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introduction



preview

• Main ideas:
(1) classical collaborative filtering: nearest neighbors and how to

scale them;
(2) matrix decompositions: why, how, and what else;
(3) extensions: what can we add to a recommender system; in

particular, content-based recommendations;
(4) non-personalized recommendations with emphasis on speed.
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recommender systems

• Recommender systems analyze the users’ interests and aim to
predict what is most interesting for a specific user at this time.

• Leading recommender systems usually fall into one of two
categories:
(1) we “sell” some goods or services online; the users either explicitly

rate the goods or simply buy something; we want to recommend
an item that would most interest this user; examples: Netflix,
Amazon;

(2) we are a web portal and make money through advertising; we
need to show links that the users will click: Mail.Ru, Yahoo!,
Google, Yandex, content providers, news web sites.
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netflix
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amazon

6



surfingbird
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online vs. offline

• A recommender system may have two different “levels”:
• global estimates, slowly changing features and preferences,
dependence on permanent user features (geography,
demographics) etc.;

• short-term trends, hotness, fast changes in interest.
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online vs. offline

• These are different problems with different methods, so there
are two classes of models:

• offline models extract global dependencies (this is usually called
collaborative filtering). The purpose is to find and recommend
something for a specific user, work with “long tails” of the
distributions of both users and items;

• online models must react very quickly, they extract short-term
trends and recommend whatever is hot right now.
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classical collaborative filtering



grouplens

• Notation:
• 𝑖 always denotes users (𝑁 in total, 𝑖 = 1..𝑁);
• 𝑎 always denotes items (web sites, goods, movies...) that we
recommend (𝑀 in total, 𝑎 = 1..𝑀);

• when a user 𝑖 rates item 𝑎, it is captured as a response (rating)
𝑟𝑖,𝑎; this is a random value, of course.

• The goal is to predict estimates 𝑟𝑖,𝑎 by features 𝑥𝑖 and 𝑥𝑎 for all
elements in the dataset and some already known 𝑟𝑖′,𝑎′ .

• We denote prediction by ̂𝑟𝑖,𝑎.
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grouplens

• Nearest neighbors: let’s introduce a distance (similarity)
between users and recommend to you what people similar to
you have liked.

• Distance:
• correlation coefficient (Pearson’s coefficient)

𝑤𝑖,𝑗 =
∑𝑎 (𝑟𝑖,𝑎 − ̄𝑟𝑎) (𝑟𝑗,𝑎 − ̄𝑟𝑎)

√∑𝑎 (𝑟𝑖,𝑎 − ̄𝑟𝑎)2√∑𝑎 (𝑟𝑗,𝑎 − ̄𝑟𝑎)2
,

where ̄𝑟𝑎 is the average rating of item 𝑎 among all users;
• cosine of the angle between rating vectors:

𝑤𝑖,𝑗 =
∑𝑎 𝑟𝑖,𝑎𝑟𝑗,𝑎

√∑𝑎 𝑟2
𝑖,𝑎√∑𝑎 𝑟2

𝑗,𝑎
.
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grouplens

• The simplest way to construct a prediction for a new rating ̂𝑟𝑖,𝑎
is the sum of ratings for other users weighted by their
similarities to user 𝑖:

̂𝑟𝑖,𝑎 = ̄𝑟𝑎 +
∑𝑗 (𝑟𝑗,𝑎 − ̄𝑟𝑗) 𝑤𝑖,𝑗

∑𝑗 |𝑤𝑖,𝑗|
.

• This is called the GroupLens algorithm, the grandfather of
recommender systems.

• We can restrict the sum to nearest neighbors so that we don’t
have to sum over everybody:

̂𝑟𝑖,𝑎 = ̄𝑟𝑎 +
∑𝑗∈knn(𝑖) (𝑟𝑗,𝑎 − ̄𝑟𝑗) 𝑤𝑖,𝑗

∑𝑗∈knn(𝑖) |𝑤𝑖,𝑗|
.
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grouplens

• Natural extension: let’s re-weigh the items according to how
often they have been rated; if something is liked by everybody
it’s not very useful.

