
hidden markov models

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
March 28, 2017

markov chains and hidden
markov models

markov chains

• A Markov chain is defined by initial probability distribution 𝑝0(𝑥)
and transition probabilities 𝑇 (𝑥′; 𝑥).

• 𝑇 (𝑥′; 𝑥) is the distribution of the next element in the chain
depending on the previous one; distribution on step (𝑡 + 1) is

𝑝𝑡+1(𝑥′) = ∫ 𝑇 (𝑥′; 𝑥)𝑝𝑡(𝑥)𝑑𝑥.

• In the discrete case, 𝑇 (𝑥′; 𝑥) is a matrix of probabilities
𝑝(𝑥′ = 𝑖|𝑥 = 𝑗).

3

discrete markov chains

• We are in the discrete case.
• A Markov model is when we can observe certain functions of a
Markov chain.

4

discrete markov chains

• Here 𝑥(𝑡) is the process (chain states) itself, and 𝑦(𝑡) are
observables.

• The problem is to find hidden parameters of the process.

5

discrete markov chains

• Markov property: next state does not depend on the history,
only on the previous state:

𝑝(𝑥(𝑡) = 𝑥𝑗|𝑥(𝑡 − 1) = 𝑥𝑗𝑡−1
, … , 𝑥(1) = 𝑥𝑗1

) =
= 𝑝(𝑥(𝑡) = 𝑥𝑗|𝑥(𝑡 − 1) = 𝑥𝑗𝑡−1

).

• Moreover, these probabilities 𝑎𝑖𝑗 = 𝑝(𝑥(𝑡) = 𝑥𝑗|𝑥(𝑡 − 1) = 𝑥𝑖) do
not depend on 𝑡.

• These probabilities comprise the transition matrix 𝐴 = (𝑎𝑖𝑗),
with natural properties 𝑎𝑖𝑗 ≥ 0, ∑𝑗 𝑎𝑖𝑗 = 1.

6

direct problem

• Natural problem: what is the probability to get a certain
sequence of events?

• I.e., for a sequence 𝑄 = 𝑞𝑖1
… 𝑞𝑖𝑘

find

𝑝(𝑄|model) = 𝑝(𝑞𝑖1
)𝑝(𝑞𝑖2

|𝑞𝑖1
) … 𝑝(𝑞𝑖𝑘

|𝑞𝑖𝑘−1
).

• Looks trivial. What’s hard in the real world?

7

hidden markov models

• In the real world we do not know the model.
• And, moreover, we do not observe 𝑥(𝑡), i.e., real model states,
but rather 𝑦(𝑡), i.e., observe functions of them (data).

• Example: speech recognition.

8

problems in hidden markov models

• First: find the probability of a sequence of observations in a
given model.

• Second: find the “optimal” sequence of states in a given model
and a given sequence of observations.

• Third: find the maximum likelihood model (model parameters).

9

states and observables

• 𝑋 = {𝑥1, … , 𝑥𝑛} — set of states.
• 𝑉 = {𝑣1, … , 𝑣𝑚} — alphabet from which we choose observables

𝑦 (set of values of 𝑦).
• 𝑞𝑡 — state at time 𝑡, 𝑦𝑡 — observable at time 𝑡.

10

distributions

• 𝑎𝑖𝑗 = 𝑝(𝑞𝑡+1 = 𝑥𝑗|𝑞𝑡 = 𝑥𝑖) — transition probability from 𝑖 to 𝑗.
• 𝑏𝑗(𝑘) = 𝑝(𝑣𝑘|𝑥𝑗) — probability to get data 𝑣𝑘 in state 𝑗.
• Initial distribution 𝜋 = {𝜋𝑗}, 𝜋𝑗 = 𝑝(𝑞1 = 𝑥𝑗).
• We denote the data by 𝐷 = 𝑑1 … 𝑑𝑇 (sequence of observables,

𝑑𝑖 take values from 𝑉).

11

learning hidden markov models

problem

• We can now formalize the problem setting.
• First problem: for a given model 𝜆 = (𝐴, 𝐵, 𝜋) and sequence 𝐷,
find 𝑝(𝐷|𝜆). By itself it simply shows how well the model fits
this data.

