
text mining: from naive bayes to lda

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
March 30, 2017

natural language processing

natural language processing

• A key problem for artificial intelligence, recognized very early.
• Early optimism: 1950s, Noam Chomsky, Dartmouth seminar.
• But proved to be not so easy: the first winter of neural networks
was in part due to a fail of a machine translation project.

• And we are still far from understanding text.

3

natural language processing

• Why is it hard? In part, due to our model of the world,
commonsense reasoning.

• Example — anaphora resolution:
• the suitcase did not fit in the trunk because it was too big;
• the suitcase did not fit in the trunk because it was too small.

• This is a very well defined problem, a classification problem
basically, but it’s extremely hard to get to human level.

• What are NLP problems in general?

3

nlp tasks

(1) Syntactic problems:
• part-of-speech tagging: label parts of speech (noun, verb,
adjective...) and morphology (gender, case...);

4

nlp tasks

(1) Syntactic problems:
• part-of-speech tagging;
• morphological segmentation: divide words into morphemes, i.e.,
prefixes, suffixes and the such;

4

nlp tasks

(1) Syntactic problems:
• part-of-speech tagging;
• morphological segmentation;
• stemming and/or lemmatization: reducing a word to its basic form;

4

nlp tasks

(1) Syntactic problems:
• part-of-speech tagging;
• morphological segmentation;
• stemming
• sentence boundary disambiguation: “House, M.D. is a favourite TV
series of George R. R. Martin”; in languages like Chinese even word
segmentation is hard;

4

nlp tasks

(1) Syntactic problems:
• part-of-speech tagging;
• morphological segmentation;
• stemming
• word/sentence boundary disambiguation;
• named entity recognition: find proper names in the text and find
out what kind of entities they represent;

4

nlp tasks

(1) Syntactic problems:
• part-of-speech tagging;
• morphological segmentation;
• stemming
• word/sentence boundary disambiguation;
• named entity recognition;
• word sense disambiguation, i.e., homonymy; common sense again:

• she cannot bear children, they are too noisy;
• she cannot bear children due to an unfortunate operation.

4

nlp tasks

(1) Syntactic problems:
• part-of-speech tagging;
• morphological segmentation;
• stemming
• word/sentence boundary disambiguation;
• named entity recognition;
• word sense disambiguation;
• syntactic parsing: construct a syntax tree (dependency tree) of a
sentence;

4

nlp tasks

(1) Syntactic problems:
• part-of-speech tagging;
• morphological segmentation;
• stemming
• word/sentence boundary disambiguation;
• named entity recognition;
• word sense disambiguation;
• syntactic parsing;
• coreference resolution: which objects various words refer to;
anaphora is a special case.

4

nlp tasks

(1) Syntactic problems.
(2) Well defined semantic problems:

• language modeling: predict the next word or symbol; this is very
important, e.g., for speech recognition;

4

nlp tasks

(1) Syntactic problems.
(2) Well defined semantic problems:

• language modeling;
• sentiment analysis: find out whether the text speaks positively or
negatively about its subject;

4

nlp tasks

(1) Syntactic problems.
(2) Well defined semantic problems:

• language modeling;
• sentiment analysis;
• relationship/fact extraction: extract well-defined relations or facts
from the text, e.g., who married whom, which year the company was
founded, and so on;

4

nlp tasks

(1) Syntactic problems.
(2) Well defined semantic problems:

• language modeling;
• sentiment analysis;
• relationship/fact extraction;
• question answering: either pure classification (multiple choice),
classification with very large label space (trivia questions), or even
text generation (questions in a dialogue).

4

nlp tasks

(1) Syntactic problems.
(2) Well defined semantic problems.
(3) Not really well defined semantic problems.

• text generation;

4

nlp tasks

(1) Syntactic problems.
(2) Well defined semantic problems.
(3) Not really well defined semantic problems.

• text generation;
• automatic summarization: generate an abstract for a paper; again,
can be a classification problem if we just choose the most
representative sentences from the text itself;

4

nlp tasks

(1) Syntactic problems.
(2) Well defined semantic problems.
(3) Not really well defined semantic problems.

