HIDDEN MARKOV MODELS

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
March 28, 2017

MARKOV CHAINS AND HIDDEN MARKOV MODELS

- A Markov chain is defined by initial probability distribution $p^{0}(x)$ and transition probabilities $T\left(x^{\prime} ; x\right)$.
- $T\left(x^{\prime} ; x\right)$ is the distribution of the next element in the chain depending on the previous one; distribution on step $(t+1)$ is

$$
p^{t+1}\left(x^{\prime}\right)=\int T\left(x^{\prime} ; x\right) p^{t}(x) d x
$$

- In the discrete case, $T\left(x^{\prime} ; x\right)$ is a matrix of probabilities $p\left(x^{\prime}=i \mid x=j\right)$.

DISCRETE MARKOV CHAINS

- We are in the discrete case.
- A Markov model is when we can observe certain functions of a Markov chain.

DISCRETE MARKOV CHAINS

- Here $x(t)$ is the process (chain states) itself, and $y(t)$ are observables.
- The problem is to find hidden parameters of the process.

DISCRETE MARKOV CHAINS

- Markov property: next state does not depend on the history, only on the previous state:

$$
\begin{aligned}
& p\left(x(t)=x_{j} \mid x(t-1)=x_{j_{t-1}}, \ldots, x(1)=x_{j_{1}}\right)= \\
& \quad=p\left(x(t)=x_{j} \mid x(t-1)=x_{j_{t-1}}\right)
\end{aligned}
$$

- Moreover, these probabilities $a_{i j}=p\left(x(t)=x_{j} \mid x(t-1)=x_{i}\right)$ do not depend on t.
- These probabilities comprise the transition matrix $A=\left(a_{i j}\right)$, with natural properties $a_{i j} \geq 0, \sum_{j} a_{i j}=1$.
- Natural problem: what is the probability to get a certain sequence of events?
- I.e., for a sequence $Q=q_{i_{1}} \ldots q_{i_{k}}$ find

$$
p(Q \mid \text { model })=p\left(q_{i_{1}}\right) p\left(q_{i_{2}} \mid q_{i_{1}}\right) \ldots p\left(q_{i_{k}} \mid q_{i_{k-1}}\right)
$$

- Looks trivial. What's hard in the real world?

HIDDEN MARKOV MODELS

- In the real world we do not know the model.
- And, moreover, we do not observe $x(t)$, i.e., real model states, but rather $y(t)$, i.e., observe functions of them (data).
- Example: speech recognition.
- First: find the probability of a sequence of observations in a given model.
- Second: find the "optimal" sequence of states in a given model and a given sequence of observations.
- Third: find the maximum likelihood model (model parameters).

STATES AND OBSERVABLES

- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ - set of states.
- $V=\left\{v_{1}, \ldots, v_{m}\right\}-$ alphabet from which we choose observables y (set of values of y).
- q_{t} - state at time t, y_{t} - observable at time t.

DISTRIBUTIONS

- $a_{i j}=p\left(q_{t+1}=x_{j} \mid q_{t}=x_{i}\right)$ - transition probability from i to j.
- $b_{j}(k)=p\left(v_{k} \mid x_{j}\right)$ - probability to get data v_{k} in state j.
- Initial distribution $\pi=\left\{\pi_{j}\right\}, \pi_{j}=p\left(q_{1}=x_{j}\right)$.
- We denote the data by $D=d_{1} \ldots d_{T}$ (sequence of observables, d_{i} take values from V).

LEARNING HIDDEN MARKOV MODELS

- We can now formalize the problem setting.
- First problem: for a given model $\lambda=(A, B, \pi)$ and sequence D, find $p(D \mid \lambda)$. By itself it simply shows how well the model fits this data.
- Second problem: for a given model λ and sequence D find the "optimal" sequence of states $Q=q_{1} \ldots q_{T}$. Two kinds of optimality: "bitwise" and general.
- Third problem: optimize model parameters $\lambda=(A, B, \pi)$ in order to maximize $p(D \mid \lambda)$ for a given D (find the maximum likelihood model). This is the main problem, training hidden Markov models.

