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GRAPHICAL MODELS




DIRECTED GRAPHICAL MODELS

- Graphical models show the dependence/independence
relations between the variables.

- Example — consider the joint distribution of three variables:

p(z,y,2) =p(z |y, 2)p(y | 2)p(2).

- Let us plot it as a graph.
- A complete graph can describe any distribution p(x4, ..., x,,).

- But if some edges are missing, this simplifies (restricts) the
distribution.



DIRECTED GRAPHICAL MODELS

- Consider a directed acyclic graph zy, ..., 2, with distributions
p(z; | pa(x;)) at every node. Such a graph is called a directed
graphical model (Bayesian network) for joint probability

k

p(@y, - z) = [ [ p(e; | pa(ey)).

i=1

- In other words, it's good to be able to decompose a large
distribution into a product of small manageable distributions.



DIRECTED GRAPHICAL MODELS

- Example — learning distribution parameters after several
experiments:

p<x1’ ,l‘n,e) :p<0) Hp('ri | 9)
=1
- What can we say about the (in) dependence of x; and ;7

- Inference on graphical models: we obtain certain evidence and
want to recompute the distributions at other vertices.

- Both learning parameters and making Bayesian predictions can
be expressed in this way.



DIRECTED GRAPHICAL MODELS

- d-separability — conditional independence expressed via graph
structure:
- sequential connection, p(z, vy, z) = p(z)p(y | z)p(z | y):
- if y is not observed then
p(z,2) =p(z) [ ply | 2)p(z | y)dy = p(x)p(2 | 2);
- if y is observed then

pla, z| y) = Bz — PERWEPE _ p( | y)p(z | y), we get

conditional independence.

MocnepoBaTtenbHasA CBA3b



DIRECTED GRAPHICAL MODELS

- diverging connection, p(z,y, 2) = p(z)p(y | x)p(z | ), — TaK xe:
- if y is not observed then

p(z,2) = p(2)p(z | z) [ p(y | z)dy = p(z)p(2 | z);
- if y is observed then

p(z,z | y) = 22wz = P@PWIPER) = p(g | y)p(z | y), we get

conditional independence.

()
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DIRECTED GRAPHICAL MODELS

- Interesting case - converging connection, p(z, vy, z) = p(z)p(y)p(z | =, y):
- if zis not observed then p(z, y) = p(x)p(y), they are independent;
- if 2 is observed then p(z,y| z) = BZ::2) = p@pwpzlz.) there is
no conditional independence.

Generalization: if we observe at least one
descendant of z, independence between z
and y may be violated.

Cxopaswasca cBa3b



DIRECTED GRAPHICAL MODELS

- General statement on conditional independence: in a graph
with evidence at vertices from Z two vertices z and y (not from
Z) are conditionally independent given the set Z if any
(undirected) path between x and :

- either passes through a vertex z € Z with evidence with a
sequential or diverging connection;

- or passes through a vertex with converging connection where
neither the vertex nor its descendants belong to Z.



DIRECTED GRAPHICAL MODELS

- A graph specifies a set of distributions by specifying restrictions
on conditional independence.

- Theorem: this family of distributions exactly coincides with the
family of distributions that can be decomposed into

k

p(Zy, ., Tg) = HP(% | pa(z;)).

i=1



UNDIRECTED GRAPHICAL MODELS

- We can also make the independence condition more local.

- Let's define models with undirected graphs, with a natural
condition: X is conditionally independent of Y given Z if any
path from X to Y passes through Z.

- In particular, (@i, 2 | Thsy j) = (2 | Tpps )P | Thosy ) if and
only if z; and x; are not connected.

- Such models are called Markov random fields, or undirected
graphical models..



CONDITIONAL INDEPENDENCE IN UNDIRECTED MODELS




UNDIRECTED GRAPHICAL MODELS

- In undirected models, local distributions correspond to cliques
in the graph, and they factor as

p(Ty; ., Ty) = %HwC(xC)7

where C' are maximal cliques, ¥ are nonnegative functions
(potentials), and Z is the normalizing constant (called partition
function).

- Since ¢~ > 0, they are usually represented as exponents:

Yo(zo) = exp (—Eq(z0))

E. - are energy functions, they sum into the full energy of the
system (similar to statistical physics).

- Directed and undirected models often can be converted into
one another, but not always.



FACTOR GRAPHS

- Yet another graphical model: a factor graph.
- A factor graph is a bipartite graph of functions and variables.

- It corresponds to the product of all its functions, i.e., represents
the decomposition.

- For example, for

p(z1, %9, 3) = f1(21) fo(22) f3(23) fa(21, T2) f5(2o, 23) We have

L1 L2 L3



THREE REPRESENTATIONS
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MESSAGE PASSING




GENERAL FUNCTION

- Generally speaking, consider a function

p(X) =[] £y,
j=1
where X = {z;}7,, X; C X.
- l.e., we consider a function that decomposes into a product of
several functions.



PROBLEMS

* Normalization problem: find Z =3~ H;; fi(X)).
- Marginalization problem: find

pi(z;) =) p(X)

ki

(sometimes also p; ;. and so on).