• text generation;
• automatic summarization;
• machine translation;

4

nlp tasks

(1) Syntactic problems.
(2) Well defined semantic problems.
(3) Not really well defined semantic problems.

• text generation;
• automatic summarization;
• machine translation;
• dialog and conversational models: talk to a human or at least
answer her questions.

4

general remarks

• The problem often can be frames as text categorization
(classification).

• We can use regular classifiers (logistic regression, SVM); but
what are the inputs?

• One approach: bag of words.
• Why could it be less than perfect?

5

general remarks

• One reason: it will depend on the words that are not really
important.

• Variation – tf-idf weights:

tf(𝑡, 𝑑) = 𝑛𝑡
|𝑑| , idf(𝑡, 𝐷) = log |𝐷|

|{𝑑 ∈ 𝐷 ∣ 𝑡 ∈ 𝑑}| .

• Usually the result improves if we use tf-idf weights.

5

naive bayes

text categorization

• Given a set of texts divided into categories, train the model to
classify new texts.

• Attributes 𝑎1, 𝑎2, … , 𝑎𝑛 are words, 𝑣 is the text topic/label; we
will use the bag of words approach for now.

7

naive bayes

• This is already a huge simplification, but we still are not able to
directly estimate 𝑝(𝑎1, 𝑎2, … , 𝑎𝑛|𝑥 = 𝑣).

• We need more simplifying assumptions.
• Naive Bayes classifier – the simplest model: assume all words
are conditionally independent given the category:

𝑝(𝑎1, 𝑎2, … , 𝑎𝑛|𝑥 = 𝑣) = 𝑝(𝑎1|𝑥 = 𝑣)𝑝(𝑎2|𝑥 = 𝑣) … 𝑝(𝑎𝑛|𝑥 = 𝑣).

• And choose 𝑣 as

𝑣𝑁𝐵(𝑎1, 𝑎2, … , 𝑎𝑛) = arg max𝑣∈𝑉 𝑝(𝑥 = 𝑣)
𝑛

∏
𝑖=1

𝑝(𝑎𝑖|𝑥 = 𝑣).

• Despite crazy assumptions, works rather well in practice, there
are reasons for this.

8

multivariate naive bayes

• Two variations: multinomial and multivariate naive Bayes.
• In the multivariate model a document is a vector of binary
attributes: does a word occur in the text?

• And the likelihood is basically multidimensional Bernoulli trials
(coin tosses).

• The “naive” assumption is that these coins are assumed to be
independent.

9

multivariate naive bayes

• Let 𝑉 = {𝑤𝑡}|𝑉 |
𝑡=1 be the dictionary. Then 𝑑𝑖 is a vector of length

|𝑉 | consisting of bits 𝐵𝑖𝑡; 𝐵𝑖𝑡 = 1 iff word 𝑤𝑡 occurs in document
𝑑𝑖.

• Likelihood of the event that 𝑑𝑖 is from class 𝑐𝑗:

𝑝(𝑑𝑖 ∣ 𝑐𝑗) =
|𝑉 |
∏
𝑡=1

(𝐵𝑖𝑡𝑝(𝑤𝑡 ∣ 𝑐𝑗) + (1 − 𝐵𝑖𝑡)(1 − 𝑝(𝑤𝑡 ∣ 𝑐𝑗))) .

• To train this classifier we need to train the probabilities
𝑝(𝑤𝑡 ∣ 𝑐𝑗).

9

multivariate naive bayes

• Learning is easy: given a set of documents 𝐷 = {𝑑𝑖}|𝐷|
𝑖=1 with

labels 𝑐𝑗 and vocabulary 𝑉 = {𝑤𝑡}|𝑉 |
𝑡=1, we know the bits 𝐵𝑖𝑡 and

can simply derive (with Laplace smoothing – smoothing is
important here!):

𝑝(𝑤𝑡 ∣ 𝑐𝑗) =
1 + ∑|𝐷|

𝑖=1 𝐵𝑖𝑡𝑝(𝑐𝑗 ∣ 𝑑𝑖)
2 + ∑|𝐷|

𝑖=1 𝑝(𝑐𝑗 ∣ 𝑑𝑖)
.