FIRST PROBLEM

- Formally the first problem looks like

$$
\begin{aligned}
& p(D \mid \lambda)=\sum_{Q} p(D \mid Q, \lambda) p(D \mid \lambda)= \\
&=\sum_{q_{1}, \ldots, q_{T}} b_{q_{1}}\left(d_{1}\right) \ldots b_{q_{T}}\left(d_{T}\right) \pi_{q_{1}} a_{q_{1} q_{2}} \ldots a_{q_{T-1} q_{T}}
\end{aligned}
$$

- This is a marginalization problem.
- We use the so-called forward-backward procedure, in essence dynamical programming on a lattice.
- We will sequentially compute intermediate values of the form

$$
\alpha_{t}(i)=p\left(d_{1} \ldots d_{t}, q_{t}=x_{i} \mid \lambda\right),
$$

i.e., the required probabilities with account for current state.

SOLVING THE FIRST PROBLEM

- Initialize $\alpha_{1}(i)=\pi_{i} b_{i}\left(d_{1}\right)$.
- Induction step:

$$
\alpha_{t+1}(j)=\left[\sum_{i=1}^{n} \alpha_{t}(i) a_{i j}\right] b_{j}\left(d_{t+1}\right)
$$

- After we get to step T, we can compute what we need:

$$
p(D \mid \lambda)=\sum_{i=1}^{n} \alpha_{T}(i) .
$$

- This is simply the forward pass, we did not need a backward pass here.
-What would it compute?

BACKWARD PASS

- It would compute conditional probabilities

$$
\beta_{t}(i)=p\left(d_{t+1} \ldots d_{T} \mid q_{t}=x_{i}, \lambda\right) .
$$

- We can initialize $\beta_{T}(i)=1$ and proceed by induction:

$$
\beta_{t}(i)=\sum_{j=1}^{n} a_{i j} b_{j}\left(d_{t+1}\right) \beta_{t+1}(j) .
$$

- We'll need it later to solve the second and third problems.
- There are two versions for the second problem.
- First, solve it "bit by bit": "what is the most probable state at time j?"
- Second, solve it "in general": "what is the most probable sequence of states?".

BITWISE SOLUTION

- Consider auxiliary variables

$$
\gamma_{t}(i)=p\left(q_{t}=x_{i} \mid D, \lambda\right) .
$$

- The problem is to find

$$
q_{t}=\arg \max _{1 \leq i \leq n} \gamma_{t}(i), \quad 1 \leq t \leq T .
$$

- How can we do it?

BITWISE SOLUTION

- We express them via α and β :

$$
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{p(D \mid \lambda)}=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{i=1}^{n} \alpha_{t}(i) \beta_{t}(i)} .
$$

- The denominator does not matter since we need arg max.

SOLVING FOR THE SEQUENCE

- To find the most probable sequence, we will use the so-called Viterbi algorithm (that is, dynamic programming).
- Now auxiliary variables are

$$
\delta_{t}(i)=\max _{q_{1}, \ldots, q_{t-1}} p\left(q_{1} q_{2} \ldots q_{t}=x_{i}, d_{1} d_{2} \ldots d_{t} \mid \lambda\right) .
$$

SOLVING FOR THE SEQUENCE

- That is, $\delta_{t}(i)$ is the maximal probability to reach state x_{i} on step t among all paths with given observables.
- By induction:

$$
\delta_{t+1}(j)=\left[\max _{i} \delta_{t}(i) a_{i j}\right] b_{j}\left(d_{t+1}\right) .
$$

- Note that we also need to remember the arguments, not only values; $\psi_{t}(j)$ on the next slide.

