
probabilistic graphical models

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
March 29, 2017



graphical models



directed graphical models

• Graphical models show the dependence/independence
relations between the variables.

• Example — consider the joint distribution of three variables:

𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑥 ∣ 𝑦, 𝑧)𝑝(𝑦 ∣ 𝑧)𝑝(𝑧).

• Let us plot it as a graph.
• A complete graph can describe any distribution 𝑝(𝑥1, … , 𝑥𝑛).
• But if some edges are missing, this simplifies (restricts) the
distribution.

3



directed graphical models

• Consider a directed acyclic graph 𝑥1, … , 𝑥𝑘 with distributions
𝑝(𝑥𝑖 ∣ pa(𝑥𝑖)) at every node. Such a graph is called a directed
graphical model (Bayesian network) for joint probability

𝑝(𝑥1, … , 𝑥𝑘) =
𝑘

∏
𝑖=1

𝑝(𝑥𝑖 ∣ pa(𝑥𝑖)).

• In other words, it’s good to be able to decompose a large
distribution into a product of small manageable distributions.

3



directed graphical models

• Example — learning distribution parameters after several
experiments:

𝑝(𝑥1, … , 𝑥𝑛, 𝜃) = 𝑝(𝜃)
𝑛

∏
𝑖=1

𝑝(𝑥𝑖 ∣ 𝜃).

• What can we say about the (in) dependence of 𝑥𝑖 and 𝑥𝑗?
• Inference on graphical models: we obtain certain evidence and
want to recompute the distributions at other vertices.

• Both learning parameters and making Bayesian predictions can
be expressed in this way.

3



directed graphical models

• 𝑑-separability — conditional independence expressed via graph
structure:

• sequential connection, 𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑥)𝑝(𝑦 ∣ 𝑥)𝑝(𝑧 ∣ 𝑦):
• if 𝑦 is not observed then

𝑝(𝑥, 𝑧) = 𝑝(𝑥) ∫ 𝑝(𝑦 ∣ 𝑥)𝑝(𝑧 ∣ 𝑦)d𝑦 = 𝑝(𝑥)𝑝(𝑧 ∣ 𝑥);
• if 𝑦 is observed then

𝑝(𝑥, 𝑧 ∣ 𝑦) = 𝑝(𝑥,𝑦,𝑧)
𝑝(𝑦) = 𝑝(𝑥)𝑝(𝑦∣𝑥)𝑝(𝑧∣𝑦)

𝑝(𝑦) = 𝑝(𝑥 ∣ 𝑦)𝑝(𝑧 ∣ 𝑦), we get
conditional independence.

3



directed graphical models

• diverging connection, 𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑥)𝑝(𝑦 ∣ 𝑥)𝑝(𝑧 ∣ 𝑥), – так же:
• if 𝑦 is not observed then

𝑝(𝑥, 𝑧) = 𝑝(𝑥)𝑝(𝑧 ∣ 𝑥) ∫ 𝑝(𝑦 ∣ 𝑥)d𝑦 = 𝑝(𝑥)𝑝(𝑧 ∣ 𝑥);
• if 𝑦 is observed then

𝑝(𝑥, 𝑧 ∣ 𝑦) = 𝑝(𝑥,𝑦,𝑧)
𝑝(𝑦) = 𝑝(𝑥)𝑝(𝑦∣𝑥)𝑝(𝑧∣𝑥)

𝑝(𝑦) = 𝑝(𝑥 ∣ 𝑦)𝑝(𝑧 ∣ 𝑦), we get
conditional independence.

3



directed graphical models

• Interesting case – converging connection, 𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑥)𝑝(𝑦)𝑝(𝑧 ∣ 𝑥, 𝑦):
• if 𝑧 is not observed then 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦), they are independent;
• if 𝑧 is observed then 𝑝(𝑥,𝑦 ∣ 𝑧) = 𝑝(𝑥,𝑦,𝑧)

𝑝(𝑧) = 𝑝(𝑥)𝑝(𝑦)𝑝(𝑧∣𝑥,𝑦)
𝑝(𝑧) , there is

no conditional independence.

