelihood hypothesis ℎ, i.e., maximize

E[𝑝(𝐷|ℎ)] = E[∫ 𝑝(𝐷, 𝑧|ℎ)d𝑧]

for latent variables 𝑧.
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special case

• Example: consider a random variable 𝑥 sampled from a mixture
of two Gaussians with the same variance 𝜎2 and different means
𝜇1, 𝜇2.

• Two-stage sampling, but we don’t know the first stage results.
• One point is a triple ⟨𝑥𝑖, 𝑧𝑖1, 𝑧𝑖2⟩, where 𝑧𝑖𝑗 = 1 iff 𝑥𝑖 was
generated from distribution 𝑗, and we don’t know 𝑧𝑖𝑗.
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em algorithm

• EM algorithm idea:
• generate a hypothesis ℎ = (𝜇1, 𝜇2);
• while we have not reached local maximum:

• compute the expectation 𝐸(𝑧𝑖𝑗) given the current hypothesis
(𝐸–step);

• compute the new hypothesis ℎ′ = (𝜇′
1, 𝜇′

2) assuming that 𝑧𝑖𝑗 take
values 𝐸(𝑧𝑖𝑗) computed before (𝑀–step).
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for the gaussians

• For the Gaussians:

𝐸(𝑧𝑖𝑗) = 𝑝(𝑥 = 𝑥𝑖|𝜇 = 𝜇𝑗)
𝑝(𝑥 = 𝑥𝑖|𝜇 = 𝜇1) + 𝑝(𝑥 = 𝑥𝑖|𝜇 = 𝜇2) =

= 𝑒− 1
2𝜎2 (𝑥𝑖−𝜇𝑗)2

𝑒− 1
2𝜎2 (𝑥𝑖−𝜇1)2 + 𝑒− 1

2𝜎2 (𝑥𝑖−𝜇2)2 .

• We compute the expectations and then tune the hypothesis:

𝜇𝑗 ← 1
𝑚

𝑚
∑
𝑖=1

𝐸(𝑧𝑖𝑗)𝑥𝑖.
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em formally

• Formally, we are maximizing the likelihood with data
𝒳 = {𝑥1, … , 𝑥𝑁}.

𝐿(𝜃 ∣ 𝒳) = 𝑝(𝒳 ∣ 𝜃) = ∏ 𝑝(𝑥𝑖 ∣ 𝜃)

or, which is the same, maximizing ℓ(𝜃 ∣ 𝒳) = log 𝐿(𝜃 ∣ 𝒳).
• EM can help if this maximum is hard to find, but easy once we
know something else...
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em formally

• Suppose that the data has latent variables such that the
problem would be easy if we knew them.

• They don’t necessarily have to correspond to anything
interesting, maybe they are there just for convenience.

• In any case, we get a dataset 𝒵 = (𝒳, 𝒴) with joint density

𝑝(𝑧 ∣ 𝜃) = 𝑝(𝑥, 𝑦 ∣ 𝜃) = 𝑝(𝑦 ∣ 𝑥, 𝜃)𝑝(𝑥 ∣ 𝜃).

• Full likelihood 𝐿(𝜃 ∣ 𝒵) = 𝑝(𝒳, 𝒴 ∣ 𝜃) is a random variable since
we don’t know 𝒴.
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em formally

• Note that the real likelihood is 𝐿(𝜃) = 𝐸𝑌 [𝑝(𝒳, 𝒴 ∣ 𝜃) ∣ 𝒳, 𝜃].
• E-step computes the conditional expectation of the (log) full
likelihood given 𝒳 and current estimates for parameters 𝜃𝑛:

𝑄(𝜃, 𝜃𝑛) = 𝐸 [log 𝑝(𝒳, 𝒴 ∣ 𝜃) ∣ 𝒳, 𝜃𝑛] .

• Here 𝜃𝑛 are current estimates, 𝜃 are unknown values (which we
want to get at the end); i.e., 𝑄(𝜃, 𝜃𝑛) is a function of 𝜃.
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em formally

• E-step computes the conditional expectation of the (log) full
likelihood given 𝒳 and current estimates for parameters 𝜃:

𝑄(𝜃, 𝜃𝑛) = 𝐸 [log 𝑝(𝒳, 𝒴 ∣ 𝜃) ∣ 𝒳, 𝜃𝑛] .

• Conditional expectation:

𝐸 [log 𝑝(𝒳, 𝒴 ∣ 𝜃) ∣ 𝒳, 𝜃𝑛] = ∫
𝑦

log 𝑝(𝒳, 𝑦 ∣ 𝜃)𝑝(𝑦 ∣ 𝒳, 𝜃𝑛)d𝑦,

where 𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) is the marginal distribution of latent
variables.

• EM works best when it’s easy to compute, maybe even
analytically.

