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NATURAL LANGUAGE PROCESSING




NATURAL LANGUAGE PROCESSING

- A key problem for artificial intelligence, recognized very early.
- Early optimism: 1950s, Noam Chomsky, Dartmouth seminar.

- But proved to be not so easy: the first winter of neural networks
was in part due to a fail of a machine translation project.

- And we are still far from understanding text.



NATURAL LANGUAGE PROCESSING

- Why is it hard? In part, due to our model of the world,
commonsense reasoning.
- Example — anaphora resolution:

- the suitcase did not fit in the trunk because it was too big;
- the suitcase did not fit in the trunk because it was too small.

- This is a very well defined problem, a classification problem
basically, but it's extremely hard to get to human level.

- What are NLP problems in general?



NLP TASKS

(1) Syntactic problems:

- part-of-speech tagging: label parts of speech (noun, verb,
adjective...) and morphology (gender, case...);



NLP TASKS

(1) Syntactic problems:
- part-of-speech tagging;
- morphological segmentation: divide words into morphemes, i.e.,
prefixes, suffixes and the such;



NLP TASKS

(1) Syntactic problems:
- part-of-speech tagging;
- morphological segmentation;
- stemming and/or lemmatization: reducing a word to its basic form;



NLP TASKS

(1) Syntactic problems:
- part-of-speech tagging;
- morphological segmentation;
- stemming
- sentence boundary disambiguation: “House, M.D. is a favourite TV
series of George R. R. Martin”; in languages like Chinese even word
segmentation is hard;



NLP TASKS

(1) Syntactic problems:
- part-of-speech tagging;
- morphological segmentation;
- stemming
- word/sentence boundary disambiguation;
- named entity recognition: find proper names in the text and find
out what kind of entities they represent;



NLP TASKS

(1) Syntactic problems:
- part-of-speech tagging;
- morphological segmentation;
- stemming
- word/sentence boundary disambiguation;
- named entity recognition;
- word sense disambiguation, i.e., homonymy; common sense again:

- she cannot bear children, they are too noisy;
- she cannot bear children due to an unfortunate operation.



NLP TASKS

(1) Syntactic problems:

- part-of-speech tagging;

- morphological segmentation;

- stemming

- word/sentence boundary disambiguation;

- named entity recognition;

- word sense disambiguation;

- syntactic parsing: construct a syntax tree (dependency tree) of a
sentence;



NLP TASKS

(1) Syntactic problems:
- part-of-speech tagging;
- morphological segmentation;
- stemming
- word/sentence boundary disambiguation;
- named entity recognition;
- word sense disambiguation;
- syntactic parsing;
- coreference resolution: which objects various words refer to;
anaphora is a special case.



NLP TASKS

(1) Syntactic problems.
(2) Well defined semantic problems:

- language modeling: predict the next word or symbol; this is very
important, e.g,, for speech recognition;



NLP TASKS

(1) Syntactic problems.
(2) Well defined semantic problems:

- language modeling;
- sentiment analysis: find out whether the text speaks positively or
negatively about its subject;



NLP TASKS

(1) Syntactic problems.
(2) Well defined semantic problems:
- language modeling;
- sentiment analysis;
- relationship/fact extraction: extract well-defined relations or facts
from the text, e.g, who married whom, which year the company was
founded, and so on;



NLP TASKS

(1) Syntactic problems.
(2) Well defined semantic problems:
- language modeling;
- sentiment analysis;
- relationship/fact extraction;
- question answering: either pure classification (multiple choice),
classification with very large label space (trivia questions), or even
text generation (questions in a dialogue).



NLP TASKS

(1) Syntactic problems.
(2) Well defined semantic problems.

(3) Not really well defined semantic problems.
- text generation;



NLP TASKS

(1) Syntactic problems.
(2) Well defined semantic problems.

(3) Not really well defined semantic problems.

- text generation;

- automatic summarization: generate an abstract for a paper; again,
can be a classification problem if we just choose the most
representative sentences from the text itself;



NLP TASKS

(1) Syntactic problems.
(2) Well defined semantic problems.