• Second problem: for a given model 𝜆 and sequence 𝐷 find the
“optimal” sequence of states 𝑄 = 𝑞1 … 𝑞𝑇 . Two kinds of
optimality: “bitwise” and general.

• Third problem: optimize model parameters 𝜆 = (𝐴, 𝐵, 𝜋) in
order to maximize 𝑝(𝐷|𝜆) for a given 𝐷 (find the maximum
likelihood model). This is the main problem, training hidden
Markov models.

13

first problem

• Formally the first problem looks like

𝑝(𝐷|𝜆) = ∑
𝑄

𝑝(𝐷|𝑄, 𝜆)𝑝(𝐷|𝜆) =

= ∑
𝑞1,…,𝑞𝑇

𝑏𝑞1
(𝑑1) … 𝑏𝑞𝑇

(𝑑𝑇)𝜋𝑞1
𝑎𝑞1𝑞2

… 𝑎𝑞𝑇−1𝑞𝑇
.

14

first problem

• This is a marginalization problem.
• We use the so-called forward–backward procedure, in essence
dynamical programming on a lattice.

• We will sequentially compute intermediate values of the form

𝛼𝑡(𝑖) = 𝑝(𝑑1 … 𝑑𝑡, 𝑞𝑡 = 𝑥𝑖|𝜆),

i.e., the required probabilities with account for current state.

15

solving the first problem

• Initialize 𝛼1(𝑖) = 𝜋𝑖𝑏𝑖(𝑑1).
• Induction step:

𝛼𝑡+1(𝑗) = [
𝑛

∑
𝑖=1

𝛼𝑡(𝑖)𝑎𝑖𝑗] 𝑏𝑗(𝑑𝑡+1).

• After we get to step 𝑇 , we can compute what we need:

𝑝(𝐷|𝜆) =
𝑛

∑
𝑖=1

𝛼𝑇 (𝑖).

• This is simply the forward pass, we did not need a backward
pass here.

• What would it compute?

16

backward pass

• It would compute conditional probabilities
𝛽𝑡(𝑖) = 𝑝(𝑑𝑡+1 … 𝑑𝑇 |𝑞𝑡 = 𝑥𝑖, 𝜆).

• We can initialize 𝛽𝑇 (𝑖) = 1 and proceed by induction:

𝛽𝑡(𝑖) =
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝑏𝑗(𝑑𝑡+1)𝛽𝑡+1(𝑗).

• We’ll need it later to solve the second and third problems.

17

two versions of the second problem

• There are two versions for the second problem.
• First, solve it “bit by bit”: “what is the most probable state at
time 𝑗?”

• Second, solve it “ in general”: “what is the most probable
sequence of states?”.

18

bitwise solution

• Consider auxiliary variables

𝛾𝑡(𝑖) = 𝑝(𝑞𝑡 = 𝑥𝑖|𝐷, 𝜆).

• The problem is to find

𝑞𝑡 = arg max1≤𝑖≤𝑛𝛾𝑡(𝑖), 1 ≤ 𝑡 ≤ 𝑇 .

• How can we do it?

19

bitwise solution

• We express them via 𝛼 and 𝛽:

𝛾𝑡(𝑖) = 𝛼𝑡(𝑖)𝛽𝑡(𝑖)
𝑝(𝐷|𝜆) = 𝛼𝑡(𝑖)𝛽𝑡(𝑖)

∑𝑛
𝑖=1 𝛼𝑡(𝑖)𝛽𝑡(𝑖)

.

• The denominator does not matter since we need arg max.

20

solving for the sequence

• To find the most probable sequence, we will use the so-called
Viterbi algorithm (that is, dynamic programming).

• Now auxiliary variables are

𝛿𝑡(𝑖) = max
𝑞1,…,𝑞𝑡−1

𝑝 (𝑞1𝑞2 … 𝑞𝑡 = 𝑥𝑖, 𝑑1𝑑2 … 𝑑𝑡|𝜆) .

21

solving for the sequence

• That is, 𝛿𝑡(𝑖) is the maximal probability to reach state 𝑥𝑖 on step
𝑡 among all paths with given observables.

• By induction:

𝛿𝑡+1(𝑗) = [max
𝑖

𝛿𝑡(𝑖)𝑎𝑖𝑗] 𝑏𝑗(𝑑𝑡+1).

• Note that we also need to remember the arguments, not only
values; 𝜓𝑡(𝑗) on the next slide.