Generalization: if we observe at least one
descendant of 𝑧, independence between 𝑥
and 𝑦 may be violated.

3



directed graphical models

• General statement on conditional independence: in a graph
with evidence at vertices from 𝑍 two vertices 𝑥 and 𝑦 (not from
𝑍) are conditionally independent given the set 𝑍 if any
(undirected) path between 𝑥 and 𝑦:

• either passes through a vertex 𝑧 ∈ 𝑍 with evidence with a
sequential or diverging connection;

• or passes through a vertex with converging connection where
neither the vertex nor its descendants belong to 𝑍.

3



directed graphical models

• A graph specifies a set of distributions by specifying restrictions
on conditional independence.

• Theorem: this family of distributions exactly coincides with the
family of distributions that can be decomposed into

𝑝(𝑥1, … , 𝑥𝑘) =
𝑘

∏
𝑖=1

𝑝(𝑥𝑖 ∣ pa(𝑥𝑖)).

3



undirected graphical models

• We can also make the independence condition more local.
• Let’s define models with undirected graphs, with a natural
condition: 𝑋 is conditionally independent of 𝑌 given 𝑍 if any
path from 𝑋 to 𝑌 passes through 𝑍 .

• In particular, 𝑝(𝑥𝑖, 𝑥𝑗 ∣ 𝑥𝑘≠𝑖,𝑗) = 𝑝(𝑥𝑖 ∣ 𝑥𝑘≠𝑖,𝑗)𝑝(𝑥𝑗 ∣ 𝑥𝑘≠𝑖,𝑗) if and
only if 𝑥𝑖 and 𝑥𝑗 are not connected.

• Such models are called Markov random fields, or undirected
graphical models..

4



conditional independence in undirected models

5



undirected graphical models

• In undirected models, local distributions correspond to cliques
in the graph, and they factor as

𝑝(𝑥1, … , 𝑥𝑘) = 1
𝑍 ∏ 𝜓𝐶(𝑥𝐶),

where 𝐶 are maximal cliques, 𝜓𝐶 are nonnegative functions
(potentials), and 𝑍 is the normalizing constant (called partition
function).

• Since 𝜓𝐶 ≥ 0, they are usually represented as exponents:

𝜓𝐶(𝑥𝐶) = exp (−𝐸𝐶(𝑥𝐶)) ,

𝐸𝐶 – are energy functions, they sum into the full energy of the
system (similar to statistical physics).

• Directed and undirected models often can be converted into
one another, but not always.

6



factor graphs

• Yet another graphical model: a factor graph.
• A factor graph is a bipartite graph of functions and variables.
• It corresponds to the product of all its functions, i.e., represents
the decomposition.

• For example, for
𝑝(𝑥1, 𝑥2, 𝑥3) = 𝑓1(𝑥1)𝑓2(𝑥2)𝑓3(𝑥3)𝑓4(𝑥1, 𝑥2)𝑓5(𝑥2, 𝑥3) we have

7



three representations

8



message passing



general function

• Generally speaking, consider a function

𝑝∗(𝑋) =
𝑚

∏
𝑗=1

𝑓𝑗(𝑋𝑗),

where 𝑋 = {𝑥𝑖}𝑛
𝑖=1, 𝑋𝑗 ⊆ 𝑋.

• I.e., we consider a function that decomposes into a product of
several functions.

10



problems

• Normalization problem: find 𝑍 = ∑𝑋 ∏𝑚
𝑗=1 𝑓𝑗(𝑋𝑗).

• Marginalization problem: find

𝑝∗
𝑖 (𝑥𝑖) = ∑

𝑘≠𝑖
𝑝∗(𝑋)

(sometimes also 𝑝𝑖1𝑖2
and so on).

• Likelihood maximization:

x∗ = arg max𝑋𝑝(𝑋).

• All of these problems are NP-complete, but we can often solve
special cases and/or approximate.

11



example

• We begin with a graph as an (undirected) chain:

𝑝(𝑥1, … , 𝑥𝑛) = 1
𝑍 𝜓1,2(𝑥1, 𝑥2) … 𝜓𝑛−1,𝑛(𝑥𝑛−1, 𝑥𝑛).