• Inverse user frequency: 𝑓𝑎 = log 𝑁
𝑁𝑎

, where 𝑁 is the total
number of users, 𝑁𝑎 – number of users who rated 𝑎. We get

𝑤iuf
𝑖,𝑗 =

∑𝑎 𝑓𝑎 ∑𝑎 𝑓𝑎𝑟𝑖,𝑎𝑟𝑗,𝑎 − (∑𝑎 𝑓𝑎𝑟𝑖,𝑎) (∑𝑎 𝑓𝑎𝑟𝑗,𝑎)

√∑𝑎 𝑓𝑎 (∑𝑎 𝑓𝑎𝑟2
𝑖,𝑎 − (∑𝑎 𝑓𝑎𝑟𝑖,𝑎)2)√∑𝑎 𝑓𝑎 (∑𝑎 𝑓𝑎𝑟2

𝑗,𝑎 − (∑𝑎 𝑓𝑎𝑟𝑗,𝑎)2)
,

and for the cosine:

𝑤iuf
𝑖,𝑗 =

∑𝑎 𝑓2
𝑎𝑟𝑖,𝑎𝑟𝑗,𝑎

√∑𝑎(𝑓𝑎𝑟𝑖,𝑎)2√∑𝑎(𝑓𝑎𝑟𝑗,𝑎)2
.
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item-item cf

• Symmetrical approach – item-based collaborative filtering.
Compute similarity between items, choose similar items.

• Amazon: customers who bought this item also bought...
• Can be more efficient since we can always compute item
similarity offline and get new predictions for a user online.
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how to scale nearest neighbors

• It’s hard to find nearest neighbors algorithmically (k-d-trees
don’t work in large dimensions).

• Large-scale recommender systems use approximations.
• E.g., LSH (locality sensitive hashing) with min-hashing:

• take several hash functions, compute them for every item;
• for every user compute the minimal value of hash functions for its
items;

• look for neighbors only among those users that have identical
values in at least one hash.

13



what about likes?

• We have only considered explicit ratings.
• But often we only have the sets of “consumed” or “liked” items 𝐼
and 𝐽 for users 𝑖 and 𝑗:

• likes (usually very few dislikes);
• bought goods without explicit ratings.

• This is called implicit feedback. What do we do?
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what about likes?

• We need to define distance between sets; Jaccard similarity

𝑤𝑖,𝑗 = Jaccard(𝐼, 𝐽) = |𝐼 ∩ 𝐽|
|𝐼 ∪ 𝐽| .

• We can introduce user weights and then use GroupLens.
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what about likes?

• Jaccard similarity is even more popular for item-based CF.
• We define similarity between 𝑎 and 𝑏 via the sets of users 𝐴 and

𝐵 who consumed it:

𝑤𝑎,𝑏 = Jaccard(𝐴, 𝐵) = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| .

• Often works well, but there are problems.
• E.g., what if item 𝑎 is rare, 𝑏 is more popular, and almost all 𝑖 ∈ 𝐴
have also consumed 𝑏? (very common situation)
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what about likes?

• Jaccard similarity does not suit imbalanced cases because it is
symmetric.

• Let’s make it asymmetric:

𝑤𝑎,𝑏 = |𝐴 ∩ 𝐵|
|𝐴| , 𝑤𝑏,𝑎 = |𝐴 ∩ 𝐵|

|𝐵| .

• Now the previous example is fine, but there still are problems.
• What if one of the items is very popular, and everybody has
seen it? Banana trap.
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what about likes?

• One more variation – the method of associations:

𝑤𝑎,𝑏 = |𝐴 ∩ 𝐵| / |𝐴|
∣ ̄𝐴 ∩ 𝐵∣ / ∣ ̄𝐴∣ ,

where ̄𝐴 is the complement of 𝐴.
• In practice it is usually easy to simply try all of this and choose
what works best.
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matrix decompositions



probabilistic models: baseline predictors

• Let’s now try to construct a model for a rating.
• What does a rating that user 𝑖 gives to item 𝑎 consist of?
• There are kind and harsh users, good and bad items.
• Baseline predictors 𝑏𝑖,𝑎:

𝑏𝑖,𝑎 = 𝜇 + 𝑏𝑖 + 𝑏𝑎.
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probabilistic models: baseline predictors

• To find the predictors, let’s make it into a probabilistic model.
• We add normally distributed noise and get the model

𝑟𝑖,𝑎 ∼ 𝒩 (𝜇 + 𝑏𝑖 + 𝑏𝑎, 𝜎2) .

• We can now add prior distributions and optimize

𝑏∗ = arg min
𝑏

∑
(𝑖,𝑎)

(𝑟𝑖,𝑎 − 𝜇 − 𝑏𝑖 − 𝑏𝑎)2 + 𝜆1 (∑
𝑖

𝑏2
𝑖 + ∑

𝑎
𝑏2

𝑎) .

• How do we train this model?

