
recommender systems

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
April 10, 2017

introduction

preview

• Main ideas:
(1) classical collaborative filtering: nearest neighbors and how to

scale them;
(2) matrix decompositions: why, how, and what else;
(3) extensions: what can we add to a recommender system; in

particular, content-based recommendations;
(4) non-personalized recommendations with emphasis on speed.

3

recommender systems

• Recommender systems analyze the users’ interests and aim to
predict what is most interesting for a specific user at this time.

• Leading recommender systems usually fall into one of two
categories:
(1) we “sell” some goods or services online; the users either explicitly

rate the goods or simply buy something; we want to recommend
an item that would most interest this user; examples: Netflix,
Amazon;

(2) we are a web portal and make money through advertising; we
need to show links that the users will click: Mail.Ru, Yahoo!,
Google, Yandex, content providers, news web sites.

4

netflix

5

amazon

6

surfingbird

7

online vs. offline

• A recommender system may have two different “levels”:
• global estimates, slowly changing features and preferences,
dependence on permanent user features (geography,
demographics) etc.;

• short-term trends, hotness, fast changes in interest.

8

online vs. offline

• These are different problems with different methods, so there
are two classes of models:

• offline models extract global dependencies (this is usually called
collaborative filtering). The purpose is to find and recommend
something for a specific user, work with “long tails” of the
distributions of both users and items;

• online models must react very quickly, they extract short-term
trends and recommend whatever is hot right now.

9

classical collaborative filtering

grouplens

• Notation:
• 𝑖 always denotes users (𝑁 in total, 𝑖 = 1..𝑁);
• 𝑎 always denotes items (web sites, goods, movies...) that we
recommend (𝑀 in total, 𝑎 = 1..𝑀);

• when a user 𝑖 rates item 𝑎, it is captured as a response (rating)
𝑟𝑖,𝑎; this is a random value, of course.

• The goal is to predict estimates 𝑟𝑖,𝑎 by features 𝑥𝑖 and 𝑥𝑎 for all
elements in the dataset and some already known 𝑟𝑖′,𝑎′ .

• We denote prediction by ̂𝑟𝑖,𝑎.

11

grouplens

• Nearest neighbors: let’s introduce a distance (similarity)
between users and recommend to you what people similar to
you have liked.

• Distance:
• correlation coefficient (Pearson’s coefficient)

𝑤𝑖,𝑗 =
∑𝑎 (𝑟𝑖,𝑎 − ̄𝑟𝑎) (𝑟𝑗,𝑎 − ̄𝑟𝑎)

√∑𝑎 (𝑟𝑖,𝑎 − ̄𝑟𝑎)2√∑𝑎 (𝑟𝑗,𝑎 − ̄𝑟𝑎)2
,

where ̄𝑟𝑎 is the average rating of item 𝑎 among all users;
• cosine of the angle between rating vectors:

𝑤𝑖,𝑗 =
∑𝑎 𝑟𝑖,𝑎𝑟𝑗,𝑎

√∑𝑎 𝑟2
𝑖,𝑎√∑𝑎 𝑟2

𝑗,𝑎
.

11

grouplens

• The simplest way to construct a prediction for a new rating ̂𝑟𝑖,𝑎
is the sum of ratings for other users weighted by their
similarities to user 𝑖:

̂𝑟𝑖,𝑎 = ̄𝑟𝑎 +
∑𝑗 (𝑟𝑗,𝑎 − ̄𝑟𝑗) 𝑤𝑖,𝑗

∑𝑗 |𝑤𝑖,𝑗|
.

• This is called the GroupLens algorithm, the grandfather of
recommender systems.

• We can restrict the sum to nearest neighbors so that we don’t
have to sum over everybody:

̂𝑟𝑖,𝑎 = ̄𝑟𝑎 +
∑𝑗∈knn(𝑖) (𝑟𝑗,𝑎 − ̄𝑟𝑗) 𝑤𝑖,𝑗

∑𝑗∈knn(𝑖) |𝑤𝑖,𝑗|
.