(3) Not really well defined semantic problems.

- text generation;
- automatic summarization;
* machine translation;



NLP TASKS

(1) Syntactic problems.

(2) Well defined semantic problems.

(3) Not really well defined semantic problems.
- text generation;
- automatic summarization;
* machine translation;

- dialog and conversational models: talk to a human or at least
answer her questions.



GENERAL REMARKS

- The problem often can be frames as text categorization
(classification).

- We can use regular classifiers (logistic regression, SVM); but
what are the inputs?

- One approach: bag of words.

- Why could it be less than perfect?



GENERAL REMARKS

- One reason: it will depend on the words that are not really
important.

- Variation - tf-idf weights:

t (¢, d) = ‘%‘, idf(t, D) = log

|D|
H{deD|ted}|

- Usually the result improves if we use tf-idf weights.



NAIVE BAYES




TEXT CATEGORIZATION

- Given a set of texts divided into categories, train the model to
classify new texts.

- Attributes ay, a,, ..., a,, are words, v is the text topic/label; we
will use the bag of words approach for now.



NAIVE BAYES

- This is already a huge simplification, but we still are not able to
directly estimate p(aq, a,, ..., a, |z = v).

- We need more simplifying assumptions.

- Naive Bayes classifier - the simplest model: assume all words
are conditionally independent given the category:

play,ay, ..., a,lx =v) =play|z = v)pag|x =v) ... p(a, |z =v).

- And choose v as

n

vyp(ar,ay, .., a,) = argmax, _, p(z = v) Hp(aipc =v).
i=1

- Despite crazy assumptions, works rather well in practice, there
are reasons for this.



MULTIVARIATE NAIVE BAYES

- Two variations: multinomial and multivariate naive Bayes.

- In the multivariate model a document is a vector of binary
attributes: does a word occur in the text?

- And the likelihood is basically multidimensional Bernoulli trials
(coin tosses).

- The “naive” assumption is that these coins are assumed to be
independent.



MULTIVARIATE NAIVE BAYES

- letV = {wt}L‘j1 be the dictionary. Then d, is a vector of length

|V| consisting of bits B;;; B;, = 1 iff word w, occurs in document
d;.

K3

- Likelihood of the event that d; is from class ¢;:

\4
p(d; | ¢j) = [T (Bup(w, | ;) + (1= Biy)(1 —p(w, | ¢;))).

t=1

- To train this classifier we need to train the probabilities
p(w; | Cj)~



MULTIVARIATE NAIVE BAYES

- Learning is easy: given a set of documents D = {di},ljf‘1 with

labels ¢; and vocabulary V' = {wt}ltzll, we know the bits B;, and
can simply derive (with Laplace smoothing — smoothing is
important here!):

plw, | c;) = 1+ Z‘fz)‘l Byp(c; | d;)
t i) — 0
T 24P p(es | dy)




MULTIVARIATE NAIVE BAYES

+ Prior probabilities are also easy: p(c;) = ﬁ ZLZ‘lp(cj | d,).
- And the classification is done as

c=arg maxjp(cj)p(di | cj) =

t=1

|D| V]
= argmax; <11)| ZP(CJ' ‘ di)) H (Bjip(wy | cj)+ (1= B;)(1 —pwy | Cj))) =
i=1

|D| 4 ‘
= argmax, (bgzp cs 1 da)) + 3 log (Buup(we | e;) + (1= Bio)(1= pluwe | ;)



MULTINOMIAL MODEL

- In the multinomial model a document is a set of words drawn
from a bag with replacement, like rolling a really huge die.

- The likelihood now accounts for numbers of occurrences but
does not account for the words that are not there.

- For a vocabulary V = {wt}LZ‘l, the document d, is a vector of
length |d;| consisting of words taken with probability p(w, | ¢;).

- Likelihood of the event that d; is from class ¢;:

\4
1
p(d; | Cj) :p(\diDldiI!tﬂl Wp(wt | Cj)N“7

where N, is the number of occurrences of w, in d;.
- To train this classifier we need to train the probabilities
p(wy | ¢)).



