PROBABILISTIC GRAPHICAL MODELS

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
March 29, 2017

GRAPHICAL MODELS

DIRECTED GRAPHICAL MODELS

- Graphical models show the dependence/independence relations between the variables.
- Example - consider the joint distribution of three variables:

$$
p(x, y, z)=p(x \mid y, z) p(y \mid z) p(z)
$$

- Let us plot it as a graph.
- A complete graph can describe any distribution $p\left(x_{1}, \ldots, x_{n}\right)$.
- But if some edges are missing, this simplifies (restricts) the distribution.

DIRECTED GRAPHICAL MODELS

- Consider a directed acyclic graph x_{1}, \ldots, x_{k} with distributions $p\left(x_{i} \mid \mathrm{pa}\left(x_{i}\right)\right)$ at every node. Such a graph is called a directed graphical model (Bayesian network) for joint probability

$$
p\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} p\left(x_{i} \mid \operatorname{pa}\left(x_{i}\right)\right)
$$

- In other words, it's good to be able to decompose a large distribution into a product of small manageable distributions.

DIRECTED GRAPHICAL MODELS

- Example - learning distribution parameters after several experiments:

$$
p\left(x_{1}, \ldots, x_{n}, \theta\right)=p(\theta) \prod_{i=1}^{n} p\left(x_{i} \mid \theta\right) .
$$

-What can we say about the (in) dependence of x_{i} and x_{j} ?

- Inference on graphical models: we obtain certain evidence and want to recompute the distributions at other vertices.
- Both learning parameters and making Bayesian predictions can be expressed in this way.

DIRECTED GRAPHICAL MODELS

- d-separability - conditional independence expressed via graph structure:
- sequential connection, $p(x, y, z)=p(x) p(y \mid x) p(z \mid y)$:
- if y is not observed then

$$
p(x, z)=p(x) \int p(y \mid x) p(z \mid y) \mathrm{d} y=p(x) p(z \mid x)
$$

- if y is observed then $p(x, z \mid y)=\frac{p(x, y, z)}{p(y)}=\frac{p(x) p(y \mid x) p(z \mid y)}{p(y)}=p(x \mid y) p(z \mid y)$, we get conditional independence.

Последовательная связь

DIRECTED GRAPHICAL MODELS

- diverging connection, $p(x, y, z)=p(x) p(y \mid x) p(z \mid x)$, - так же:
- if y is not observed then

$$
p(x, z)=p(x) p(z \mid x) \int p(y \mid x) \mathrm{d} y=p(x) p(z \mid x)
$$

- if y is observed then

$$
p(x, z \mid y)=\frac{p(x, y, z)}{p(y)}=\frac{p(x) p(y \mid x) p(z \mid x)}{p(y)}=p(x \mid y) p(z \mid y), \text { we get }
$$ conditional independence.

DIRECTED GRAPHICAL MODELS

- Interesting case - converging connection, $p(x, y, z)=p(x) p(y) p(z \mid x, y)$:
- if z is not observed then $p(x, y)=p(x) p(y)$, they are independent;
- if z is observed then $p(x, y \mid z)=\frac{p(x, y, z)}{p(z)}=\frac{p(x) p(y) p(z \mid x, y)}{p(z)}$, there is no conditional independence.

Generalization: if we observe at least one descendant of z, independence between x and y may be violated.

DIRECTED GRAPHICAL MODELS

- General statement on conditional independence: in a graph with evidence at vertices from Z two vertices x and y (not from Z) are conditionally independent given the set Z if any (undirected) path between x and y :
- either passes through a vertex $z \in Z$ with evidence with a sequential or diverging connection;
- or passes through a vertex with converging connection where neither the vertex nor its descendants belong to Z.

DIRECTED GRAPHICAL MODELS

- A graph specifies a set of distributions by specifying restrictions on conditional independence.
- Theorem: this family of distributions exactly coincides with the family of distributions that can be decomposed into

$$
p\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} p\left(x_{i} \mid \operatorname{pa}\left(x_{i}\right)\right)
$$

UNDIRECTED GRAPHICAL MODELS

- We can also make the independence condition more local.
- Let's define models with undirected graphs, with a natural condition: X is conditionally independent of Y given Z if any path from X to Y passes through Z.
- In particular, $p\left(x_{i}, x_{j} \mid x_{k \neq i, j}\right)=p\left(x_{i} \mid x_{k \neq i, j}\right) p\left(x_{j} \mid x_{k \neq i, j}\right)$ if and only if x_{i} and x_{j} are not connected.
- Such models are called Markov random fields, or undirected graphical models..

CONDITIONAL INDEPENDENCE IN UNDIRECTED MODELS

UNDIRECTED GRAPHICAL MODELS

- In undirected models, local distributions correspond to cliques in the graph, and they factor as

$$
p\left(x_{1}, \ldots, x_{k}\right)=\frac{1}{Z} \prod \psi_{C}\left(x_{C}\right)
$$

where C are maximal cliques, ψ_{C} are nonnegative functions (potentials), and Z is the normalizing constant (called partition function).