SOLVING FOR THE SEQUENCE: ALGORITHM

- Initialize $\delta_{1}(i)=\pi_{i} b_{i}\left(d_{1}\right), \psi_{1}(i)=[]$.
- Induction:

$$
\begin{gathered}
\delta_{t}(j)=\max _{1 \leq i \leq n}\left[\delta_{t-1}(i) a_{i j}\right] b_{j}\left(d_{t}\right) \\
\psi_{t}(j)=\arg \max _{1 \leq i \leq n}\left[\delta_{t-1}(i) a_{i j}\right]
\end{gathered}
$$

- When we reach step T, final step:

$$
p^{*}=\max _{1 \leq i \leq n} \delta_{T}(i), \quad q_{T}^{*}=\arg \max _{1 \leq i \leq n} \delta_{T}(i)
$$

- And the sequence follows: $q_{t}^{*}=\psi_{t+1}\left(q_{t+1}^{*}\right)$.

THIRD PROBLEM

- We cannot find a global maximum of $p(D \mid \lambda)$ analytically.
- We will use local optimization.
- The Baum-Welch algorithm: a special case of EM.

AUXILIARY VARIABLES

- Now auxiliary variables are probabilities of the event that at time t we are in state x_{i}, and at time $t+1-$ in state x_{j} :

$$
\xi_{t}(i, j)=p\left(q_{t}=x_{i}, q_{t+1}=x_{j} \mid D, \lambda\right)
$$

- Rewriting via already familiar variables:

$$
\xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(d_{t+1}\right) \beta_{t+1}(j)}{p(D \mid \lambda)}=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(d_{t+1}\right) \beta_{t+1}(j)}{\sum_{i} \sum_{j} \alpha_{t}(i) a_{i j} b_{j}\left(d_{t+1}\right) \beta_{t+1}(j)} .
$$

- Note also that $\gamma_{t}(i)=\sum_{j} \xi_{t}(i, j)$.

IDEA

- $\sum_{t} \gamma_{t}(i)$ is the expected number of transitions from states x_{i}; $\sum_{t} \xi_{t}(i, j)$, from x_{i} to x_{j}.
- On the M-step we will reestimate the probabilities:

$$
\begin{gathered}
\bar{\pi}_{i}=\text { expected frequency of } x_{i} \text { on step } 1=\gamma_{1}(i), \\
\bar{a}_{i j}=\frac{\text { no. of transitions from } x_{i} \text { to } x_{j}}{\text { no. of transitions from } x_{i}}=\frac{\sum_{t} \xi_{t}(i, j)}{\sum_{t} \gamma_{t}(i)} . \\
\bar{b}_{j}(k)=\frac{\text { no. of times in } x_{i} \text { observing } v_{k}}{\text { no. of times in } x_{i}}=\frac{\sum_{t: d_{t}=v_{k}} \gamma_{t}(i)}{\sum_{t} \gamma_{t}(i)} .
\end{gathered}
$$

- EM-algorithm: start with $\lambda=(A, B, \pi)$, compute $\bar{\lambda}=(\bar{A}, \bar{B}, \bar{\pi})$, recompute the parameters again, and so on.

KULLBACK--LEIBLER DIVERGENCE

- Kullback-Leibler divergence is an information theoretic measure of how different two distributions are:

$$
D_{K L}\left(p_{1}, p_{2}\right)=\sum_{x} p_{1}(x) \log \frac{p_{1}(x)}{p_{2}(x)} .
$$

- It is nonnegative and equal to zero only if $p_{1} \equiv p_{2}$ (with probability 1).