11

grouplens

• Natural extension: let’s re-weigh the items according to how
often they have been rated; if something is liked by everybody
it’s not very useful.

• Inverse user frequency: 𝑓𝑎 = log 𝑁
𝑁𝑎

, where 𝑁 is the total
number of users, 𝑁𝑎 – number of users who rated 𝑎. We get

𝑤iuf
𝑖,𝑗 =

∑𝑎 𝑓𝑎 ∑𝑎 𝑓𝑎𝑟𝑖,𝑎𝑟𝑗,𝑎 − (∑𝑎 𝑓𝑎𝑟𝑖,𝑎) (∑𝑎 𝑓𝑎𝑟𝑗,𝑎)

√∑𝑎 𝑓𝑎 (∑𝑎 𝑓𝑎𝑟2
𝑖,𝑎 − (∑𝑎 𝑓𝑎𝑟𝑖,𝑎)2)√∑𝑎 𝑓𝑎 (∑𝑎 𝑓𝑎𝑟2

𝑗,𝑎 − (∑𝑎 𝑓𝑎𝑟𝑗,𝑎)2)
,

and for the cosine:

𝑤iuf
𝑖,𝑗 =

∑𝑎 𝑓2
𝑎𝑟𝑖,𝑎𝑟𝑗,𝑎

√∑𝑎(𝑓𝑎𝑟𝑖,𝑎)2√∑𝑎(𝑓𝑎𝑟𝑗,𝑎)2
.

11

item-item cf

• Symmetrical approach – item-based collaborative filtering.
Compute similarity between items, choose similar items.

• Amazon: customers who bought this item also bought...
• Can be more efficient since we can always compute item
similarity offline and get new predictions for a user online.

12

how to scale nearest neighbors

• It’s hard to find nearest neighbors algorithmically (k-d-trees
don’t work in large dimensions).

• Large-scale recommender systems use approximations.
• E.g., LSH (locality sensitive hashing) with min-hashing:

• take several hash functions, compute them for every item;
• for every user compute the minimal value of hash functions for its
items;

• look for neighbors only among those users that have identical
values in at least one hash.

13

what about likes?

• We have only considered explicit ratings.
• But often we only have the sets of “consumed” or “liked” items 𝐼
and 𝐽 for users 𝑖 and 𝑗:

• likes (usually very few dislikes);
• bought goods without explicit ratings.

• This is called implicit feedback. What do we do?

14

what about likes?

• We need to define distance between sets; Jaccard similarity

𝑤𝑖,𝑗 = Jaccard(𝐼, 𝐽) = |𝐼 ∩ 𝐽|
|𝐼 ∪ 𝐽| .

• We can introduce user weights and then use GroupLens.

14

what about likes?

• Jaccard similarity is even more popular for item-based CF.
• We define similarity between 𝑎 and 𝑏 via the sets of users 𝐴 and

𝐵 who consumed it:

𝑤𝑎,𝑏 = Jaccard(𝐴, 𝐵) = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| .

• Often works well, but there are problems.
• E.g., what if item 𝑎 is rare, 𝑏 is more popular, and almost all 𝑖 ∈ 𝐴
have also consumed 𝑏? (very common situation)

14

what about likes?

• Jaccard similarity does not suit imbalanced cases because it is
symmetric.

• Let’s make it asymmetric:

𝑤𝑎,𝑏 = |𝐴 ∩ 𝐵|
|𝐴| , 𝑤𝑏,𝑎 = |𝐴 ∩ 𝐵|

|𝐵| .

• Now the previous example is fine, but there still are problems.
• What if one of the items is very popular, and everybody has
seen it? Banana trap.

14

what about likes?

• One more variation – the method of associations:

𝑤𝑎,𝑏 = |𝐴 ∩ 𝐵| / |𝐴|
∣ ̄𝐴 ∩ 𝐵∣ / ∣ ̄𝐴∣ ,

where ̄𝐴 is the complement of 𝐴.
• In practice it is usually easy to simply try all of this and choose
what works best.