• Instead of 𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) we can substitute
𝑝(𝑦, 𝒳 ∣ 𝜃𝑛) = 𝑝(𝑦 ∣ 𝒳, 𝜃𝑛)𝑝(𝒳 ∣ 𝜃𝑛), it won’t change anything.
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em formally

• As a result, after the E-step of the EM algorithm we get the
function 𝑄(𝜃, 𝜃𝑛).

• On the M-step, we maximize

𝜃𝑛+1 = arg max𝜃𝑄(𝜃, 𝜃𝑛).

• And repeat until convergence.
• Actually, it suffices to find 𝜃𝑛+1 such that 𝑄(𝜃𝑛+1, 𝜃𝑛) > 𝑄(𝜃𝑛, 𝜃𝑛)
– Generalized EM.

• It remains to see what 𝑄(𝜃, 𝜃𝑛) means and why it all works.
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em formally

• We wanted to pass from 𝜃𝑛 to 𝜃 such that ℓ(𝜃) > ℓ(𝜃𝑛).

ℓ(𝜃) − ℓ(𝜃𝑛) =

= log (∫
𝑦

𝑝(𝒳 ∣ 𝑦, 𝜃)𝑝(𝑦 ∣ 𝜃)d𝑦) − log 𝑝(𝒳 ∣ 𝜃𝑛) =

= log (∫
𝑦

𝑝(𝑦 ∣ 𝒳, 𝜃𝑛)𝑝(𝒳 ∣ 𝑦, 𝜃)𝑝(𝑦 ∣ 𝜃)
𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) d𝑦) − log 𝑝(𝒳 ∣ 𝜃𝑛) ≥

≥ ∫
𝑦

𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) log (𝑝(𝒳 ∣ 𝑦, 𝜃)𝑝(𝑦 ∣ 𝜃)
𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) ) d𝑦 − log 𝑝(𝒳 ∣ 𝜃𝑛) =

= ∫
𝑦

𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) log ( 𝑝(𝒳 ∣ 𝑦, 𝜃)𝑝(𝑦 ∣ 𝜃)
𝑝(𝒳 ∣ 𝜃𝑛)𝑝(𝑦 ∣ 𝒳, 𝜃𝑛)) d𝑦.
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em formally

• Thus, we get

ℓ(𝜃) ≥ 𝑙(𝜃, 𝜃𝑛) =

= ℓ(𝜃𝑛) + ∫
𝑦

𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) log ( 𝑝(𝒳 ∣ 𝑦, 𝜃)𝑝(𝑦 ∣ 𝜃)
𝑝(𝒳 ∣ 𝜃𝑛)𝑝(𝑦 ∣ 𝒳, 𝜃𝑛)) d𝑦.

Exercise. Prove that 𝑙(𝜃𝑛, 𝜃𝑛) = ℓ(𝜃𝑛).
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em formally

• In other words, we have found a lower bound on ℓ(𝜃)
everywhere that touches it at point 𝜃𝑛.

• I.e., we have found a lower bound for the likelihood and move to
a point that maximizes it (or at least improves).

• This is called minorization-maximization (MM).
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justification of em
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justification of em

• It remains to see that we can maximize 𝑄.

𝜃𝑛+1 = arg max𝜃𝑙(𝜃, 𝜃𝑛) = arg max𝜃 {ℓ(𝜃𝑛)+

+ ∫
𝑦

𝑓(𝑦 ∣ 𝒳, 𝜃𝑛) log ( 𝑝(𝒳 ∣ 𝑦, 𝜃)𝑓(𝑦 ∣ 𝜃)
𝑝(𝒳 ∣ 𝜃𝑛)𝑓(𝑦 ∣ 𝒳, 𝜃𝑛)) d𝑦} =

= arg max𝜃 {∫
𝑦

𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) log (𝑝(𝒳 ∣ 𝑦, 𝜃)𝑝(𝑦 ∣ 𝜃)) d𝑦} =

= arg max𝜃 {∫
𝑦

𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) log 𝑝(𝒳, 𝑦 ∣ 𝜃)d𝑦} =

= arg max𝜃 {𝑄(𝜃, 𝜃𝑛)} ,

and the rest does not depend on 𝜃.
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ideas?

• How can we apply EM to clustering?
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hypothesis

• Hypothesis: test examples are drawn independently from a
mixture of cluster distributions

𝑝(𝑥) = ∑
𝑐∈𝐶

𝑤𝑐𝑝𝑐(𝑥), ∑
𝑐∈𝐶

𝑤𝑐 = 1,

where 𝑤𝑐 is the probability to get a point from cluster 𝑐, 𝑝𝑐 is the
density of cluster 𝑐.
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hypothesis cont'd

• What would be the form of 𝑝𝑐?