IN APPLICATION TO HMM

- We define

$$
p_{1}(Q)=\frac{p(Q, D \mid \lambda)}{p(D \mid \lambda)}, \quad p_{2}(Q)=\frac{p\left(Q, D \mid \lambda^{\prime}\right)}{p\left(D \mid \lambda^{\prime}\right)} .
$$

- Then p_{1} and p_{2} are distributions, and the Kullback-Leibler divergence is

$$
\begin{aligned}
0 \leq D_{L K}\left(\lambda, \lambda^{\prime}\right) & =\sum_{Q} \frac{p(Q, D \mid \lambda)}{p(D \mid \lambda)} \log \frac{p(Q, D \mid \lambda) p\left(D \mid \lambda^{\prime}\right)}{p\left(Q, D \mid \lambda^{\prime}\right) p(D \mid \lambda)}= \\
& =\log \frac{p\left(D \mid \lambda^{\prime}\right)}{p(D \mid \lambda)}+\sum_{Q} \frac{p(Q, D \mid \lambda)}{p(D \mid \lambda)} \log \frac{p(Q, D \mid \lambda)}{p\left(Q, D \mid \lambda^{\prime}\right)} .
\end{aligned}
$$

AUXILIARY FUNCTION

- We introduce the auxiliary function

$$
Q\left(\lambda, \lambda^{\prime}\right)=\sum_{Q} p(Q \mid D, \lambda) \log p\left(Q \mid D, \lambda^{\prime}\right)
$$

- Then the inequality implies that

$$
\frac{Q\left(\lambda, \lambda^{\prime}\right)-Q(\lambda, \lambda)}{p(D \mid \lambda)} \leq \log \frac{p\left(D \mid \lambda^{\prime}\right)}{p(D \mid \lambda)}
$$

- That is, if $Q\left(\lambda, \lambda^{\prime}\right)>Q(\lambda, \lambda)$ then $p\left(D \mid \lambda^{\prime}\right)>p(D \mid \lambda)$.
- That is, if we maximize $Q\left(\lambda, \lambda^{\prime}\right)$ w.r.t. λ^{\prime}, we will be moving in the right direction.
- We need to maximize $Q\left(\lambda, \lambda^{\prime}\right)$. We rewrite

$$
\begin{aligned}
& Q\left(\lambda, \lambda^{\prime}\right)=\sum_{Q} p(Q \mid D, \lambda) \log p\left(Q \mid D, \lambda^{\prime}\right)= \\
& \quad=\sum_{Q} p(Q \mid D, \lambda) \log \pi_{q_{1}} \prod_{t} a_{q_{t-1} q_{t}} b_{q_{t}}\left(d_{t}\right)= \\
& \quad=\sum_{Q} p(Q \mid D, \lambda) \log \pi_{q_{1}}+\sum_{Q} p(Q \mid D, \lambda) \sum_{t} \log a_{q_{t-1} q_{t}} b_{q_{t}}\left(d_{t}\right)
\end{aligned}
$$

- The latter expression is easy to differentiate w.r.t. $a_{i j}, b_{i}(k)$, and π_{i}, add the corresponding Lagrange multipliers, and solve.
- We'll get exactly the Baum-Welch algorithm (check it!).

EXTENSIONS OF MARKOV MODELS

CONTINUOUS DENSITIES OF OBSERVABLES

- We had discrete observables with probabilities $B=\left(b_{j}(k)\right)$.
- In reality we often observe continuous signals, and they are hard to discretize.
- But the chain itself can remain discrete, i.e., we pass to $b_{j}(D)$.

SPECIAL FORM OF THE DENSITY

- Not for all densities we know Baum-Welch generalizations.
- But for many, e.g. if $b_{j}(D)$ can be represented as a convex combination

$$
b_{j}(D)=\sum_{m=1}^{M} c_{j m} \mathcal{P}\left(D, \mu_{j m}, \sigma_{j m}\right)
$$

where $c_{j m}$ are mixture coefficients ($\sum_{m} c_{j m}=1$), and \mathcal{P} is a convex distribution with mean μ and variance σ (e.g., Gaussian).

- This can serve as a good approximation for nearly all distributions.

AUXILIARY VARIABLES

- $\gamma_{t}(j, m)$ - probability to be in state j at time t, and D was generated from the m th component of the mixture.
- Formally,

$$
\gamma_{t}(j, m)=\left[\frac{\alpha_{t}(j) \beta_{t}(j)}{\sum_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)}\right]\left[\frac{c_{j m} \mathcal{P}\left(d_{t}, \mu_{j m}, \sigma_{j m}\right)}{\sum_{m=1}^{M} c_{j m} \mathcal{P}\left(d_{t}, \mu_{j m}, \sigma_{j m}\right)}\right] .
$$

- If $M=1$, it's the same as $\gamma_{t}(j)$.