9

multivariate naive bayes

• Prior probabilities are also easy: 𝑝(𝑐𝑗) = 1
|𝐷| ∑|𝐷|

𝑖=1 𝑝(𝑐𝑗 ∣ 𝑑𝑖).
• And the classification is done as

𝑐 = arg max𝑗𝑝(𝑐𝑗)𝑝(𝑑𝑖 ∣ 𝑐𝑗) =

= arg max𝑗
⎛⎜
⎝

1
|𝐷|

|𝐷|
∑
𝑖=1

𝑝(𝑐𝑗 ∣ 𝑑𝑖)⎞⎟
⎠

|𝑉 |
∏
𝑡=1

(𝐵𝑖𝑡𝑝(𝑤𝑡 ∣ 𝑐𝑗) + (1 − 𝐵𝑖𝑡)(1 − 𝑝(𝑤𝑡 ∣ 𝑐𝑗))) =

= arg max𝑗
⎛⎜
⎝

log(
|𝐷|
∑
𝑖=1

𝑝(𝑐𝑗 ∣ 𝑑𝑖)) +
|𝑉 |
∑
𝑡=1

log (𝐵𝑖𝑡𝑝(𝑤𝑡 ∣ 𝑐𝑗) + (1 − 𝐵𝑖𝑡)(1 − 𝑝(𝑤𝑡 ∣ 𝑐𝑗)))⎞⎟
⎠

.

9

multinomial model

• In the multinomial model a document is a set of words drawn
from a bag with replacement, like rolling a really huge die.

• The likelihood now accounts for numbers of occurrences but
does not account for the words that are not there.

• For a vocabulary 𝑉 = {𝑤𝑡}|𝑉 |
𝑡=1, the document 𝑑𝑖 is a vector of

length |𝑑𝑖| consisting of words taken with probability 𝑝(𝑤𝑡 ∣ 𝑐𝑗).
• Likelihood of the event that 𝑑𝑖 is from class 𝑐𝑗:

𝑝(𝑑𝑖 ∣ 𝑐𝑗) = 𝑝(|𝑑𝑖|)|𝑑𝑖|!
|𝑉 |
∏
𝑡=1

1
𝑁𝑖𝑡!

𝑝(𝑤𝑡 ∣ 𝑐𝑗)𝑁𝑖𝑡 ,

where 𝑁𝑖𝑡 is the number of occurrences of 𝑤𝑡 in 𝑑𝑖.
• To train this classifier we need to train the probabilities

𝑝(𝑤𝑡 ∣ 𝑐𝑗).

10

multinomial model

• Learning is still easy: given a set of documents 𝐷 = {𝑑𝑖}|𝐷|
𝑖=1 with

labels 𝑐𝑗 and vocabulary 𝑉 = {𝑤𝑡}|𝑉 |
𝑡=1, we know 𝑁𝑖𝑡 and can

compute (again with smoothing)

𝑝(𝑤𝑡 ∣ 𝑐𝑗) =
1 + ∑|𝐷|

𝑖=1 𝑁𝑖𝑡𝑝(𝑐𝑗 ∣ 𝑑𝑖)
|𝑉 | + ∑|𝑉 |

𝑠=1 ∑|𝐷|
𝑖=1 𝑁𝑖𝑠𝑝(𝑐𝑗 ∣ 𝑑𝑖)

.

• Prior probabilities are, again, 𝑝(𝑐𝑗) = 1
|𝐷| ∑|𝐷|

𝑖=1 𝑝(𝑐𝑗 ∣ 𝑑𝑖).
• And the classification is done as

𝑐 = arg max𝑗𝑝(𝑐𝑗)𝑝(𝑑𝑖 ∣ 𝑐𝑗) =

= arg max𝑗
⎛⎜
⎝

1
|𝐷|

|𝐷|
∑
𝑖=1

𝑝(𝑐𝑗 ∣ 𝑑𝑖)⎞⎟
⎠

𝑝(|𝑑𝑖|)|𝑑𝑖|!
|𝑉 |
∏
𝑡=1

1
𝑁𝑖𝑡! 𝑝(𝑤𝑡 ∣ 𝑐𝑗)𝑁𝑖𝑡 =

= arg max𝑗
⎛⎜
⎝

log ⎛⎜
⎝

|𝐷|
∑
𝑖=1

𝑝(𝑐𝑗 ∣ 𝑑𝑖)⎞⎟
⎠

+
|𝑉 |
∑
𝑡=1

𝑁𝑖𝑡 log 𝑝(𝑤𝑡 ∣ 𝑐𝑗)⎞⎟
⎠

.