22

solving for the sequence: algorithm

• Initialize 𝛿1(𝑖) = 𝜋𝑖𝑏𝑖(𝑑1), 𝜓1(𝑖) = [].
• Induction:

𝛿𝑡(𝑗) = max
1≤𝑖≤𝑛

[𝛿𝑡−1(𝑖)𝑎𝑖𝑗] 𝑏𝑗(𝑑𝑡),

𝜓𝑡(𝑗) = arg max1≤𝑖≤𝑛 [𝛿𝑡−1(𝑖)𝑎𝑖𝑗] .

• When we reach step 𝑇 , final step:

𝑝∗ = max
1≤𝑖≤𝑛

𝛿𝑇 (𝑖), 𝑞∗
𝑇 = arg max1≤𝑖≤𝑛𝛿𝑇 (𝑖).

• And the sequence follows: 𝑞∗
𝑡 = 𝜓𝑡+1(𝑞∗

𝑡+1).

23

third problem

• We cannot find a global maximum of 𝑝(𝐷|𝜆) analytically.
• We will use local optimization.
• The Baum–Welch algorithm: a special case of EM.

24

auxiliary variables

• Now auxiliary variables are probabilities of the event that at
time 𝑡 we are in state 𝑥𝑖, and at time 𝑡 + 1 — in state 𝑥𝑗:

𝜉𝑡(𝑖, 𝑗) = 𝑝(𝑞𝑡 = 𝑥𝑖, 𝑞𝑡+1 = 𝑥𝑗|𝐷, 𝜆).

• Rewriting via already familiar variables:

𝜉𝑡(𝑖, 𝑗) = 𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑑𝑡+1)𝛽𝑡+1(𝑗)
𝑝(𝐷|𝜆) = 𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑑𝑡+1)𝛽𝑡+1(𝑗)

∑𝑖 ∑𝑗 𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑑𝑡+1)𝛽𝑡+1(𝑗) .

• Note also that 𝛾𝑡(𝑖) = ∑𝑗 𝜉𝑡(𝑖, 𝑗).

25

idea

• ∑𝑡 𝛾𝑡(𝑖) is the expected number of transitions from states 𝑥𝑖;
∑𝑡 𝜉𝑡(𝑖, 𝑗), from 𝑥𝑖 to 𝑥𝑗.

• On the M-step we will reestimate the probabilities:

̄𝜋𝑖 = expected frequency of 𝑥𝑖 on step 1 = 𝛾1(𝑖),

̄𝑎𝑖𝑗 = no. of transitions from 𝑥𝑖 to 𝑥𝑗
no. of transitions from 𝑥𝑖

=
∑𝑡 𝜉𝑡(𝑖, 𝑗)
∑𝑡 𝛾𝑡(𝑖)

.

𝑏̄𝑗(𝑘) = no. of times in 𝑥𝑖 observing 𝑣𝑘
no. of times in 𝑥𝑖

=
∑𝑡∶𝑑𝑡=𝑣𝑘

𝛾𝑡(𝑖)
∑𝑡 𝛾𝑡(𝑖)

.

• EM-algorithm: start with 𝜆 = (𝐴, 𝐵, 𝜋), compute 𝜆̄ = (̄𝐴, 𝐵̄, ̄𝜋),
recompute the parameters again, and so on.

26

kullback--leibler divergence

• Kullback–Leibler divergence is an information theoretic measure
of how different two distributions are:

𝐷𝐾𝐿(𝑝1, 𝑝2) = ∑
𝑥

𝑝1(𝑥) log 𝑝1(𝑥)
𝑝2(𝑥) .

• It is nonnegative and equal to zero only if 𝑝1 ≡ 𝑝2 (with
probability 1).

27

in application to hmm

• We define

𝑝1(𝑄) = 𝑝(𝑄, 𝐷|𝜆)
𝑝(𝐷|𝜆) , 𝑝2(𝑄) = 𝑝(𝑄, 𝐷|𝜆′)

𝑝(𝐷|𝜆′) .