ALGORITHM

- We need to recompute $b_{j}(D)$, i.e., recompute $c_{j m}, \mu_{j m}$, and $\sigma_{j m}$.
- Very natural formulas:

$$
\begin{gathered}
\bar{c}_{j m}=\frac{\sum_{t=1}^{T} \gamma_{t}(j, m)}{\sum_{t=1}^{T} \sum_{m=1}^{M} \gamma_{t}(j, m)}, \\
\bar{\mu}_{j m}=\frac{\sum_{t=1}^{T} \gamma_{t}(j, m) \cdot d_{t}}{\sum_{t=1}^{T} \gamma_{t}(j, m)}, \\
\bar{\sigma}_{j m}=\frac{\sum_{t=1}^{T} \gamma_{t}(j, m) \cdot\left(d_{t}-\mu_{j m}\right)\left(d_{t}-\mu_{j m}\right)^{t}}{\sum_{t=1}^{T} \gamma_{t}(j, m)} .
\end{gathered}
$$

PROBLEM

- How do we model how long we stay at a certain state?
- In the discrete case the probability to spend d steps at state i is

$$
p_{i}(d)=a_{i i}^{d-1}\left(1-a_{i i}\right) .
$$

- But for most signals this exponential distribution is wrong!
- We'd like to specify the distribution $p_{i}(d)$ explicitly.

AUXILIARY VARIABLES

- We introduce variables

$$
\alpha_{t}(i)=p\left(d_{1} \ldots d_{t}, x_{i} \text { ends at time } t \mid \lambda\right) .
$$

- In total, over the first t steps we have visited r states $q_{1} \ldots q_{r}$, spending d_{1}, \ldots, d_{r} steps in them, where

$$
q_{r}=x_{i}, \quad \sum_{s=1}^{r} d_{s}=t
$$

COMPUTING $\alpha_{t}(i)$

- Then we get

$$
\begin{aligned}
& \alpha_{t}(i)=\sum_{q} \sum_{d} \pi_{q_{1}} p_{q_{1}}\left(d_{1}\right) p\left(d_{1} d_{2} \ldots d_{d_{1}} \mid q_{1}\right) \\
& a_{q_{1} q_{2}} p_{q_{2}}\left(d_{2}\right) p\left(d_{d_{1}+1} \ldots d_{d_{1}+d_{2}} \mid q_{2}\right) \ldots \\
& \\
& \quad \ldots a_{q_{r-1} q_{r}} p_{q_{r}}\left(d_{r}\right) p\left(d_{d_{1}+\ldots+d_{r-1}+1} \ldots d_{t} \mid q_{r}\right)
\end{aligned}
$$

COMPUTING $\alpha_{t}(i)$

- By induction

$$
\alpha_{t}(j)=\sum_{i=1}^{n} \sum_{d=1}^{D} \alpha_{t-d}(j) a_{i j} p_{j}(d) \prod_{s=t-d+1}^{t} b_{j}\left(d_{s}\right),
$$

where D is the maximal time spent at any state.

- Then, as before,

$$
p(d \mid \lambda)=\sum_{i=1}^{n} \alpha_{T}(i) .
$$

AUXILIARY VARIABLES

- We will need three more variables for recomputation:

$$
\begin{gathered}
\alpha_{t}^{*}(i)=p\left(d_{1} \ldots d_{t}, x_{i} \text { starts at time } t+1 \mid \lambda\right), \\
\beta_{t}(i)=p\left(d_{t+1} \ldots d_{T} \mid x_{i} \text { ends at time } t, \lambda\right), \\
\beta_{t}^{*}(i)=p\left(d_{t+1} \ldots d_{T} \mid x_{i} \text { starts at time } t+1, \lambda\right) .
\end{gathered}
$$