10

generalizing naive bayes

• Naive Bayes has two features that make life much easier:
• we know the labels of every document;
• each document has only one label/topic.

• Let us now remove both of these constraints.
• First, what can we do if we don’t know the labels?

11

clustering

• Then it becomes a clustering problem.
• And we can solve it with the EM algorithm:

• on the E step we compute expectations of which document
belongs to which topic;

• on the M step we compute, with regular naive Bayes, the
probabilities 𝑝(𝑤 ∣ 𝑡) for fixed labels.

• This is the easy generalization.
• The interesting one is to account for multiple topics in a single
document...

12

topic modeling

plsa

• Consider the following model:
• each word in a document 𝑑 is generated from some topic 𝑡 ∈ 𝑇 ;
• a document is generated with some distribution on the topics

𝑝(𝑡 ∣ 𝑑);
• a word is generated from a topic rather than a document:

𝑝(𝑤 ∣ 𝑑, 𝑡) = 𝑝(𝑤 ∣ 𝑑);
• and as a result we get the following likelihood:

𝑝(𝑤 ∣ 𝑑) = ∑
𝑡∈𝑇

𝑝(𝑤 ∣ 𝑡)𝑝(𝑡 ∣ 𝑑).

• This model is called probabilistic latent semantic analysis, pLSA
(Hoffmann, 1999).

14

plsa: graphical model of a document

15

plsa

• How do we train pLSA? We can estimate 𝑝(𝑤 ∣ 𝑑) = 𝑛𝑤𝑑𝑛𝑑
, but we

actually need
• 𝜙𝑤𝑡 = 𝑝(𝑤 ∣ 𝑡);
• 𝜃𝑡𝑑 = 𝑝(𝑡 ∣ 𝑑).

• Maximize the likelihood

𝑝(𝐷) = ∏
𝑑∈𝐷

∏
𝑤∈𝑑

𝑝(𝑑, 𝑤)𝑛𝑑𝑤 = ∏
𝑑∈𝐷

∏
𝑤∈𝑑

[∑
𝑡∈𝑇

𝑝(𝑤 ∣ 𝑡)𝑝(𝑡 ∣ 𝑑)]
𝑛𝑑𝑤

.

• How can we maximize a function like this?

16

plsa

• The EM algorithm! On the E step we find how many words 𝑤
were generated in document 𝑑 by topic 𝑡:

𝑛𝑑𝑤𝑡 = 𝑛𝑑𝑤𝑝(𝑡 ∣ 𝑑, 𝑤) = 𝑛𝑑𝑤
𝜙𝑤𝑡𝜃𝑡𝑑

∑𝑠∈𝑇 𝜙𝑤𝑠𝜃𝑠𝑑
.

• On the M-step, recompute model parameters:

𝑛𝑤𝑡 = ∑𝑑 𝑛𝑑𝑤𝑡, 𝑛𝑡 = ∑𝑤 𝑛𝑤𝑡, 𝜙𝑤𝑡 = 𝑛𝑤𝑡𝑛𝑡
,

𝑛𝑡𝑑 = ∑𝑤∈𝑑 𝑛𝑑𝑤𝑡, 𝜃𝑡𝑑 = 𝑛𝑡𝑑𝑛𝑑
.

• And that’s it about inference in pLSA.

16

plsa

• We don’t even have to store the whole matrix 𝑛𝑑𝑤𝑡; we can
iterate over the documents, adding 𝑛𝑑𝑤𝑡 to the global counters
𝑛𝑤𝑡, 𝑛𝑡𝑑.

• What’s missing?
• First, there are exponentially many local optima.
• Second, there are really many parameters; we’re definitely
heading for overfitting;

• Third, it would be great to find not just some optimum but an
optimum with good, desirable properties.