19



hypothesis cont'd

• What would be the form of 𝑝𝑐?
• Let’s try... mmm... well, Gaussians. :)
• Hypothesis 2: each cluster 𝑐 is a 𝑑–dimensional Gaussian
distribution with mean 𝜇𝑐 = {𝜇𝑐1, … , 𝜇𝑐𝑑} and diagonal matrix
of covariances Σ𝑐 = diag(𝜎2

𝑐1, … , 𝜎2
𝑐2) (i.e., separate variance for

every independent coordinate).
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problem setting

• Thus, we have formalized clustering as learning a mixture of
distributions. That’s where EM comes into play.

• Each test example looks like (𝑓1(𝑥), … , 𝑓𝑛(𝑥)).
• Latent variables in this case are probabilities 𝑔𝑖𝑐 of 𝑥𝑖 to belong
to cluster 𝑐 ∈ 𝐶 .
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idea

• 𝐸–step: by Bayes theorem, we compute latent variables 𝑔𝑖𝑐:
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idea

• 𝐸–step: by Bayes theorem, we compute latent variables 𝑔𝑖𝑐:

𝑔𝑖𝑐 = 𝑤𝑐𝑝𝑐(𝑥𝑖)
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• 𝑀–step: with 𝑔𝑖𝑐 we refine cluster parameters 𝑤, 𝜇, 𝜎:

𝑤𝑐 = 1
𝑛

𝑛
∑
𝑖=1

𝑔𝑖𝑐, 𝜇𝑐𝑗 = 1
𝑛𝑤𝑐

𝑛
∑
𝑖=1

𝑔𝑖𝑐𝑓𝑗(𝑥𝑖),

𝜎2
𝑐𝑗 = 1

𝑛𝑤𝑐

𝑛
∑
𝑖=1

𝑔𝑖𝑐 (𝑓𝑗(𝑥𝑖) − 𝜇𝑐𝑗)
2 .
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algorithm

EMCluster(𝑋, |𝐶|):

• Initialize |𝐶| clusters; initial approximation: 𝑤𝑐 ∶= 1/|𝐶|,
𝜇𝑐 ∶= random 𝑥𝑖, 𝜎2

𝑐𝑗 ∶= 1
𝑛|𝐶| ∑𝑛

𝑖=1 (𝑓𝑗(𝑥𝑖) − 𝜇𝑐𝑗)
2.

• While cluster composition changes:
• 𝐸–step: 𝑔𝑖𝑐 ∶= 𝑤𝑐𝑝𝑐(𝑥𝑖)

∑𝑐′∈𝐶 𝑤𝑐′ 𝑝𝑐′ (𝑥𝑖) .
• 𝑀–step: 𝑤𝑐 = 1𝑛 ∑𝑛

𝑖=1 𝑔𝑖𝑐, 𝜇𝑐𝑗 = 1𝑛𝑤𝑐 ∑𝑛
𝑖=1 𝑔𝑖𝑐𝑓𝑗(𝑥𝑖),

𝜎2
𝑐𝑗 = 1

𝑛𝑤𝑐

𝑛
∑
𝑖=1

𝑔𝑖𝑐 (𝑓𝑗(𝑥𝑖) − 𝜇𝑐𝑗)2 .

• Find which cluster 𝑥𝑖 falls into:

clust𝑖 ∶= arg max𝑐∈𝐶𝑔𝑖𝑐.

Exercise. Prove that E-step and M-step indeed look like this.
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example
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example
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example
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problem

• We still need to specify the number of clusters.
• Possible solution: BIC.
• Other possible solution: non-parametric methods (out of our
scope for now).
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𝑘--means

• 𝑘-means is a simplification of EM.
• Instead of computing probabilities of clusters, we use hard
clustering.

• Besides, we cannot change the form of clusters in 𝑘–means (and
that’s not so bad).
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objective

• Formally, 𝑘–means minimizes the error

𝐸(𝑋, 𝐶) =
𝑛

∑
𝑖=1

||𝑥𝑖 − 𝜇𝑖||2,

where 𝜇𝑖 is the cluster centroid nearest to 𝑥𝑖.
• I.e., we move centers and automatically relate points to nearest
clusters.
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semi--supervised clustering

• Both EM and 𝑘–means generalize well to partially known
clusters.

• How?

27



semi--supervised clustering

• To account for a known cluster at point 𝑥𝑖, for EM we simply let
the hidden variable 𝑔𝑖𝑐 equal to the necessary cluster with
probability 1 and do not recompute it.

• For 𝑘–means – the same for clust𝑖.
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thank you!

Thank you for your attention!

29


	Clustering
	EM algorithm
	EM and clustering

	Hidden Markov models
	Markov chains

	Special forms of Markov models
	Graphical models
	Message passing
	Approximate inference
	Rejection and importance sampling
	Markov chain Monte Carlo
	Markov methods и slice sampling

	Text mining
	Naive Bayes
	Topic modeling