14

matrix decompositions

probabilistic models: baseline predictors

• Let’s now try to construct a model for a rating.
• What does a rating that user 𝑖 gives to item 𝑎 consist of?
• There are kind and harsh users, good and bad items.
• Baseline predictors 𝑏𝑖,𝑎:

𝑏𝑖,𝑎 = 𝜇 + 𝑏𝑖 + 𝑏𝑎.

16

probabilistic models: baseline predictors

• To find the predictors, let’s make it into a probabilistic model.
• We add normally distributed noise and get the model

𝑟𝑖,𝑎 ∼ 𝒩 (𝜇 + 𝑏𝑖 + 𝑏𝑎, 𝜎2) .

• We can now add prior distributions and optimize

𝑏∗ = arg min
𝑏

∑
(𝑖,𝑎)

(𝑟𝑖,𝑎 − 𝜇 − 𝑏𝑖 − 𝑏𝑎)2 + 𝜆1 (∑
𝑖

𝑏2
𝑖 + ∑

𝑎
𝑏2

𝑎) .

• How do we train this model?

16

probabilistic models: baseline predictors

• That’s just linear regression!
• Note that often ratings are binary (like/dislike).
• Then it makes more sense to use the logistic sigmoid:

𝑏𝑖,𝑎 = 𝜎(𝜇 + 𝑏𝑖 + 𝑏𝑎), 𝜎(𝑥) = 1
1 + 𝑒−𝑥 .

• And we now have logistic regression instead of linear.
• This is often a good idea even for several ratings.

16

probabilistic models: svd

• How do we personalize and train the rest of a rating?
• We have a huge 𝑁 × 𝑀 matrix where only some small fraction
of elements are known.

• So we make assumptions on the structure of the matrix and
predict the rest.

17

probabilistic models: svd

• SVD (singular value decomposition) – assume that matrix 𝑋 has
low rank and decompose it.

• But we can also get to the same model from the other side.
• Fix some number 𝑓 of latent factors that define each item and
the preferences of each user.

• A user is now a vector 𝑝𝑖 ∈ ℝ𝑓 ; an item, a vector 𝑞𝑎 ∈ ℝ𝑓 .

17

probabilistic models: svd

• And we model the preference as a scalar product
𝑞⊤

𝑎 𝑝𝑖 = ∑𝑓
𝑗=1 𝑞𝑎,𝑗𝑝𝑖,𝑗.

• Adding baseline predictors, we get the following model for a
rating:

̂𝑟𝑖,𝑎 ∼ 𝜇 + 𝑏𝑖 + 𝑏𝑎 + 𝑞⊤
𝑎 𝑝𝑖.

• How do we train it?

17

probabilistic models: svd

• SGD – stochastic gradient descent.
• Compute the gradient of the likelihood function, iterate over
training samples, update on every step:

𝑏𝑖 ∶=𝑏𝑖 + 𝛾 (𝑒𝑖,𝑎 − 𝜆2𝑏𝑖) ,
𝑏𝑎 ∶=𝑏𝑎 + 𝛾 (𝑒𝑖,𝑎 − 𝜆2𝑏𝑎) ,

𝑞𝑎,𝑗 ∶=𝑞𝑎,𝑗 + 𝛾 (𝑒𝑖,𝑎𝑝𝑖,𝑗 − 𝜆2𝑞𝑖,𝑗) for all 𝑗,
𝑝𝑖,𝑗 ∶=𝑝𝑖,𝑗 + 𝛾 (𝑒𝑖,𝑎𝑞𝑎,𝑗 − 𝜆2𝑝𝑖,𝑗) for all 𝑗,

where 𝛾 is the learning rate

17

probabilistic models: svd

• ALS – alternating least squares.
• Note that if in ̂𝑟𝑖,𝑎 ∼ 𝜇 + 𝑏𝑖 + 𝑏𝑎 + 𝑞⊤

𝑎 𝑝𝑖 we fix 𝑝𝑖, we will get linear
regression w.r.t. 𝑞𝑎, and vice versa.

