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MARKOV  CHAINS AND HIDDEN
MARKOV MODELS




MARKOV CHAINS

- A Markov chain is defined by initial probability distribution p°(x)
and transition probabilities T'(z’; x).

- T(x';x) is the distribution of the next element in the chain
depending on the previous one; distribution on step (¢t + 1) is

pt(a’) = /T(x’;m)pt(m)dx.

- In the discrete case, T'(«’;x) is @ matrix of probabilities
p(a’ =iz = j).



DISCRETE MARKOV CHAINS

- We are in the discrete case.

- A Markov model is when we can observe certain functions of a

Markov chain.
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DISCRETE MARKOV CHAINS

- Here x(t) is the process (chain states) itself, and y(t) are
observables.

- The problem is to find hidden parameters of the process.
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DISCRETE MARKOV CHAINS

- Markov property: next state does not depend on the history,
only on the previous state:

p(l‘(t) - mj|x(t - 1) = xjt—17“. ,l‘(l) - le) =
=p(z(t) = 25zt —1) ==z;,_ ).

* Moreover, these probabilities a;; = p(x(t) = z;=(t — 1) = z;) do
not depend on t¢.
* These probabilities comprise the transition matrix A = (a;;),

with natural properties a;; > 0, Zjaij =1.



DIRECT PROBLEM

- Natural problem: what is the probability to get a certain
sequence of events?

- le, forasequence @ =g, ...q;
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p(Q|model) = p(q; )p(a;,1%,) - P4, |4, )

- Looks trivial. What's hard in the real world?



HIDDEN MARKOV MODELS

- In the real world we do not know the model.

- And, moreover, we do not observe z(t), i.e., real model states,
but rather y(t), i.e., observe functions of them (data).

- Example: speech recognition.



PROBLEMS IN HIDDEN MARKOV MODELS

- First: find the probability of a sequence of observations in a
given model.

- Second: find the “optimal” sequence of states in a given model
and a given sequence of observations.

- Third: find the maximum likelihood model (model parameters).



STATES AND OBSERVABLES

- X ={xy,...,xz,} — set of states.

- V={vy,...,v,,} — alphabet from which we choose observables
y (set of values of y).

- ¢, — state at time ¢, y, — observable at time ¢.



DISTRIBUTIONS

* a;; = p(q+1 = 74lq, = x;) — transition probability from i to j.

* b;(k) = p(v|z;) — probability to get data v, in state j.

+ Initial distribution m = {7}, 7; = p(q; = ;).

- We denote the data by D = d, ... d (sequence of observables,
d; take values from V).
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LEARNING HIDDEN MARKOV MODELS




PROBLEM

- We can now formalize the problem setting.

- First problem: for a given model A = (A, B, 7) and sequence D,
find p(DJ|)). By itself it simply shows how well the model fits
this data.

- Second problem: for a given model A and sequence D find the
“optimal” sequence of states @ = q; ... gp. Two kinds of
optimality: “bitwise” and general.

- Third problem: optimize model parameters A = (A, B, x) in
order to maximize p(D|)) for a given D (find the maximum
likelihood model). This is the main problem, training hidden
Markov models.



FIRST PROBLEM

- Formally the first problem looks like
p(D|X) = Zp D|Q,\p(D|X) =

= Z bql(dl) b (dT) 41 lh(b .aqT—qu.
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FIRST PROBLEM

- This is @ marginalization problem.

- We use the so-called forward-backward procedure, in essence
dynamical programming on a lattice.

- We will sequentially compute intermediate values of the form
oy (i) = p(dy - dy, g = x| A),

i.e., the required probabilities with account for current state.



SOLVING THE FIRST PROBLEM

- Initialize o (7) = m;b,(d;).
- Induction step:

1 [Z o (i 1 (derq)-

- After we get to step 7', we can compute what we need:

p(DIN) =3 _ar(i)

- This is simply the forward pass, we did not need a backward
pass here.

- What would it compute?
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BACKWARD PASS

- It would compute conditional probabilities
Be(i) = p(deiy - drla, = ;5 A).
- We can initialize 5,(i) = 1 and proceed by induction:
Bi(i) = Zaijbj(dt+1)ﬂt+l(j>'

J=1

- We'll need it later to solve the second and third problems.



TWO VERSIONS OF THE SECOND PROBLEM

- There are two versions for the second problem.

- First, solve it “bit by bit": “what is the most probable state at
time 57"

- Second, solve it “in general”: “what is the most probable
sequence of states?”.



BITWISE SOLUTION

- Consider auxiliary variables
V(i) = p(q, = ;| D, A).
- The problem is to find
q =argmax,_,_ v(1), 1<t<T.