MULTINOMIAL MODEL

- Learning is still easy: given a set of documents D = {d, }‘D| with
labels c; and vocabulary V = {wt}tzlr we know N;, and can
compute (again with smoothing)

1+ Y17 Nyp(e; | dy)
I+ SIPUN e | dy)

p(w | ¢;) =

+ Prior probabilities are, again, p(c;) = oy I p(e; | dy).
- And the classification is done as

¢ = argmax p(c;)p(d; | ;) =
1 |D| VI 1
=argmax; | ZP(CJ | d;) | p(ld;])ld; ]! H Wp(wt | cj)Net =
D] i=1 t=1""1t"

|D| V]
= argmax (log (Zp c;ld;) ) + Z N, logp(wy | cj)> .
t=1



GENERALIZING NAIVE BAYES

- Naive Bayes has two features that make life much easier:

- we know the labels of every document;
- each document has only one label/topic.

- Let us now remove both of these constraints.
- First, what can we do if we don’t know the labels?

1



CLUSTERING

- Then it becomes a clustering problem.
- And we can solve it with the EM algorithm:

- on the E step we compute expectations of which document
belongs to which topic;

- on the M step we compute, with regular naive Bayes, the
probabilities p(w | t) for fixed labels.

- This is the easy generalization.

- The interesting one is to account for multiple topics in a single
document...



TOPIC MODELING




PLSA

- Consider the following model:

- each word in a document d is generated from some topic t € T

- adocument is generated with some distribution on the topics
p(t|d);

- aword is generated from a topic rather than a document:
p(w|d,t)=p(w|d)

- and as a result we get the following likelihood:

pw|d)= pr\t (t|d).

teT

- This model is called probabilistic latent semantic analysis, pLSA
(Hoffmann, 1999).

14



PLSA: GRAPHICAL MODEL OF A DOCUMENT




PLSA

* How do we train pLSA? We can estimate p(w | d) = 5u4, but we
actually need

. (bwt = p(w | t)v
00 =p(t]d).

+ Maximize the likelihood

w(0) = [T [T »@w = [T TI [pr o | dﬂ .

deD wed deD wed [ teT

- How can we maximize a function like this?



PLSA

- The EM algorithm! On the E step we find how many words w
were generated in document d by topic ¢:

¢wt9td

Nyt = NP (t | d, W) = ng, —=—>—"—.
vt h v ZSET d)wsosd

- On the M-step, recompute model parameters:

Moyt = Zd Nawt» ny = Zw Tt ¢wt = Ti{”j’:

_ _ Ny
Mg =D cqaMdwtr Ora = HL

- And that’s it about inference in pLSA.

16



PLSA

- We don't even have to store the whole matrix n,,; we can
iterate over the documents, adding ng,,,, to the global counters
Mptr Mtq-

- What's missing?

- First, there are exponentially many local optima.

- Second, there are really many parameters; we're definitely
heading for overfitting;

- Third, it would be great to find not just some optimum but an
optimum with good, desirable properties.

- How can we achieve all this?

16



PLSA

- With regularization! Lots of different regularizers for pLSA
(ARTM).

- In general we just add R, to the log likelihood:

Z Z Urm 1HZ ¢wt9td + Z

deD wed teT



PLSA

- Then in the EM algorithm we will have partial derivatives of R
on the M-step:

OR
Mt = {Z Nt + QSUMW s
deD wt o
OR
Nig = [Z Mgt + thﬁ
wed td i

- To prove this, we consider EM as solving an optimization
problem with Karush-Kuhn-Tucker conditions.



PLSA

- And we can now mix and match lots of different regularizers:

- smoothing regularizer (later; similar to LDA);

- sparsity regularizer: maximize KL-divergence between
distributions ¢,,, and 6,, and the uniform distribution;

- constrasting regularizer: minimize the covariances between
vectors ¢,, so that each topic would get its own “lexical kernel”,
i.e,, characteristic words;

- coherence regularizer: give bonuses for words that are close to
each other in documents;

- and so on, we can have many more ideas.