16



probabilistic models: baseline predictors

• That’s just linear regression!
• Note that often ratings are binary (like/dislike).
• Then it makes more sense to use the logistic sigmoid:

𝑏𝑖,𝑎 = 𝜎(𝜇 + 𝑏𝑖 + 𝑏𝑎), 𝜎(𝑥) = 1
1 + 𝑒−𝑥 .

• And we now have logistic regression instead of linear.
• This is often a good idea even for several ratings.
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probabilistic models: svd

• How do we personalize and train the rest of a rating?
• We have a huge 𝑁 × 𝑀 matrix where only some small fraction
of elements are known.

• So we make assumptions on the structure of the matrix and
predict the rest.
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probabilistic models: svd

• SVD (singular value decomposition) – assume that matrix 𝑋 has
low rank and decompose it.

• But we can also get to the same model from the other side.
• Fix some number 𝑓 of latent factors that define each item and
the preferences of each user.

• A user is now a vector 𝑝𝑖 ∈ ℝ𝑓 ; an item, a vector 𝑞𝑎 ∈ ℝ𝑓 .
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probabilistic models: svd

• And we model the preference as a scalar product
𝑞⊤

𝑎 𝑝𝑖 = ∑𝑓
𝑗=1 𝑞𝑎,𝑗𝑝𝑖,𝑗.

• Adding baseline predictors, we get the following model for a
rating:

̂𝑟𝑖,𝑎 ∼ 𝜇 + 𝑏𝑖 + 𝑏𝑎 + 𝑞⊤
𝑎 𝑝𝑖.

• How do we train it?
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probabilistic models: svd

• SGD – stochastic gradient descent.
• Compute the gradient of the likelihood function, iterate over
training samples, update on every step:

𝑏𝑖 ∶=𝑏𝑖 + 𝛾 (𝑒𝑖,𝑎 − 𝜆2𝑏𝑖) ,
𝑏𝑎 ∶=𝑏𝑎 + 𝛾 (𝑒𝑖,𝑎 − 𝜆2𝑏𝑎) ,

𝑞𝑎,𝑗 ∶=𝑞𝑎,𝑗 + 𝛾 (𝑒𝑖,𝑎𝑝𝑖,𝑗 − 𝜆2𝑞𝑖,𝑗) for all 𝑗,
𝑝𝑖,𝑗 ∶=𝑝𝑖,𝑗 + 𝛾 (𝑒𝑖,𝑎𝑞𝑎,𝑗 − 𝜆2𝑝𝑖,𝑗) for all 𝑗,

where 𝛾 is the learning rate
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probabilistic models: svd

• ALS – alternating least squares.
• Note that if in ̂𝑟𝑖,𝑎 ∼ 𝜇 + 𝑏𝑖 + 𝑏𝑎 + 𝑞⊤

𝑎 𝑝𝑖 we fix 𝑝𝑖, we will get linear
regression w.r.t. 𝑞𝑎, and vice versa.

• ALS is similar to EM; repear until convergence:
• fix 𝑝𝑖, train 𝑞𝑎;
• fix 𝑞𝑎, train 𝑝𝑖.

• Usually faster and more robust than SGD.
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probabilistic models: svd

• The same remark about the logistic variation: for binary ratings
we can consider

̂𝑟𝑖,𝑎 ∼ 𝜎(𝜇 + 𝑏𝑖 + 𝑏𝑎 + 𝑞⊤
𝑎 𝑝𝑖).

• Then the SGD will simply get the sigmoid’s probabilities
𝜎′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥)).

• And in ALS instead of a linear regression we will have to train
logistic regression on every iteration.
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probabilistic models: svd

• We can also add external information to this model.
• Suppose there are extra factors 𝑦𝑎 for the items that
characterize a user based on what he has seen but not rated.

• The model is now

̂𝑟𝑖,𝑎 = 𝜇 + 𝑏𝑖 + 𝑏𝑎 + 𝑞⊤
𝑎 ⎛⎜

⎝
𝑝𝑖 + 1

√|𝑉 (𝑖)|
∑

𝑏∈𝑉 (𝑖)
𝑦𝑏⎞⎟

⎠
,

where 𝑉 (𝑖) is the set of items that this user has seen ( 1
√|𝑉 (𝑖)|

controls the variance).
• This is called SVD++.
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probabilistic matrix decomposition

• Suppose we want to decompose the rating matrix into low rank
matrices

𝑅̂ = 𝑈⊤𝑉 .