• Then 𝑝1 and 𝑝2 are distributions, and the Kullback–Leibler
divergence is

0 ≤ 𝐷𝐿𝐾(𝜆, 𝜆′) = ∑
𝑄

𝑝(𝑄, 𝐷|𝜆)
𝑝(𝐷|𝜆) log 𝑝(𝑄, 𝐷|𝜆)𝑝(𝐷|𝜆′)

𝑝(𝑄, 𝐷|𝜆′)𝑝(𝐷|𝜆) =

= log 𝑝(𝐷|𝜆′)
𝑝(𝐷|𝜆) + ∑

𝑄

𝑝(𝑄, 𝐷|𝜆)
𝑝(𝐷|𝜆) log 𝑝(𝑄, 𝐷|𝜆)

𝑝(𝑄, 𝐷|𝜆′) .

28

auxiliary function

• We introduce the auxiliary function

𝑄(𝜆, 𝜆′) = ∑
𝑄

𝑝(𝑄|𝐷, 𝜆) log 𝑝(𝑄|𝐷, 𝜆′).

• Then the inequality implies that

𝑄(𝜆, 𝜆′) − 𝑄(𝜆, 𝜆)
𝑝(𝐷|𝜆) ≤ log 𝑝(𝐷|𝜆′)

𝑝(𝐷|𝜆) .

• That is, if 𝑄(𝜆, 𝜆′) > 𝑄(𝜆, 𝜆) then 𝑝(𝐷|𝜆′) > 𝑝(𝐷|𝜆).
• That is, if we maximize 𝑄(𝜆, 𝜆′) w.r.t. 𝜆′, we will be moving in the
right direction.

29

function 𝑞

• We need to maximize 𝑄(𝜆, 𝜆′). We rewrite

𝑄(𝜆, 𝜆′) = ∑
𝑄

𝑝(𝑄|𝐷, 𝜆) log 𝑝(𝑄|𝐷, 𝜆′) =

= ∑
𝑄

𝑝(𝑄|𝐷, 𝜆) log 𝜋𝑞1
∏

𝑡
𝑎𝑞𝑡−1𝑞𝑡

𝑏𝑞𝑡
(𝑑𝑡) =

= ∑
𝑄

𝑝(𝑄|𝐷, 𝜆) log 𝜋𝑞1
+ ∑

𝑄
𝑝(𝑄|𝐷, 𝜆) ∑

𝑡
log 𝑎𝑞𝑡−1𝑞𝑡

𝑏𝑞𝑡
(𝑑𝑡).

• The latter expression is easy to differentiate w.r.t. 𝑎𝑖𝑗, 𝑏𝑖(𝑘), and
𝜋𝑖, add the corresponding Lagrange multipliers, and solve.

• We’ll get exactly the Baum–Welch algorithm (check it!).

30

extensions of markov models

continuous densities of observables

• We had discrete observables with probabilities 𝐵 = (𝑏𝑗(𝑘)).
• In reality we often observe continuous signals, and they are
hard to discretize.

• But the chain itself can remain discrete, i.e., we pass to 𝑏𝑗(𝐷).

32

special form of the density

• Not for all densities we know Baum–Welch generalizations.
• But for many, e.g. if 𝑏𝑗(𝐷) can be represented as a convex
combination

𝑏𝑗(𝐷) =
𝑀

∑
𝑚=1

𝑐𝑗𝑚𝒫(𝐷, 𝜇𝑗𝑚, 𝜎𝑗𝑚),

where 𝑐𝑗𝑚 are mixture coefficients (∑𝑚 𝑐𝑗𝑚 = 1), and 𝒫 is a
convex distribution with mean 𝜇 and variance 𝜎 (e.g., Gaussian).

• This can serve as a good approximation for nearly all
distributions.

33

auxiliary variables

• 𝛾𝑡(𝑗, 𝑚) — probability to be in state 𝑗 at time 𝑡, and 𝐷 was
generated from the 𝑚th component of the mixture.

• Formally,

𝛾𝑡(𝑗, 𝑚) = ⎡⎢
⎣

𝛼𝑡(𝑗)𝛽𝑡(𝑗)
∑𝑁

𝑗=1 𝛼𝑡(𝑗)𝛽𝑡(𝑗)
⎤⎥
⎦

[𝑐𝑗𝑚𝒫(𝑑𝑡, 𝜇𝑗𝑚, 𝜎𝑗𝑚)
∑𝑀

𝑚=1 𝑐𝑗𝑚𝒫(𝑑𝑡, 𝜇𝑗𝑚, 𝜎𝑗𝑚)
] .