- How can we do it?
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BITWISE SOLUTION

- We express them via « and 3

~,(i) = o (1) B, () _ (1) By (i) .
! p(D|A) Z:?:l () B, (7)

- The denominator does not matter since we need arg max.
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SOLVING FOR THE SEQUENCE

- To find the most probable sequence, we will use the so-called
Viterbi algorithm (that is, dynamic programming).

- Now auxiliary variables are

0,(7) = RS 1D (¢1G9 - qp = x5, dydy ... dy|N)
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SOLVING FOR THE SEQUENCE

- Thatis, 6,(7) is the maximal probability to reach state x; on step
t among all paths with given observables.

- By induction:

Op41(J) = {IH?X 5t(i>aij:| bj(dyyq)-

- Note that we also need to remember the arguments, not only
values; ¢, (j) on the next slide.
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SOLVING FOR THE SEQUENCE: ALGORITHM

- Initialize 6, () = m;b,(d;), ¥, (i) = [].
- Induction:
6,(j) = 112%32 [5#1(0%3‘] bj<dt)7

Yy (j) = arg max, .., [6t—1(i)a1j] 3

- When we reach step T, final step:
p* = max dp(7), gy = argmax, _,_ 6p(i).

1<i<n

- And the sequence follows: ¢; = ¥, (g, 1)
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THIRD PROBLEM

- We cannot find a global maximum of p(D|\) analytically.
- We will use local optimization.

- The Baum-Welch algorithm: a special case of EM.
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AUXILIARY VARIABLES

- Now auxiliary variables are probabilities of the event that at
time ¢ we are in state z;, and at time ¢t + 1 — in state T

§:(1,9) = p(@ = ;5 @1 = 74D, N).

- Rewriting via already familiar variables

5 (Z ]) ( )amb]( t+1)5t+1(j> ( )amb]( t+1)5t+1(j)
n p(DIA) X2, on()agd(dyyr) By (5)

- Note also that v, () E &3, 7).
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IDEA

© 22, (@) is the expected number of transitions from states z;;
32, &4, 9), from z; 0 z;.
- On the M-step we will reestimate the probabilities:

7, = expected frequency of z; on step 1 = 7, (4),

no. of transitions from z; to z; ~ 3_, (4, )
%5 = Tho. of transitions from r, >, @)

= no. of times in z; observing v,, Zt:dt:vk (1)

b;(k) = -

no. of times in z; >, Ye(d)

- EM-algorithm: start with A = (A, B, w), compute A = (4, B, 7),
recompute the parameters again, and so on.
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KULLBACK--LEIBLER DIVERGENCE

- Kullback-Leibler divergence is an information theoretic measure
of how different two distributions are:

Py (@)

pa(z)

D1, (p1,P3) Zpl ) log 2

- It is nonnegative and equal to zero only if p; = p, (with
probability 1).
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IN APPLICATION TO HMM

- We define

p(Q, D|))

p(Q, DI\
p(D[A)

pz(Q) =

- Then p, and p, are distributions, and the Kullback-Leibler
divergence is

pQ.DY) | p(Q.DINP(DIN) _
0 Puc ) = 2750 %8 Q. DVIPDI)

p(DIXN) Zp (@, DY) |~ p(Q, D)
p(DIN) (D) 2 p(Q,DIN)’

= 1og
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AUXILIARY FUNCTION

- We introduce the auxiliary function

QA N) Zp QID, ) log p(Q|D, X').

- Then the inequality implies that

QAN — QAN _ . p(DIY)
O R R

- Thatis, if Q(A\, \) > Q(A, ) then p(DIX') > p(D|N).
- That is, if we maximize Q(A, \") w.r.t. \’, we will be moving in the
right direction.
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FUNCTION ¢

- We need to maximize Q(A, \"). We rewrite
QA N) =Y p(QID,\)logp(Q|D, \') =
Q

= ZP(Q‘D’ A)logm,, Haqt—lqtbqt (de) =
Q t
= p(@QID, N logm, + Y p(QID,\) logay,, b, (dy)-
Q Q t

- The latter expression is easy to differentiate w.rt. a;;, b;(k), and

m,;, add the corresponding Lagrange multipliers, and solve.
- We'll get exactly the Baum-Welch algorithm (check it!).
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EXTENSIONS OF MARKOV MODELS




CONTINUOUS DENSITIES OF OBSERVABLES

* We had discrete observables with probabilities B = (b,(k)).

- In reality we often observe continuous signals, and they are
hard to discretize.