- Since $\psi_{C} \geq 0$, they are usually represented as exponents:

$$
\psi_{C}\left(x_{C}\right)=\exp \left(-E_{C}\left(x_{C}\right)\right),
$$

E_{C} - are energy functions, they sum into the full energy of the system (similar to statistical physics).

- Directed and undirected models often can be converted into one another, but not always.

FACTOR GRAPHS

- Yet another graphical model: a factor graph.
- A factor graph is a bipartite graph of functions and variables.
- It corresponds to the product of all its functions, i.e., represents the decomposition.
- For example, for $p\left(x_{1}, x_{2}, x_{3}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) f_{3}\left(x_{3}\right) f_{4}\left(x_{1}, x_{2}\right) f_{5}\left(x_{2}, x_{3}\right)$ we have

THREE REPRESENTATIONS

MESSAGE PASSING

GENERAL FUNCTION

- Generally speaking, consider a function

$$
p^{*}(X)=\prod_{j=1}^{m} f_{j}\left(X_{j}\right),
$$

where $X=\left\{x_{i}\right\}_{i=1}^{n}, X_{j} \subseteq X$.

- I.e., we consider a function that decomposes into a product of several functions.
- Normalization problem: find $Z=\sum_{X} \prod_{j=1}^{m} f_{j}\left(X_{j}\right)$.
- Marginalization problem: find

$$
p_{i}^{*}\left(x_{i}\right)=\sum_{k \neq i} p^{*}(X)
$$

(sometimes also $p_{i_{1} i_{2}}$ and so on).

- Likelihood maximization:

$$
\mathbf{x}^{*}=\arg \max _{X} p(X)
$$

- All of these problems are NP-complete, but we can often solve special cases and /or approximate.
- We begin with a graph as an (undirected) chain:

$$
p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \psi_{1,2}\left(x_{1}, x_{2}\right) \ldots \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) .
$$

- We want to find

$$
p\left(x_{k}\right)=\sum_{x_{1}} \ldots \sum_{x_{k-1}} \sum_{x_{k+1}} \ldots \sum_{x_{n}} p\left(x_{1}, \ldots, x_{n}\right) .
$$

- Obviously, we can simplify a lot here; e.g., from right to left:

$$
\begin{aligned}
& \sum_{x_{n}} p\left(x_{1}, \ldots, x_{n}\right)= \\
& =\frac{1}{Z} \psi_{1,2}\left(x_{1}, x_{2}\right) \ldots \psi_{n-2, n-1}\left(x_{n-2}, x_{n-1}\right) \sum_{x_{n}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

- And similar from left to right.
- The process will converge in the node x_{k} that receives two "messages": from the left

$$
\mu_{\alpha}\left(x_{k}\right)=\sum_{x_{k-1}} \psi_{k-1, k}\left(x_{k-1}, x_{k}\right)\left[\ldots \sum_{x_{2}} \psi_{2,3}\left(x_{2}, x_{3}\right)\left[\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right] \ldots\right]
$$

and from the right

$$
\mu_{\beta}\left(x_{k}\right)=\sum_{x_{k+1}} \psi_{k, k+1}\left(x_{k}, x_{k+1}\right)\left[\ldots\left[\sum_{x_{n}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right)\right] \ldots\right]
$$

- Each partial sum can be viewed as a "message" from a node to its neighbor; a message is a function of that neighbor.

MESSAGE PASSING ALGORITHM

- To generalize, consider a factor graph; suppose it's a tree.
- The message passing algorithm solves the marginalization problem for a function of the form

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{s} f_{s}\left(X_{s}\right)
$$

defined as a factor graph.

- We pass messages towards the necessary node along the edges.

MESSAGE PASSING

MESSAGE PASSING ALGORITHM

- To find $p\left(x_{k}\right)$, we write $p\left(x_{1}, \ldots, x_{n}\right)=\prod_{s \in \neq\left(x_{k}\right)} F_{s}\left(x_{k}, X_{s}\right)$, where X_{s} are variables from the subtree with root f_{s}. Then

$$
\begin{array}{r}
p\left(x_{k}\right)=\sum_{x_{i \neq k}} p\left(x_{1}, \ldots, x_{n}\right)=\prod_{s \in \neq\left(x_{k}\right)}\left[\sum_{X_{s}} F_{s}\left(x_{k}, X_{s}\right)\right]= \\
=\prod_{s \in \neq\left(x_{k}\right)} \mu_{f_{s} \rightarrow x_{k}}\left(x_{k}\right)
\end{array}
$$

where $\mu_{f_{s} \rightarrow x_{k}}\left(x_{k}\right)$ are messages from adjacent functions to variable x_{k}.