• How can we achieve all this?

16

plsa

• With regularization! Lots of different regularizers for pLSA
(ARTM).

• In general we just add 𝑅𝑖 to the log likelihood:

∑
𝑑∈𝐷

∑
𝑤∈𝑑

𝑛𝑑𝑤 ln ∑
𝑡∈𝑇

𝜙𝑤𝑡𝜃𝑡𝑑 + ∑
𝑖

𝜏𝑖𝑅𝑖(Φ, Θ).

16

plsa

• Then in the EM algorithm we will have partial derivatives of 𝑅
on the M-step:

𝑛𝑤𝑡 = [∑
𝑑∈𝐷

𝑛𝑑𝑤𝑡 + 𝜙𝑤𝑡
𝜕𝑅

𝜕𝜙𝑤𝑡
]

+

,

𝑛𝑡𝑑 = [∑
𝑤∈𝑑

𝑛𝑑𝑤𝑡 + 𝜃𝑡𝑑
𝜕𝑅
𝜕𝜃𝑡𝑑

]
+

• To prove this, we consider EM as solving an optimization
problem with Karush–Kuhn–Tucker conditions.

16

plsa

• And we can now mix and match lots of different regularizers:
• smoothing regularizer (later; similar to LDA);
• sparsity regularizer: maximize KL-divergence between
distributions 𝜙𝑤𝑡 and 𝜃𝑡𝑑 and the uniform distribution;

• constrasting regularizer: minimize the covariances between
vectors 𝜙𝑡, so that each topic would get its own “lexical kernel”,
i.e., characteristic words;

• coherence regularizer: give bonuses for words that are close to
each other in documents;

• and so on, we can have many more ideas.

16

lda

• Extension of pLSA ideas – LDA (Latent Dirichlet Allocation).
• Bayesian version of pLSA; we add the priors and perform
approximate Bayesian inference.

• The problem is the same: model a large corpus of texts.

17

lda

• One document may have several topics. We construct a
hierarchical model:

• on the first level – a mixture whose components correspond to
“topics”;

• on the second level – a multinomial variable with Dirichlet prior
that defines the “distribution of topics” in a document.

17

lda

• Formally: words are taken from a dictionary {1, … , 𝑉 }; a word is
a vector 𝑤, 𝑤𝑖 ∈ {0, 1}, where exactly one component equals 1.

• A document is a sequence of 𝑁 words w. We are given a corpus
of 𝑀 documents 𝒟 = {w𝑑 ∣ 𝑑 = 1..𝑀}.

• The LDA generative model:
• sample 𝜃 ∼ Di(𝛼);
• for each of 𝑁 words 𝑤𝑛:

• sample topic 𝑧𝑛 ∼ Mult(𝜃);
• sample word 𝑤𝑛 ∼ 𝑝(𝑤𝑛 ∣ 𝑧𝑛, 𝛽) по мультиномиальному
распределению.

17

lda: graphical model

18

lda: the results [blei, 2012]

19

lda: inference

• Two main approaches to inference in complex probabilistic
models, including LDA:

• variational approximations: consider a family of simpler
distributions with new parameters and find the best
approximation (will discuss later);

• sampling: generate points from a complex distribution without
computing it explicitly, by running a Markov chain under the
density graph (Gibbs sampling is a special case).

• Gibbs sampling is usually easier to extend, but a good
variational approximation works faster and can be more stable.

20

lda: gibbs sampling

• In the basic LDA model, Gibbs sampling after simple
transformations reduces to the so-called collapsed Gibbs
sampling, where variables 𝑧𝑤 are iteratively sampled as

𝑝(𝑧𝑤 = 𝑡 ∣ z−𝑤, w, 𝛼, 𝛽) ∝ 𝑞(𝑧𝑤, 𝑡, z−𝑤, w, 𝛼, 𝛽) =

𝑛(𝑑)
−𝑤,𝑡 + 𝛼

∑𝑡′∈𝑇 (𝑛(𝑑)
−𝑤,𝑡′ + 𝛼)

𝑛(𝑤)
−𝑤,𝑡 + 𝛽

∑𝑤′∈𝑊 (𝑛(𝑤′)
−𝑤,𝑡 + 𝛽)

,

where 𝑛(𝑑)
−𝑤,𝑡 is the number of words in document 𝑑 generated by

topic 𝑡, and 𝑛(𝑤)
−𝑤,𝑡 is the number of times 𝑤 was generated from

topic 𝑡 except the current value 𝑧𝑤; note that both these
counters depend on the other variables z−𝑤.