16



LDA

- Extension of pLSA ideas - LDA (Latent Dirichlet Allocation).

- Bayesian version of pLSA; we add the priors and perform
approximate Bayesian inference.

- The problem is the same: model a large corpus of texts.



LDA

- One document may have several topics. We construct a
hierarchical model:
- on the first level - a mixture whose components correspond to
“topics”;
- on the second level — a multinomial variable with Dirichlet prior
that defines the “distribution of topics” in a document.



LDA

- Formally: words are taken from a dictionary {1, ..., V}; a word is
a vector w, w; € {0,1}, where exactly one component equals 1.

- A document is a sequence of N words w. We are given a corpus
of M documents D ={w,|d=1..M}.

- The LDA generative model:

- sample 6 ~ Di(w);
- for each of N words w,,:

- sample topic z,, ~ Mult(0);
- sample word w,, ~ p(w,, | z,,,3) N0 MyNbTUHOMUANBHOMY

pacnpefdeneHuto.



LDA: GRAPHICAL MODEL




LDA: THE RESULTS [BLEI, 2012]

Topic proportions and
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LDA: INFERENCE

- Two main approaches to inference in complex probabilistic
models, including LDA:

- variational approximations: consider a family of simpler
distributions with new parameters and find the best
approximation (will discuss later);

- sampling: generate points from a complex distribution without
computing it explicitly, by running a Markov chain under the
density graph (Gibbs sampling is a special case).

- Gibbs sampling is usually easier to extend, but a good
variational approximation works faster and can be more stable.

20



LDA: GIBBS SAMPLING

- In the basic LDA model, Gibbs sampling after simple
transformations reduces to the so-called collapsed Gibbs
sampling, where variables z,, are iteratively sampled as

P(zp =t |2, Wy, B) X q(2s b2y, Wy, ) =

n—wt+a —wt+6
Zt/eT (ngw;t/ + a) Zu/eW (n—w,t + B)

where n'¥ is the number of words in document d generated by

w,t
topic ¢, and n® t is the number of times w was generated from
topic t except the current value z,; note that both these
counters depend on the other variables z_,,.

21



LDA: GIBBS SAMPLING

- With these samples we can then estimate model parameters:

(d)

nfw t + a
ad,t - (d) )
Yper (o + )
w)
Twit T B
w,t
(bw,t = -

Zw’EW ( _,U’)“)t + ﬂ)

where ¢,,, is the probability to get word w in topic ¢,and 6, , is
the probability to get topic ¢ in document d.

- Next — LDA extensions...

21



MARKOV TOPIC MODELS

- In the basic LDA model, word-topic distributions are
independent and uncorrelated; this is not true in practice, of
course.

- Correlated topic models (correlated topic models, CTM); we use
logistic normal distribution instead of the Dirichlet prior, and we
can now model correlations between topics.

- Markov topic models (MTM): Markov random fields (undirected
models) to model the relations between topics in different parts
of the dataset (e.g,, different corpora).

- MTM has several copies of hyperparameters 3, related in a
Markov random field (MRF). Texts from the ith corpus are
generated as in regular LDA with the corresponding g;.

- Inturn, ; are subject to prior constraints that “divide” the
topics between corpora, specify “background” topics and so on.

22



MARKOV TOPIC MODELS

23



RELATIONAL TOPIC MODEL

- Relational topic model (RTM): a hierarchical model that reflects
the structural graph of a network of documents.

- Generative process in RTM:
- generate the documents from a regular LDA model;

- for every pair of documents d;, d, choose a binary variable vy,
that reflects the relation between d,; and d,:

Y1z | 24,5 2a, ~ P | 24,,24,,7).

- As ¢ one can take various sigmoid functions.

24



MODELS THAT ACCOUNT FOR TIME

- A number of important extensions aim to account for the
trends, i.e., changes in the distributions of topics with time.

- What are the “hot” topics? How do they evolve? Which topics
are stable?..

25



TOPICS OVER TIME

- In the Topics over Time (TOT) model, time is continuous, and the
model is augmented with a Beta distribution that generates
timestamps for every document.