MESSAGE PASSING ALGORITHM

- To find $\mu_{f_{s} \rightarrow x_{k}}\left(x_{k}\right)$, note that $F_{s}\left(x_{k}, X_{s}\right)$ can also be decomposed w.r.t. the corresponding subgraph:

$$
F_{s}\left(x_{k}, X_{s}\right)=f_{s}\left(x_{k}, Y_{s}\right) \prod_{y \in Y_{s}} G_{y}\left(y, X_{s, y}\right)
$$

where Y_{s} are variables immediately connected to f_{s} (except x_{k}), $X_{s, y}$ are the corresponding subtrees.

- Overall we get

$$
\begin{aligned}
\mu_{f_{s} \rightarrow x_{k}}\left(x_{k}\right)=\sum_{Y_{s}} f_{s}\left(x_{k}, Y_{s}\right) \prod_{y \in Y_{s}} & \left(\sum_{X_{s, y}} G_{y}\left(y, X_{s, y}\right)\right)= \\
& =\sum_{Y_{s}} f_{s}\left(x_{k}, Y_{s}\right) \prod_{y \in Y_{s}} \mu_{y \rightarrow f_{s}}(y)
\end{aligned}
$$

- Similarly, $\mu_{y \rightarrow f_{s}}(y)=\prod_{f \in \neq(y) f_{s}} \mu_{f \rightarrow y}(y)$.

MESSAGE PASSING ALGORITHM

- Thus, we get a clear algorithm:
- as soon as a node has received messages from all neighbors except one, it begins to transmit to this neighbor;
- a message on an edge between a function and a variable is a function of this variable;
- a variable node x transmits message

$$
\mu_{x \rightarrow f}(x)=\prod_{g \in \neq(x) f} \mu_{g \rightarrow x}(x)
$$

- a function node $f(x, Y)$ transmits message

$$
\mu_{f \rightarrow x}(x)=\sum_{y \in Y} f(x, Y) \prod_{y \in Y} \mu_{y \rightarrow f}(y)
$$

- initial messages at the leaves are $\mu_{x \rightarrow f}(x)=1, \mu_{f \rightarrow x}(x)=f(x)$.

MESSAGE PASSING ALGORITHM

- When messages come from all neighbors to some variable x_{k}, we will be able to compute

$$
p\left(x_{k}\right)=\prod_{f \in \neq\left(x_{k}\right)} \mu_{f \rightarrow x_{k}}\left(x_{k}\right)
$$

- When messages come from all neighbors to some factor $f_{s}\left(X_{s}\right)$, we will be able to compute the joint distribution

$$
p\left(X_{s}\right)=f_{s}\left(X_{s}\right) \prod_{y \in \neq\left(f_{s}\right)} \mu_{y \rightarrow f_{s}}(y) .
$$

- In two passes (there and back again along each edge) we will be able to compute the marginals in all nodes.

MESSAGE PASSING ALGORITHM

- This is called the sum-product algorithm because a message is computed as

$$
\mu_{f \rightarrow x}(x)=\sum_{y \in Y} f(x, Y) \prod_{y \in Y} \mu_{y \rightarrow f}(y) .
$$

- The maximization problem $\arg \max _{x} p\left(x_{1}, \ldots, x_{n}\right)$ can be solved with a similar max-sum algorithm, with max instead of sum and sum instead of product.

APPROXIMATE INFERENCE

COMPLEX GRAPH STRUCTURE

- What do we do if there are loops in the graph? A very common thing.
- If the loops are small, we can remove them with exponential blowup.
- If they are large, sum-product does not work, so one way is to apply sum-product. :)
- Simply repeat it until convergence; often works.

LOOPY MESSAGE PROPAGATION

But the better approaches are methods for approximate inference: variational approximations and sampling. We will consider them later.

EXPECTATION PROPAGATION

- If the structure is simple but the factors are hard (can't integrate a message analytically), we can approximate the factors too. If in the factorized distribution

$$
p(\theta \mid D)=\frac{1}{p(D)} \prod_{i} f_{i}(\theta)
$$

f_{i} are too hard, we replace them with simpler ones (e.g., Gaussians)

$$
q(\theta \mid D)=\frac{1}{Z} \prod_{i} \hat{f}_{i}(\theta)
$$

and also minimize the Kullback-Leibler divergence between p and q.

EXPECTATION PROPAGATION

- For one factor it would be simply moments matching.
- For many factors we have to approximate all \hat{f}_{i} simultaneously.
- Expectation Propagation - in fact we can do it by sequentially passing the messages:

1. run message passing, but on every step instead of $\mu_{f_{s} \rightarrow x_{k}}\left(x_{k}\right)$ pass its approximation $\hat{\mu}_{f_{s} \rightarrow x_{k}}\left(x_{k}\right)$ from some simpler family;
2. repeat message passing until convergence.

- Won't prove that it works, but it does.

Thank you for your attention!