21

lda: gibbs sampling

• With these samples we can then estimate model parameters:

𝜃𝑑,𝑡 = 𝑛(𝑑)
−𝑤,𝑡 + 𝛼

∑𝑡′∈𝑇 (𝑛(𝑑)
−𝑤,𝑡′ + 𝛼)

,

𝜙𝑤,𝑡 = 𝑛(𝑤)
−𝑤,𝑡 + 𝛽

∑𝑤′∈𝑊 (𝑛(𝑤′)
−𝑤,𝑡 + 𝛽)

,

where 𝜙𝑤,𝑡 is the probability to get word 𝑤 in topic 𝑡, and 𝜃𝑑,𝑡 is
the probability to get topic 𝑡 in document 𝑑.

• Next – LDA extensions...

21

markov topic models

• In the basic LDA model, word-topic distributions are
independent and uncorrelated; this is not true in practice, of
course.

• Correlated topic models (correlated topic models, CTM); we use
logistic normal distribution instead of the Dirichlet prior, and we
can now model correlations between topics.

• Markov topic models (MTM): Markov random fields (undirected
models) to model the relations between topics in different parts
of the dataset (e.g., different corpora).

• MTM has several copies of hyperparameters 𝛽𝑖 related in a
Markov random field (MRF). Texts from the 𝑖th corpus are
generated as in regular LDA with the corresponding 𝛽𝑖.

• In turn, 𝛽𝑖 are subject to prior constraints that “divide” the
topics between corpora, specify “background” topics and so on.

22

markov topic models

23

relational topic model

• Relational topic model (RTM): a hierarchical model that reflects
the structural graph of a network of documents.

• Generative process in RTM:
• generate the documents from a regular LDA model;
• for every pair of documents 𝑑1, 𝑑2 choose a binary variable 𝑦12
that reflects the relation between 𝑑1 and 𝑑2:

𝑦12 ∣ z𝑑1 , z𝑑2 ∼ 𝜓(⋅ ∣ z𝑑1 , z𝑑2 , 𝜂).

• As 𝜓 one can take various sigmoid functions.

24

models that account for time

• A number of important extensions aim to account for the
trends, i.e., changes in the distributions of topics with time.

• What are the “hot” topics? How do they evolve? Which topics
are stable?..

25

topics over time

• In the Topics over Time (TOT) model, time is continuous, and the
model is augmented with a Beta distribution that generates
timestamps for every document.

• The Topics over Time generative model:
• for every topic 𝑧 = 1..𝑇 sample the multinomial distribution 𝜙𝑧
from the Dirichlet prior 𝛽;

• for every document 𝑑 sample the multinomial distribution 𝜃𝑑 from
the Dirichlet prior 𝛼;

• then for each word 𝑤𝑑𝑖 ∈ 𝑑:
• sample topic 𝑧𝑑𝑖 из 𝜃𝑑 ;
• sample word 𝑤𝑑𝑖 from distribution 𝜙𝑧𝑑𝑖 ;
• sample time 𝑡𝑑𝑖 from the beta distribution 𝜓𝑧𝑑𝑖 .

26

topics over time

• Each topic corresponds to its own beta distribution 𝜓𝑧, i.e.,
topics are localized in time (depending on parameters 𝜓𝑧).

• Thus, we can both train global topics that are always present
and find a topic that has had a short burst and then
disappeared; for the latter the variance of 𝜓𝑧 will be smaller
than for the former.

27

topics over time

28

dynamic topic models

• Dynamic topic models represent temporal evolution through
changing hyperparameters 𝛼 and/or 𝛽.