• We want to find

𝑝(𝑥𝑘) = ∑
𝑥1

… ∑
𝑥𝑘−1

∑
𝑥𝑘+1

… ∑
𝑥𝑛

𝑝(𝑥1, … , 𝑥𝑛).

12



example

• Obviously, we can simplify a lot here; e.g., from right to left:

∑
𝑥𝑛

𝑝(𝑥1, … , 𝑥𝑛) =

= 1
𝑍 𝜓1,2(𝑥1, 𝑥2) … 𝜓𝑛−2,𝑛−1(𝑥𝑛−2, 𝑥𝑛−1) ∑

𝑥𝑛

𝜓𝑛−1,𝑛(𝑥𝑛−1, 𝑥𝑛).

• And similar from left to right.

12



example

• The process will converge in the node 𝑥𝑘 that receives two
“messages”: from the left

𝜇𝛼(𝑥𝑘) = ∑
𝑥𝑘−1

𝜓𝑘−1,𝑘(𝑥𝑘−1, 𝑥𝑘) [… ∑
𝑥2

𝜓2,3(𝑥2, 𝑥3) [∑
𝑥1

𝜓1,2(𝑥1, 𝑥2)] …] ,

and from the right

𝜇𝛽(𝑥𝑘) = ∑
𝑥𝑘+1

𝜓𝑘,𝑘+1(𝑥𝑘, 𝑥𝑘+1) [… [∑
𝑥𝑛

𝜓𝑛−1,𝑛(𝑥𝑛−1, 𝑥𝑛)] …] .

• Each partial sum can be viewed as a “message” from a node to
its neighbor; a message is a function of that neighbor.

12



message passing algorithm

• To generalize, consider a factor graph; suppose it’s a tree.
• The message passing algorithm solves the marginalization
problem for a function of the form

𝑝(𝑥1, … , 𝑥𝑛) = ∏
𝑠

𝑓𝑠(𝑋𝑠)

defined as a factor graph.
• We pass messages towards the necessary node along the edges.

13



message passing

14



message passing algorithm

• To find 𝑝(𝑥𝑘), we write 𝑝(𝑥1, … , 𝑥𝑛) = ∏𝑠∈≠(𝑥𝑘) 𝐹𝑠(𝑥𝑘, 𝑋𝑠), where
𝑋𝑠 are variables from the subtree with root 𝑓𝑠. Then

𝑝(𝑥𝑘) = ∑
𝑥𝑖≠𝑘

𝑝(𝑥1, … , 𝑥𝑛) = ∏
𝑠∈≠(𝑥𝑘)

[∑
𝑋𝑠

𝐹𝑠(𝑥𝑘, 𝑋𝑠)] =

= ∏
𝑠∈≠(𝑥𝑘)

𝜇𝑓𝑠→𝑥𝑘
(𝑥𝑘),

where 𝜇𝑓𝑠→𝑥𝑘
(𝑥𝑘) are messages from adjacent functions to

variable 𝑥𝑘.

15



message passing algorithm

• To find 𝜇𝑓𝑠→𝑥𝑘
(𝑥𝑘), note that 𝐹𝑠(𝑥𝑘, 𝑋𝑠) can also be

decomposed w.r.t. the corresponding subgraph:

𝐹𝑠(𝑥𝑘, 𝑋𝑠) = 𝑓𝑠(𝑥𝑘, 𝑌𝑠) ∏
𝑦∈𝑌𝑠

𝐺𝑦(𝑦, 𝑋𝑠,𝑦),

where 𝑌𝑠 are variables immediately connected to 𝑓𝑠 (except 𝑥𝑘),
𝑋𝑠,𝑦 are the corresponding subtrees.

• Overall we get

𝜇𝑓𝑠→𝑥𝑘
(𝑥𝑘) = ∑

𝑌𝑠

𝑓𝑠(𝑥𝑘, 𝑌𝑠) ∏
𝑦∈𝑌𝑠

⎛⎜
⎝

∑
𝑋𝑠,𝑦

𝐺𝑦(𝑦, 𝑋𝑠,𝑦)⎞⎟
⎠

=

= ∑
𝑌𝑠

𝑓𝑠(𝑥𝑘, 𝑌𝑠) ∏
𝑦∈𝑌𝑠

𝜇𝑦→𝑓𝑠
(𝑦).