+ But the chain itself can remain discrete, i.e., we pass to b,(D).
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SPECIAL FORM OF THE DENSITY

- Not for all densities we know Baum-Welch generalizations.

- But for many, e.g. if b;(D) can be represented as a convex

combination
M
= Z CimP(D; > T )
m=1
where ¢;,,, are mixture coefficients ( Z ¢jm =1),and Pisa

convex distribution with mean p and variance o (e.g., Gaussian).

- This can serve as a good approximation for nearly all
distributions.
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AUXILIARY VARIABLES

- v,(j,m) — probability to be in state j at time ¢, and D was
generated from the mth component of the mixture.

- Formally,
. ] ﬂ (]) C’m"})(dhu’m?(j'm)
v, (G, m) = o (J) t : } { 7 J J
t {zﬁl (B G) ] LN, CimP(des tjms jun)

- If M =1, it's the same as v,(j).
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ALGORITHM

- We need to recompute bj(D), i.e, recompute ¢

Jm? :ujmi and Ujm'

- Very natural formulas:

7 .
_ > Veld,m)
Cjm =
Zt 12771 1715(]7770

T 0
_ Zt:]. "Yf(j,m) ' dt
/I‘_j’m, = )

ZtT:I ’Yt(j7 m)
_ ZtT:1 Y (4, m) - (dy — /’LjTVL)(dt B “jm)t

T jm T .
> edim)
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PROBLEM

- How do we model how long we stay at a certain state?

- In the discrete case the probability to spend d steps at state i is
pi(d) = af7 1 (1 —ay).

- But for most signals this exponential distribution is wrong!

- We'd like to specify the distribution p,(d) explicitly.
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AUXILIARY VARIABLES

- We introduce variables
oy (i) = p(dy ... dy, x; ends at time ¢|\).

- In total, over the first ¢ steps we have visited r states ¢, ... q,.,
spending dy, ..., d,. steps in them, where

-
q, =T, st =tk
s=1
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COMPUTING cv, (%)

- Then we get

o, (i) = Z Z Tq,Pq, (dy)p(dydy ... ddl 91)
¢ d

g, 4,Pq, (dQ)p(dd1+1 dd1+d2|q2)
Qg 1qrpqr(d7‘)p<dd1+...+dr 141 e dy]g,).
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COMPUTING cv, (%)

- By induction
n D
:Zzat d upy ) H bj(ds>7
i=1 d=1 s=t—d+1

where D is the maximal time spent at any state.

- Then, as before,

p(d|)) = ZaT
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AUXILIARY VARIABLES

- We will need three more variables for recomputation:
o (i) = p(dy ... dy, x; starts at time ¢ + 1|\),

B,(1) = p(dyyq ... dp|z; ends at time ¢, ),

Bi(1) = p(dyyq ... dp|x; Starts at time ¢ + 1, \).
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AUXILIARY VARIABLES

- Relations between them:

i (j) = Z at(i)aija

D
at(i)zza;d(i)pi(@ H bi(dy),
d=1

s=t—d+1

B,() =3 ayBi (),
j=1

D t+d
Bi(i) = Zﬁter(i)pi(d) H b;(d,).
d=1 s=t+1
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FORMULAS

- Formulas:
- 7, is the probability that =, was the first state:
~ ;B85 (%)
™, = o
“op(dN)

- a,;; — the usual formula, but we have both o and g that says that
the new state begins at the next step:

G — 23:1 at(i)aijﬁ;(‘j)
YT L au(DagBi(k)
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FORMULAS

- b;(k) — ratio of the expectation of the number of events d, = v,
in state x; to the expectation of any v, in state z;:

b ) = et (B GO0 ~ 5, 0,06,)
- Z:;l Zz;lvdtjvk <ZT<t ai(l)ﬁi(l) - Z‘r<t aT(Z)/BT(Z)) .

- p;(d) — ratio of the expectation of the number of times z, has
occurred with duration d to the number of times x, occurred at
all:

ST a8 T, bud,)
Y S A 0p @B LT, b))

pi(d)
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PROS AND CONS

- Very useful approach when p,(d) is far from exponential.

- But it significantly increases the computational cost (by a factor
of D?).

- And, more importantly, increases the number of parameters, i.e,
we need more data to estimate them.
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PARAMETRIC STATE DURATION

- To reduce the number of parameters, sometimes we can assume

that p,(d) is a classical distribution with a small number of
parameters.

- Eg, p;(d) can be uniform, or Gaussian (p,(d) = N(d, p1;,02)), or a
Gamma distribution:

77”7 dvi—le—mid
(d) = 2—o-—+1 ——
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THANK YOU!

Thank you for your attention!
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