• Discrete ([d]DTM), where time is discrete, and continuous, where
the evolution of hyperparameter 𝛽 (𝛼 is assumed constant) is
modeled with Brownian motion: for two documents 𝑖 and 𝑗 (𝑗 is
later than 𝑖)

𝛽𝑗,𝑘,𝑤 ∣ 𝛽𝑖,𝑘,𝑤, 𝑠𝑖, 𝑠𝑗 ∼ 𝒩(𝛽𝑖,𝑘,𝑤, 𝑣Δ𝑠𝑖,𝑠𝑗
),

where 𝑠𝑖 and 𝑠𝑗 are timestamps of documents 𝑖 and 𝑗, Δ(𝑠𝑖, 𝑠𝑗)
is the time interval between them, 𝑣 is the model parameter.

• Otherwise the generative process is the same.

29

continuous dtm

30

supervised lda

• Supervised LDA: documents have additional information, a
response variable.

• The response distribution is modeled with a generalized linear
model whose parameters are related with the document-topic
distribution.

• I.e., in the generative model, after topics are known for a
document, we

• generate the response variable 𝑦 ∼ glm(z, 𝜂, 𝛿), where z is the
distribution of topics in the document, and 𝜂 and 𝛿 are other glm
parameters.

• E.g., in recommender systems it could be the user’s reaction.

31

disclda

• Discriminative LDA (DiscLDA): another extension of LDA for
documents with a categorial variable 𝑦 which will become a
classification target.

• For every class label 𝑦 DiscLDA introduces a linear
transformation 𝑇 𝑦 ∶ ℝ𝐾 → ℝ𝐿

+, that maps 𝐾-dimensional
Dirichlet prior 𝜃 to a mixture of 𝐿-dimensional Dirichlet
distributions 𝑇 𝑦𝜃.

• Only the step of generating the topics 𝑧 for a document
changes: instead of choosing 𝑧 by distribution 𝜃 generated for
this document, we generate topic 𝑧 by distribution 𝑇 𝑦𝜃, where
𝑇 𝑦 is a transformation corresponding to the label 𝑦 for the
current document.

32

disclda

33

taglda

• TagLDA: words have tags, i.e., a document is multiple bags of
words with different words in different bags.

• E.g., a web page might have a title, and words from the title are
more important. Or actual tags.

• Mathematically, topic-word distributions are not discrete
multinomial distributions but factorized into word-topic and
word-tag distributions.

34

taglda

35

author-topic model

• Author-Topic modeling: apart from the texts themselves, we
have their authors; each author is a distribution on the topics.

• The basic generative Author-Topic model:
• for each word 𝑤:

• sample author 𝑥 for this word from the set of authors of document
𝑎𝑑 ;

• sample topic from the distribution on the topics corresponding to
author 𝑥;

• sample word from the distribution слов corresponding to this topic.

36

author-topic model

37

author-topic model

• To sample from the AT model, we use a variation of Gibbs
sampling:

𝑝(𝑧𝑤 = 𝑡, 𝑥𝑤 = 𝑎 ∣ z−𝑤, x−𝑤, w, 𝛼, 𝛽) ∝

∝ 𝑛(𝑎)
−𝑎,𝑡 + 𝛼

∑𝑡′∈𝑇 (𝑛(𝑎)
−𝑤,𝑡′ + 𝛼)

𝑛(𝑤)
−𝑤,𝑡 + 𝛽

∑𝑤′∈𝑊 (𝑛(𝑤′)
−𝑤,𝑡 + 𝛽)

,

where 𝑛(𝑎)
−𝑎,𝑡 is how many times author 𝑎 corresponded to topic 𝑡

except the current value 𝑥𝑤, 𝑛(𝑤)
−𝑤,𝑡 is how many times word 𝑤

was generated from topic 𝑡 except the current value 𝑧𝑤; note that
both these counters depend on the other variables z−𝑤, x−𝑤.

38

resume

1. NLP tasks
2. Classical categorization: naive Bayes classifier.
3. Generalizing naive Bayes: clustering EM-алгоритмом.
4. Topic modeling: pLSA, LDA, LDA extensions.

39

thank you!

Thank you for your attention!

40

	Natural language processing
	Naive Bayes
	Topic modeling