• ALS is similar to EM; repear until convergence:
• fix 𝑝𝑖, train 𝑞𝑎;
• fix 𝑞𝑎, train 𝑝𝑖.

• Usually faster and more robust than SGD.

17

probabilistic models: svd

• The same remark about the logistic variation: for binary ratings
we can consider

̂𝑟𝑖,𝑎 ∼ 𝜎(𝜇 + 𝑏𝑖 + 𝑏𝑎 + 𝑞⊤
𝑎 𝑝𝑖).

• Then the SGD will simply get the sigmoid’s probabilities
𝜎′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥)).

• And in ALS instead of a linear regression we will have to train
logistic regression on every iteration.

17

probabilistic models: svd

• We can also add external information to this model.
• Suppose there are extra factors 𝑦𝑎 for the items that
characterize a user based on what he has seen but not rated.

• The model is now

̂𝑟𝑖,𝑎 = 𝜇 + 𝑏𝑖 + 𝑏𝑎 + 𝑞⊤
𝑎 ⎛⎜

⎝
𝑝𝑖 + 1

√|𝑉 (𝑖)|
∑

𝑏∈𝑉 (𝑖)
𝑦𝑏⎞⎟

⎠
,

where 𝑉 (𝑖) is the set of items that this user has seen (1
√|𝑉 (𝑖)|

controls the variance).
• This is called SVD++.

17

probabilistic matrix decomposition

• Suppose we want to decompose the rating matrix into low rank
matrices

𝑅̂ = 𝑈⊤𝑉 .

• The likelihood is

𝑝(𝑅 ∣ 𝑈, 𝑉 , 𝜎2) = ∏
𝑖

∏
𝑎

(𝒩(𝑟𝑖,𝑎 ∣ 𝑢⊤
𝑖 𝑣𝑗, 𝜎2))[𝑖 rated 𝑎] .

• Adding Gaussian priors on 𝑈 and 𝑉 , we get

𝑝(𝑈 ∣ 𝜎2
𝑈) = ∏

𝑖
𝒩(𝑈𝑖 ∣ 0, 𝜎2

𝑈𝐼), 𝑝(𝑉 ∣ 𝜎2
𝑉) = ∏

𝑎
𝒩(𝑉𝑎 ∣ 0, 𝜎2

𝑉 𝐼).

18

graphical model

19

probabilistic matrix decomposition

• If we simply fix 𝜎2, 𝜎2
𝑉 , and 𝜎2

𝑈 , they will serve as regularizers, as
in regular SVD.

• The difference is that we can now find optimal 𝜎 = (𝜎2, 𝜎2
𝑉 , 𝜎2

𝑈)
by maximizing the total likelihood of the model

𝜎∗ = arg max𝜎𝑝(𝑅 ∣ 𝜎) = arg max𝜎 ∫ 𝑝(𝑅, 𝑈, 𝑉 ∣ 𝜎)𝑑𝑈𝑑𝑉

with EM:
• first fix 𝜎 and find

𝑓(𝜎) = E𝑈,𝑉 ∣𝑅,𝜎 [log 𝑝(𝑅, 𝑈, 𝑉 ∣ 𝜎)] ;

• then maximize
𝜎 ∶= arg max𝜎𝑓(𝜎).

20

probabilistic matrix decomposition

• Modification: users with few ratings in PMF will get posteriors
very close to the “average user”.

• To generalize better to this case, we can add factors that change
the priors depending on how many and what items a user has
rated:

𝑈𝑖 = 𝑌𝑖 +
∑𝑎[𝑖 rated 𝑎]𝑊𝑎

∑𝑎[𝑖 rated 𝑎] .

• And we get 𝑝(𝑊 ∣ 𝜎2
𝑊) = ∏𝑖 𝒩(𝑊𝑖 ∣ 0, 𝜎2

𝑊 𝐼).

21

graphical model

22

graphical model

23

graphical model

24

boltzmann machines

• One more kind of probabilistic modeling – restricted Boltzmann
machines.