• If 𝑀 = 1, it’s the same as 𝛾𝑡(𝑗).

34

algorithm

• We need to recompute 𝑏𝑗(𝐷), i.e., recompute 𝑐𝑗𝑚, 𝜇𝑗𝑚, and 𝜎𝑗𝑚.
• Very natural formulas:

̄𝑐𝑗𝑚 =
∑𝑇

𝑡=1 𝛾𝑡(𝑗, 𝑚)
∑𝑇

𝑡=1 ∑𝑀
𝑚=1 𝛾𝑡(𝑗, 𝑚)

,

̄𝜇𝑗𝑚 =
∑𝑇

𝑡=1 𝛾𝑡(𝑗, 𝑚) ⋅ 𝑑𝑡

∑𝑇
𝑡=1 𝛾𝑡(𝑗, 𝑚)

,

𝜎̄𝑗𝑚 =
∑𝑇

𝑡=1 𝛾𝑡(𝑗, 𝑚) ⋅ (𝑑𝑡 − 𝜇𝑗𝑚)(𝑑𝑡 − 𝜇𝑗𝑚)𝑡

∑𝑇
𝑡=1 𝛾𝑡(𝑗, 𝑚)

.

35

problem

• How do we model how long we stay at a certain state?
• In the discrete case the probability to spend 𝑑 steps at state 𝑖 is

𝑝𝑖(𝑑) = 𝑎𝑑−1
𝑖𝑖 (1 − 𝑎𝑖𝑖).

• But for most signals this exponential distribution is wrong!
• We’d like to specify the distribution 𝑝𝑖(𝑑) explicitly.

36

auxiliary variables

• We introduce variables

𝛼𝑡(𝑖) = 𝑝(𝑑1 … 𝑑𝑡, 𝑥𝑖 ends at time 𝑡|𝜆).

• In total, over the first 𝑡 steps we have visited 𝑟 states 𝑞1 … 𝑞𝑟,
spending 𝑑1, … , 𝑑𝑟 steps in them, where

𝑞𝑟 = 𝑥𝑖,
𝑟

∑
𝑠=1

𝑑𝑠 = 𝑡.

37

computing 𝛼𝑡(𝑖)

• Then we get

𝛼𝑡(𝑖) = ∑
𝑞

∑
𝑑

𝜋𝑞1
𝑝𝑞1

(𝑑1)𝑝(𝑑1𝑑2 … 𝑑𝑑1
|𝑞1)

𝑎𝑞1𝑞2
𝑝𝑞2

(𝑑2)𝑝(𝑑𝑑1+1 … 𝑑𝑑1+𝑑2
|𝑞2) …

… 𝑎𝑞𝑟−1𝑞𝑟
𝑝𝑞𝑟

(𝑑𝑟)𝑝(𝑑𝑑1+…+𝑑𝑟−1+1 … 𝑑𝑡|𝑞𝑟).

38

computing 𝛼𝑡(𝑖)

• By induction

𝛼𝑡(𝑗) =
𝑛

∑
𝑖=1

𝐷
∑
𝑑=1

𝛼𝑡−𝑑(𝑗)𝑎𝑖𝑗𝑝𝑗(𝑑)
𝑡

∏
𝑠=𝑡−𝑑+1

𝑏𝑗(𝑑𝑠),

where 𝐷 is the maximal time spent at any state.
• Then, as before,

𝑝(𝑑|𝜆) =
𝑛

∑
𝑖=1

𝛼𝑇 (𝑖).

39

auxiliary variables

• We will need three more variables for recomputation:

𝛼∗
𝑡(𝑖) = 𝑝(𝑑1 … 𝑑𝑡, 𝑥𝑖 starts at time 𝑡 + 1|𝜆),

𝛽𝑡(𝑖) = 𝑝(𝑑𝑡+1 … 𝑑𝑇 |𝑥𝑖 ends at time 𝑡, 𝜆),

𝛽∗
𝑡 (𝑖) = 𝑝(𝑑𝑡+1 … 𝑑𝑇 |𝑥𝑖 starts at time 𝑡 + 1, 𝜆).