- The Topics over Time generative model:
- for every topic z = 1..7 sample the multinomial distribution ¢,

from the Dirichlet prior S;
- for every document d sample the multinomial distribution 6, from
the Dirichlet prior o
- then for each word wy; € d:
- sample topic z4; 13 04;
+ sample word wg; from distribution ¢ ;
- sample time ¢4, from the beta distribution 4, ..

26



TOPICS OVER TIME

- Each topic corresponds to its own beta distribution ¢, i.e.,
topics are localized in time (depending on parameters ).

- Thus, we can both train global topics that are always present
and find a topic that has had a short burst and then
disappeared; for the latter the variance of ¢, will be smaller
than for the former.

27



TOPICS OVER TIME

B a— D

®
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DYNAMIC TOPIC MODELS

- Dynamic topic models represent temporal evolution through
changing hyperparameters o and/or j.

- Discrete ([d]DTM), where time is discrete, and continuous, where
the evolution of hyperparameter 3 (a is assumed constant) is
modeled with Brownian motion: for two documents i and j (5 is
later than 4)

ﬁj,k,w | ﬂi,k,w?sh‘sj ~ N(ﬂi,k,wv/UAs s»)?

7]

where s; and s, are timestamps of documents i and j, A(s;, s;)

is the time interval between them, v is the model parameter.

- Otherwise the generative process is the same.
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CONTINUOUS DTM
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SUPERVISED LDA

- Supervised LDA: documents have additional information, a
response variable.

- The response distribution is modeled with a generalized linear
model whose parameters are related with the document-topic
distribution.

- le, in the generative model, after topics are known for a
document, we

- generate the response variable y ~ glm(z, n, §), where z is the
distribution of topics in the document, and n and § are other glm
parameters.

- E.g, in recommender systems it could be the user’s reaction.

31



DISCLDA

- Discriminative LDA (DiscLDA): another extension of LDA for
documents with a categorial variable y which will become a
classification target.

- For every class label y DiscLDA introduces a linear
transformation 7% : RK — RZ, that maps K-dimensional
Dirichlet prior 6 to a mixture of L-dimensional Dirichlet
distributions TY6.

- Only the step of generating the topics z for a document
changes: instead of choosing z by distribution 6 generated for
this document, we generate topic z by distribution 7%6, where
TY is a transformation corresponding to the label y for the
current document.

32



DISCLDA
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TAGLDA

- TagLDA: words have tags, i.e., a document is multiple bags of
words with different words in different bags.

- E.g, a web page might have a title, and words from the title are
more important. Or actual tags.

- Mathematically, topic-word distributions are not discrete
multinomial distributions but factorized into word-topic and
word-tag distributions.

34



TAGLDA
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AUTHOR-TOPIC MODEL

- Author-Topic modeling: apart from the texts themselves, we
have their authors; each author is a distribution on the topics.

- The basic generative Author-Topic model:
- for each word w:
- sample author x for this word from the set of authors of document
agq,
- sample topic from the distribution on the topics corresponding to
author z;
- sample word from the distribution cnos corresponding to this topic.

36



AUTHOR-TOPIC MODEL
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AUTHOR-TOPIC MODEL

- To sample from the AT model, we use a variation of Gibbs
sampling:

p(Zw = t7.'1:w =a | Z7w7X7w)W7a7ﬁ) X

ni“;i,t +a n/<w)!t + 8

—w

2 et (n(j)“ + O‘) 2rew ("(ffv)t + 5) 7

where n(jit is how many times author a corresponded to topic ¢

(w

except the current value z,,, n_,>,¢ is how many times word w
was generated from topic ¢ except the current value z,,; note that

w?!

both these counters depend on the other variablesz_,, x

wr F—w

X
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RESUME

1. NLP tasks

2. Classical categorization: naive Bayes classifier.

3. Generalizing naive Bayes: clustering EM-anropuTtmonm.
4. Topic modeling: pLSA, LDA, LDA extensions.
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THANK YOU!

Thank you for your attention!
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