• The likelihood is

𝑝(𝑅 ∣ 𝑈, 𝑉 , 𝜎2) = ∏
𝑖

∏
𝑎

(𝒩(𝑟𝑖,𝑎 ∣ 𝑢⊤
𝑖 𝑣𝑗, 𝜎2))[𝑖 rated 𝑎] .

• Adding Gaussian priors on 𝑈 and 𝑉 , we get

𝑝(𝑈 ∣ 𝜎2
𝑈) = ∏

𝑖
𝒩(𝑈𝑖 ∣ 0, 𝜎2

𝑈𝐼), 𝑝(𝑉 ∣ 𝜎2
𝑉 ) = ∏

𝑎
𝒩(𝑉𝑎 ∣ 0, 𝜎2

𝑉 𝐼).
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graphical model
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probabilistic matrix decomposition

• If we simply fix 𝜎2, 𝜎2
𝑉 , and 𝜎2

𝑈 , they will serve as regularizers, as
in regular SVD.

• The difference is that we can now find optimal 𝜎 = (𝜎2, 𝜎2
𝑉 , 𝜎2

𝑈)
by maximizing the total likelihood of the model

𝜎∗ = arg max𝜎𝑝(𝑅 ∣ 𝜎) = arg max𝜎 ∫ 𝑝(𝑅, 𝑈, 𝑉 ∣ 𝜎)𝑑𝑈𝑑𝑉

with EM:
• first fix 𝜎 and find

𝑓(𝜎) = E𝑈,𝑉 ∣𝑅,𝜎 [log 𝑝(𝑅, 𝑈, 𝑉 ∣ 𝜎)] ;

• then maximize
𝜎 ∶= arg max𝜎𝑓(𝜎).
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probabilistic matrix decomposition

• Modification: users with few ratings in PMF will get posteriors
very close to the “average user”.

• To generalize better to this case, we can add factors that change
the priors depending on how many and what items a user has
rated:

𝑈𝑖 = 𝑌𝑖 +
∑𝑎[𝑖 rated 𝑎]𝑊𝑎

∑𝑎[𝑖 rated 𝑎] .

• And we get 𝑝(𝑊 ∣ 𝜎2
𝑊 ) = ∏𝑖 𝒩(𝑊𝑖 ∣ 0, 𝜎2

𝑊 𝐼).
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graphical model
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graphical model
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graphical model
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boltzmann machines

• One more kind of probabilistic modeling – restricted Boltzmann
machines.

• Undirected graphical model with two levels, visible and hidden.
• In collaborative filtering we model user preferences with RBM:
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boltzmann machines

• As a result, on the hidden layer we train the user model.
• Training by contrastive divergence (approximation to max
likelihood).

• RBM is not better than SVD, but often makes different errors, so
a combination of these models is a big improvement.
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matrix decompositions

• We have considered SVD (singular value decomposition) –
decomposing matrix 𝑋 into a product of low rank matrices.

• This is not the only matrix decomposition, and they are all
interesting in their own way.

• PCA (principal components analysis) tries to explain as much
variance in the original dataset as possible.

• But often directions to clusters in the data are not orthogonal,
and PCA features are hard to interpret.
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matrix decompositions

• SVD (singular decomposiion) does exactly what we need when
ratings are available:

• maximizes the likelihood for known ratings (minimizes rating
prediction error);

• works with sparse matrices (minimizes only over known ratings).

• But what do we do if there are no ratings, only the fact of use?
SVD won’t work...
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matrix decompositions

• NMF (nonnegative matrix factorization): we still decompose as

𝑋 ≈ 𝑈𝑉 ⊤,

where 𝑈 is 𝑛 × 𝑓 , 𝑉 is 𝑚 × 𝑓 , and 𝑓 is much less than 𝑛 and 𝑚.
• But we now require that elements 𝑈 and 𝑉 are nonnegative.
• The features, by the way, are often better interpretable – this is
a common theme.

• NMF can be implemented with ALS, but with additional
complications due to constraints.
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quality metrics and extensions



quality metrics

• One more important topic: how do we evaluate the quality of
recommendations? What is the quality metric?

• When we train SVD (maximize likelihood), we optimize the mean
squared error.

• Netflix Prize, for instance, asked for the same: optimize RMSE.
• But what do we need in the real application? What do we have
in the test set?
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quality metrics

• The test set has ratings of certain items evaluated by the users.
• But the problem is to give a user new recommendations!
• We don’t have to predict all ratings, we need to find items with
the largest rating.

• So in reality this is a ranking problem! And it’s best to take
quality metrics from information retrieval, where search results
are evaluated not by the RMSE of the relevance function.