40

auxiliary variables

• Relations between them:

𝛼∗
𝑡(𝑗) =

𝑛
∑
𝑖=1

𝛼𝑡(𝑖)𝑎𝑖𝑗,

𝛼𝑡(𝑖) =
𝐷

∑
𝑑=1

𝛼∗
𝑡−𝑑(𝑖)𝑝𝑖(𝑑)

𝑡
∏

𝑠=𝑡−𝑑+1
𝑏𝑖(𝑑𝑠),

𝛽𝑡(𝑖) =
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝛽∗
𝑡 (𝑗),

𝛽∗
𝑡 (𝑖) =

𝐷
∑
𝑑=1

𝛽𝑡+𝑑(𝑖)𝑝𝑖(𝑑)
𝑡+𝑑
∏

𝑠=𝑡+1
𝑏𝑖(𝑑𝑠).

41

formulas

• Formulas:
• 𝜋𝑖 is the probability that 𝑥𝑖 was the first state:

𝜋̂𝑖 = 𝜋𝑖𝛽∗
0(𝑖)

𝑝(𝑑|𝜆) .

• 𝑎𝑖𝑗 — the usual formula, but we have both 𝛼 and 𝛽 that says that
the new state begins at the next step:

𝑎̂𝑖𝑗 =
∑𝑇

𝑡=1 𝛼𝑡(𝑖)𝑎𝑖𝑗𝛽∗
𝑡(𝑗)

∑𝑛
𝑘=1 ∑𝑇

𝑡=1 𝛼𝑡(𝑖)𝑎𝑖𝑘𝛽∗
𝑡(𝑘)

.

42

formulas

• 𝑏𝑖(𝑘) — ratio of the expectation of the number of events 𝑑𝑡 = 𝑣𝑘
in state 𝑥𝑖 to the expectation of any 𝑣𝑗 in state 𝑥𝑖:

𝑏̂𝑖(𝑘) =
∑𝑇

𝑡=1,𝑑𝑡=𝑣𝑘
(∑𝜏<𝑡 𝛼∗

𝜏(𝑖)𝛽∗
𝜏(𝑖) − ∑𝜏<𝑡 𝛼𝜏(𝑖)𝛽𝜏(𝑖))

∑𝑚
𝑘=1 ∑𝑇

𝑡=1,𝑑𝑡=𝑣𝑘
(∑𝜏<𝑡 𝛼∗𝜏(𝑖)𝛽∗𝜏(𝑖) − ∑𝜏<𝑡 𝛼𝜏(𝑖)𝛽𝜏(𝑖))

.

• 𝑝𝑖(𝑑) — ratio of the expectation of the number of times 𝑥𝑖 has
occurred with duration 𝑑 to the number of times 𝑥𝑖 occurred at
all:

̂𝑝𝑖(𝑑) =
∑𝑇

𝑡=1 𝛼∗
𝑡(𝑖)𝑝𝑖(𝑑)𝛽𝑡+𝑑(𝑖) ∏𝑡+𝑑

𝑠=𝑡+1 𝑏𝑖(𝑑𝑠)
∑𝐷

𝑑=1 ∑𝑇
𝑡=1 𝛼∗

𝑡(𝑖)𝑝𝑖(𝑑)𝛽𝑡+𝑑(𝑖) ∏𝑡+𝑑
𝑠=𝑡+1 𝑏𝑖(𝑑𝑠)

.

43

pros and cons

• Very useful approach when 𝑝𝑖(𝑑) is far from exponential.
• But it significantly increases the computational cost (by a factor
of 𝐷2).

• And, more importantly, increases the number of parameters, i.e.,
we need more data to estimate them.

44

parametric state duration

• To reduce the number of parameters, sometimes we can assume
that 𝑝𝑖(𝑑) is a classical distribution with a small number of
parameters.

• E.g., 𝑝𝑖(𝑑) can be uniform, or Gaussian (𝑝𝑖(𝑑) = 𝒩(𝑑, 𝜇𝑖, 𝜎2
𝑖)), or a

Gamma distribution:

𝑝𝑖(𝑑) = 𝜂𝜈𝑖
𝑖 𝑑𝜈𝑖−1𝑒−𝜂𝑖𝑑

Γ(𝜈𝑖)
.

45

thank you!

Thank you for your attention!

46

	Markov chains and hidden Markov models
	Learning hidden Markov models
	Extensions of Markov models