• Undirected graphical model with two levels, visible and hidden.
• In collaborative filtering we model user preferences with RBM:

25

boltzmann machines

• As a result, on the hidden layer we train the user model.
• Training by contrastive divergence (approximation to max
likelihood).

• RBM is not better than SVD, but often makes different errors, so
a combination of these models is a big improvement.

25

matrix decompositions

• We have considered SVD (singular value decomposition) –
decomposing matrix 𝑋 into a product of low rank matrices.

• This is not the only matrix decomposition, and they are all
interesting in their own way.

• PCA (principal components analysis) tries to explain as much
variance in the original dataset as possible.

• But often directions to clusters in the data are not orthogonal,
and PCA features are hard to interpret.

26

matrix decompositions

• SVD (singular decomposiion) does exactly what we need when
ratings are available:

• maximizes the likelihood for known ratings (minimizes rating
prediction error);

• works with sparse matrices (minimizes only over known ratings).

• But what do we do if there are no ratings, only the fact of use?
SVD won’t work...

26

matrix decompositions

• NMF (nonnegative matrix factorization): we still decompose as

𝑋 ≈ 𝑈𝑉 ⊤,

where 𝑈 is 𝑛 × 𝑓 , 𝑉 is 𝑚 × 𝑓 , and 𝑓 is much less than 𝑛 and 𝑚.
• But we now require that elements 𝑈 and 𝑉 are nonnegative.
• The features, by the way, are often better interpretable – this is
a common theme.

• NMF can be implemented with ALS, but with additional
complications due to constraints.

26

quality metrics and extensions

quality metrics

• One more important topic: how do we evaluate the quality of
recommendations? What is the quality metric?

• When we train SVD (maximize likelihood), we optimize the mean
squared error.

• Netflix Prize, for instance, asked for the same: optimize RMSE.
• But what do we need in the real application? What do we have
in the test set?

28

quality metrics

• The test set has ratings of certain items evaluated by the users.
• But the problem is to give a user new recommendations!
• We don’t have to predict all ratings, we need to find items with
the largest rating.

• So in reality this is a ranking problem! And it’s best to take
quality metrics from information retrieval, where search results
are evaluated not by the RMSE of the relevance function.

• In what follows we consider the binary case (like/dislike) for
simplicity.

28

quality metrics

• Classical quality metrics:
(1) precision – number of “good” (relevant, positively ranked) items in

the results divided by the total number of items in the results;
(2) recall – number of “good” items in the results divided by the total

number of “good” items in the database.

• Same problems: these parameters do not depend on the
ranking, we need to know in advance how many
recommendations will be needed.

28

quality metrics

• Ranking quality metrics:
• NDCG, Normalized Discounted Commulative Gain; choose top-𝑘
recommendations (𝑘 can be larger than the necessary number)
and compute

DCG𝑘 =
𝑘

∑
𝑖=1

2𝑟̂𝑖 − 1
log2(1 + 𝑖) ,

NDCG𝑘 = DCG𝑘
IDCG𝑘

,

where ̂𝑟𝑖 is our estimate of the rating of item on position 𝑖, and
IDCG𝑘 is the value of DCG𝑘 in the ranking by true values (from
the test set);

• NDCG ranges from 0 to 1 but it’s hard to interpret as probability.

28

quality metrics

• Ranking quality metrics:
• AUC, Area Under (ROC) Curve – the probability of the event that a
randomly chosen pair of items with different ratings will be ranked
correctly (the higher rating will be higher in the results);

• in the binary case there is a closed form:

̂𝐴 = 𝑆0 − 𝑛0(𝑛0 + 1)/2
𝑛0𝑛1

,

where 𝑛0, 𝑛1 is the number of items that the user liked and
disliked, 𝑆0 = ∑ 𝑝𝑖 is the sum of positions for the liked items in
the results.

28

quality metrics

• Ranking quality metrics:
• but simple metrics are also important because a user often looks
only at the very top recommendations;

• WTA (winner takes all) – 1 if the top recommendation is a “like”
and 0 otherwise;

• Top𝑘 – share of positive ratings among top-𝑘 recommendations
(Top10 is sometimes called MAP – mean average precision).