AUXILIARY VARIABLES

- Relations between them:

$$
\begin{gathered}
\alpha_{t}^{*}(j)=\sum_{i=1}^{n} \alpha_{t}(i) a_{i j} \\
\alpha_{t}(i)=\sum_{d=1}^{D} \alpha_{t-d}^{*}(i) p_{i}(d) \prod_{s=t-d+1}^{t} b_{i}\left(d_{s}\right), \\
\beta_{t}(i)=\sum_{j=1}^{n} a_{i j} \beta_{t}^{*}(j) \\
\beta_{t}^{*}(i)=\sum_{d=1}^{D} \beta_{t+d}(i) p_{i}(d) \prod_{s=t+1}^{t+d} b_{i}\left(d_{s}\right)
\end{gathered}
$$

FORMULAS

- Formulas:
- π_{i} is the probability that x_{i} was the first state:

$$
\hat{\pi}_{i}=\frac{\pi_{i} \beta_{0}^{*}(i)}{p(d \mid \lambda)}
$$

- $a_{i j}$ - the usual formula, but we have both α and β that says that the new state begins at the next step:

$$
\hat{a}_{i j}=\frac{\sum_{t=1}^{T} \alpha_{t}(i) a_{i j} \beta_{t}^{*}(j)}{\sum_{k=1}^{n} \sum_{t=1}^{T} \alpha_{t}(i) a_{i k} \beta_{t}^{*}(k)} .
$$

- $b_{i}(k)$ - ratio of the expectation of the number of events $d_{t}=v_{k}$ in state x_{i} to the expectation of any v_{j} in state x_{i} :

$$
\hat{b}_{i}(k)=\frac{\sum_{t=1, d_{t}=v_{k}}^{T}\left(\sum_{\tau<t} \alpha_{\tau}^{*}(i) \beta_{\tau}^{*}(i)-\sum_{\tau<t} \alpha_{\tau}(i) \beta_{\tau}(i)\right)}{\sum_{k=1}^{m} \sum_{t=1, d_{t}=v_{k}}^{T}\left(\sum_{\tau<t} \alpha_{\tau}^{*}(i) \beta_{\tau}^{*}(i)-\sum_{\tau<t} \alpha_{\tau}(i) \beta_{\tau}(i)\right)} .
$$

- $p_{i}(d)$ - ratio of the expectation of the number of times x_{i} has occurred with duration d to the number of times x_{i} occurred at all:

$$
\hat{p}_{i}(d)=\frac{\sum_{t=1}^{T} \alpha_{t}^{*}(i) p_{i}(d) \beta_{t+d}(i) \prod_{s=t+1}^{t+d} b_{i}\left(d_{s}\right)}{\sum_{d=1}^{D} \sum_{t=1}^{T} \alpha_{t}^{*}(i) p_{i}(d) \beta_{t+d}(i) \prod_{s=t+1}^{t+d} b_{i}\left(d_{s}\right)} .
$$

PROS AND CONS

- Very useful approach when $p_{i}(d)$ is far from exponential.
- But it significantly increases the computational cost (by a factor of D^{2}).
- And, more importantly, increases the number of parameters, i.e., we need more data to estimate them.

PARAMETRIC STATE DURATION

- To reduce the number of parameters, sometimes we can assume that $p_{i}(d)$ is a classical distribution with a small number of parameters.
- E.g., $p_{i}(d)$ can be uniform, or Gaussian $\left(p_{i}(d)=\mathcal{N}\left(d, \mu_{i}, \sigma_{i}^{2}\right)\right)$, or a Gamma distribution:

$$
p_{i}(d)=\frac{\eta_{i}^{\nu_{i}} d^{\nu_{i}-1} e^{-\eta_{i} d}}{\Gamma\left(\nu_{i}\right)}
$$

Thank you for your attention!