• Similarly, 𝜇𝑦→𝑓𝑠
(𝑦) = ∏𝑓∈≠(𝑦)�𝑓𝑠

𝜇𝑓→𝑦(𝑦).
15



message passing algorithm

• Thus, we get a clear algorithm:
• as soon as a node has received messages from all neighbors
except one, it begins to transmit to this neighbor;

• a message on an edge between a function and a variable is a
function of this variable;

• a variable node 𝑥 transmits message

𝜇𝑥→𝑓(𝑥) = ∏
𝑔∈≠(𝑥)�𝑓

𝜇𝑔→𝑥(𝑥);

• a function node 𝑓(𝑥, 𝑌 ) transmits message

𝜇𝑓→𝑥(𝑥) = ∑
𝑦∈𝑌

𝑓(𝑥, 𝑌 ) ∏
𝑦∈𝑌

𝜇𝑦→𝑓(𝑦);

• initial messages at the leaves are 𝜇𝑥→𝑓(𝑥) = 1, 𝜇𝑓→𝑥(𝑥) = 𝑓(𝑥).

15



message passing algorithm

• When messages come from all neighbors to some variable 𝑥𝑘,
we will be able to compute

𝑝(𝑥𝑘) = ∏
𝑓∈≠(𝑥𝑘)

𝜇𝑓→𝑥𝑘
(𝑥𝑘).

• When messages come from all neighbors to some factor 𝑓𝑠(𝑋𝑠),
we will be able to compute the joint distribution

𝑝(𝑋𝑠) = 𝑓𝑠(𝑋𝑠) ∏
𝑦∈≠(𝑓𝑠)

𝜇𝑦→𝑓𝑠
(𝑦).

• In two passes (there and back again along each edge) we will be
able to compute the marginals in all nodes.

15



message passing algorithm

• This is called the sum-product algorithm because a message is
computed as

𝜇𝑓→𝑥(𝑥) = ∑
𝑦∈𝑌

𝑓(𝑥, 𝑌 ) ∏
𝑦∈𝑌

𝜇𝑦→𝑓(𝑦).

• The maximization problem arg max𝑥𝑝(𝑥1, … , 𝑥𝑛) can be solved
with a similar max-sum algorithm, with max instead of sum and
sum instead of product.

15



message passing

16



approximate inference



complex graph structure

• What do we do if there are loops in the graph? A very common
thing.

• If the loops are small, we can remove them with exponential
blowup.

• If they are large, sum-product does not work, so one way is to
apply sum-product. :)

• Simply repeat it until convergence; often works.

18



loopy message propagation

But the better approaches are methods for approximate inference:
variational approximations and sampling. We will consider them
later.

19



expectation propagation

• If the structure is simple but the factors are hard (can’t integrate
a message analytically), we can approximate the factors too. If
in the factorized distribution

𝑝(𝜃 ∣ 𝐷) = 1
𝑝(𝐷) ∏

𝑖
𝑓𝑖(𝜃)

𝑓𝑖 are too hard, we replace them with simpler ones (e.g.,
Gaussians)

𝑞(𝜃 ∣ 𝐷) = 1
𝑍 ∏

𝑖
̂𝑓𝑖(𝜃).

and also minimize the Kullback–Leibler divergence between 𝑝
and 𝑞.

20



expectation propagation

• For one factor it would be simply moments matching.
• For many factors we have to approximate all ̂𝑓𝑖 simultaneously.
• Expectation Propagation — in fact we can do it by sequentially
passing the messages:

1. run message passing, but on every step instead of 𝜇𝑓𝑠→𝑥𝑘 (𝑥𝑘)
pass its approximation 𝜇̂𝑓𝑠→𝑥𝑘 (𝑥𝑘) from some simpler family;

2. repeat message passing until convergence.

• Won’t prove that it works, but it does.

20



thank you!

Thank you for your attention!

21


	Graphical models
	Message passing
	Approximate inference