28

regression with features

• Problem: cold start.
• If we don’t know anything, there’s nothing we can do.
• But usually there is some set of external features, and we can
try to predict the SVD features:

• with a simple regression over the features;
• (usually for items) with topic modeling!

29

regression with features

• For user features 𝑥𝑖 and item features 𝑥𝑎 we consider the model

𝑟𝑖,𝑎 ∼ 𝜇 + 𝑏user(𝑥𝑖) + 𝑏item(𝑥𝑎) + 𝑞⊤
𝑎 𝑝𝑖(𝑡),

where

𝑏user(𝑥𝑖) ∼ 𝒩(𝑢(𝑥𝑖), 𝜎2
𝑢),

𝑏item(𝑥𝑖) ∼ 𝒩(𝑣(𝑥𝑖), 𝜎2
𝑣),

and as 𝑢 and 𝑣 we can take any kind of regression [Agarwal,
Chen, 2009].

29

regression with features

• Or with content:
• extract topics from the items (LDA); or other features if it’s not text;
• we get a distribution 𝑧𝑎,𝑘 for every 𝑎;
• and now we train the factors 𝑠𝑖,𝑘 for how much a user “likes”
these topics;

• then for a new item we estimate the topics ̂𝑧𝑎,𝑘 with their content
and then add to the model

𝑟𝑖,𝑎 ∼ … + ∑
𝑘

𝑠𝑖,𝑘 ̂𝑧𝑎,𝑘,

which helps for cold start w.r.t. items.

• We can also train topics that specifically reflect preferences
(fLDA).

29

time in collaborative filtering

• Example: let’s add time, i.e., we consider user features and
baseline predictors as functions of time,

̂𝑟𝑖,𝑎 = 𝜇 + 𝑏𝑖(𝑡) + 𝑏𝑎(𝑡) + 𝑞⊤
𝑎 𝑝𝑖(𝑡),

where

𝑏𝑎(𝑡) =𝑏𝑎 + 𝑏𝑎,Bin(𝑡),
𝑏𝑖(𝑡) =𝑏𝑖 + 𝛼𝑖dev𝑖(𝑡) + 𝑏𝑖,𝑡,

𝑝𝑖,𝑓(𝑡) =𝑝𝑖,𝑓 + 𝛼𝑖,𝑓dev𝑖(𝑡) + 𝑝𝑖,𝑓,𝑡 + 1
√|𝑉 (𝑖)|

∑
𝑏∈𝑉 (𝑖)

𝑦𝑏,

dev𝑖(𝑡) =sign(𝑡 − 𝑡𝑖) |𝑡 − 𝑡𝑖|𝛽 .

• This is called timeSVD++, one of the main components of the
Netflix Prize winner.

30

social networks

• Suppose that users come from a social network.
• I.e., we know their friends, a part of the social graph etc.
• We can add this to the recommender model:

• filtering/reweighting in nearest neighbors;
• additional terms in an SVD-like decomposition;
• decomposing the trust matrix (from the social graph) together with
the matrix of ratings, change prior distribution for PMF and so on.

31

other metrics

• Filter bubble: how do we take a user outside the usual bubble?
• Metrics that value “interesting” results:

• diversity – make items in the list less similar;
• novelty – choose less common items (with few ratings);
• serendipity – choose items that are not like the user’s history.

• We only need to be able to define the similarity of items
(preferably without the ratings, by content).

32

cars

• CARS (context-aware recommender systems) – we recommend
in a context:

• temporal;
• situation;
• geographical;
• user behaviour, and so on.

33

cars

• Formally this adds new dimensions to the preference matrix.
• We get a “hypercube” of data, there are tensor decomposition
methods similar to SVD.

• But simple approaches like slicing and filtering often work as
well as complicated tensor decompositions...

33

thank you!

Thank you for your attention!

34

	Introduction
	Classical collaborative filtering
	Matrix decompositions
	Quality metrics and extensions