- Likelihood maximization:
x* = argmax . p(X).
- All of these problems are NP-complete, but we can often solve

special cases and/or approximate.
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EXAMPLE

- We begin with a graph as an (undirected) chain:

1
p(xla 000 g In) = §¢1,2(I13 m2) wn—l,n('xn—lv ZC").

- We want to find
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EXAMPLE

- Obviously, we can simplify a lot here; e.g,, from right to left:

Zp(gﬁ17 200 5 8B )) =

I'n,

1
= E"/ﬁ,z@'p f£2) 1/17172,7171(1'11727 xnfl) Z wnfl.n(xnflv ln)

Tn

- And similar from left to right.



EXAMPLE

- The process will converge in the node x,, that receives two
“messages”: from the left

Ho(Tg) = Z Vi1, (Tp_1,Tg) {~<-Zw2,3(3327953) [21/11,2(9517902)} } 3
Th—1 2] &l
and from the right
Hp wk) Z wk k+1 xk’xlwrl |: {anl,'rL(xnl’xn)} :| :

- Each partial sum can be viewed as a “message” from a node to
its neighbor; a message is a function of that neighbor.



MESSAGE PASSING ALGORITHM

- To generalize, consider a factor graph; suppose it’s a tree.

- The message passing algorithm solves the marginalization
problem for a function of the form

p(l‘la 7In) = Hfs(Xs)

defined as a factor graph.

- We pass messages towards the necessary node along the edges.



MESSAGE PASSING

14



MESSAGE PASSING ALGORITHM

rrn

X, are variables from the subtree with root f,. Then

- To find p(xy), we write p(x4, ...,z,) =[] -y >F5(x,€7XS)., where
s (T

Zp (Tqyee s H

Titk s€#(zy,)

ZF (21, X 1:

= H Ky —a, (lk)v
s€F(zy)

where u, ., (z)) are messages from adjacent functions to
variable x;.



MESSAGE PASSING ALGORITHM

- Tofind uy _,, (z}), note that F,(z,, X,) can also be
decomposed w.r.t. the corresponding subgraph:

Fs(wkaX xlw H G y,
yeyY,

where Y, are variables immediately connected to £, (except x;),
X, , are the corresponding subtrees.
- Overall we get

gm0 = S foan ¥ ] (z 61X )
Y,

yeyY,

:Z s xk:'/ s H:u%/%fs(y)
Y,

yeY,

- Similarly, g, ¢ (y) = er#(w .. tfy(Y).



MESSAGE PASSING ALGORITHM

- Thus, we get a clear algorithm:
-+ as soon as a node has received messages from all neighbors
except one, it begins to transmit to this neighbor;
- a message on an edge between a function and a variable is a
function of this variable;
- avariable node x transmits message

f’l’zﬂf(x) = H )u’gﬁz(x);

ge#(z) f

- a function node f(z,Y) transmits message

(@)=Y f@,Y) [] pyor@);

yey yeyY

- initial messages at the leaves are p, , ;(z) = 1, py () = f(z).



MESSAGE PASSING ALGORITHM

- When messages come from all neighbors to some variable z,
we will be able to compute

plzy) = H Mfﬁa:k(xk»
fe#(zy)

- When messages come from all neighbors to some factor f,(X,),
we will be able to compute the joint distribution

p(Xs) = fs(Xs) H My%fs (y)
ye#(fs)

- In two passes (there and back again along each edge) we will be
able to compute the marginals in all nodes.



MESSAGE PASSING ALGORITHM

- This is called the sum-product algorithm because a message is
computed as

yey yey

* The maximization problem arg max_p(zy, ..., ,) can be solved
with a similar max-sum algorithm, with max instead of sum and
sum instead of product.



MESSAGE PASSING




APPROXIMATE INFERENCE




COMPLEX GRAPH STRUCTURE

- What do we do if there are loops in the graph? A very common
thing.

- If the loops are small, we can remove them with exponential
blowup.

- If they are large, sum-product does not work, so one way is to
apply sum-product. :)

- Simply repeat it until convergence; often works.



LOOPY MESSAGE PROPAGATION

But the better approaches are methods for approximate inference:
variational approximations and sampling. We will consider them
later.

19



EXPECTATION PROPAGATION

- If the structure is simple but the factors are hard (can’t integrate
a message analytically), we can approximate the factors too. If
in the factorized distribution

p(0| D) = Hf

f; are too hard, we replace them with simpler ones (e.g,
Gaussians)

q(0| D) = ZHf

and also minimize the Kullback-Leibler divergence between p
and q.

20



EXPECTATION PROPAGATION

- For one factor it would be simply moments matching.
- For many factors we have to approximate all f, simultaneously.

- Expectation Propagation — in fact we can do it by sequentially
passing the messages:

1. run message passing, but on every step instead of s _,, (z4)
pass its approximation i, _,, (z;) from some simpler family;
2. repeat message passing until convergence.

- Won't prove that it works, but it does.

20



THANK YOU!

Thank you for your attention!
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