• In what follows we consider the binary case (like/dislike) for
simplicity.
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quality metrics

• Classical quality metrics:
(1) precision – number of “good” (relevant, positively ranked) items in

the results divided by the total number of items in the results;
(2) recall – number of “good” items in the results divided by the total

number of “good” items in the database.

• Same problems: these parameters do not depend on the
ranking, we need to know in advance how many
recommendations will be needed.
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quality metrics

• Ranking quality metrics:
• NDCG, Normalized Discounted Commulative Gain; choose top-𝑘
recommendations (𝑘 can be larger than the necessary number)
and compute

DCG𝑘 =
𝑘

∑
𝑖=1

2𝑟̂𝑖 − 1
log2(1 + 𝑖) ,

NDCG𝑘 = DCG𝑘
IDCG𝑘

,

where ̂𝑟𝑖 is our estimate of the rating of item on position 𝑖, and
IDCG𝑘 is the value of DCG𝑘 in the ranking by true values (from
the test set);

• NDCG ranges from 0 to 1 but it’s hard to interpret as probability.
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quality metrics

• Ranking quality metrics:
• AUC, Area Under (ROC) Curve – the probability of the event that a
randomly chosen pair of items with different ratings will be ranked
correctly (the higher rating will be higher in the results);

• in the binary case there is a closed form:

̂𝐴 = 𝑆0 − 𝑛0(𝑛0 + 1)/2
𝑛0𝑛1

,

where 𝑛0, 𝑛1 is the number of items that the user liked and
disliked, 𝑆0 = ∑ 𝑝𝑖 is the sum of positions for the liked items in
the results.
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quality metrics

• Ranking quality metrics:
• but simple metrics are also important because a user often looks
only at the very top recommendations;

• WTA (winner takes all) – 1 if the top recommendation is a “like”
and 0 otherwise;

• Top𝑘 – share of positive ratings among top-𝑘 recommendations
(Top10 is sometimes called MAP – mean average precision).
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regression with features

• Problem: cold start.
• If we don’t know anything, there’s nothing we can do.
• But usually there is some set of external features, and we can
try to predict the SVD features:

• with a simple regression over the features;
• (usually for items) with topic modeling!

29



regression with features

• For user features 𝑥𝑖 and item features 𝑥𝑎 we consider the model

𝑟𝑖,𝑎 ∼ 𝜇 + 𝑏user(𝑥𝑖) + 𝑏item(𝑥𝑎) + 𝑞⊤
𝑎 𝑝𝑖(𝑡),

where

𝑏user(𝑥𝑖) ∼ 𝒩(𝑢(𝑥𝑖), 𝜎2
𝑢),

𝑏item(𝑥𝑖) ∼ 𝒩(𝑣(𝑥𝑖), 𝜎2
𝑣),

and as 𝑢 and 𝑣 we can take any kind of regression [Agarwal,
Chen, 2009].
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regression with features

• Or with content:
• extract topics from the items (LDA); or other features if it’s not text;
• we get a distribution 𝑧𝑎,𝑘 for every 𝑎;
• and now we train the factors 𝑠𝑖,𝑘 for how much a user “likes”
these topics;

• then for a new item we estimate the topics ̂𝑧𝑎,𝑘 with their content
and then add to the model

𝑟𝑖,𝑎 ∼ … + ∑
𝑘

𝑠𝑖,𝑘 ̂𝑧𝑎,𝑘,

which helps for cold start w.r.t. items.

• We can also train topics that specifically reflect preferences
(fLDA).

29



time in collaborative filtering

• Example: let’s add time, i.e., we consider user features and
baseline predictors as functions of time,

̂𝑟𝑖,𝑎 = 𝜇 + 𝑏𝑖(𝑡) + 𝑏𝑎(𝑡) + 𝑞⊤
𝑎 𝑝𝑖(𝑡),

where

𝑏𝑎(𝑡) =𝑏𝑎 + 𝑏𝑎,Bin(𝑡),
𝑏𝑖(𝑡) =𝑏𝑖 + 𝛼𝑖dev𝑖(𝑡) + 𝑏𝑖,𝑡,

𝑝𝑖,𝑓(𝑡) =𝑝𝑖,𝑓 + 𝛼𝑖,𝑓dev𝑖(𝑡) + 𝑝𝑖,𝑓,𝑡 + 1
√|𝑉 (𝑖)|

∑
𝑏∈𝑉 (𝑖)

𝑦𝑏,

dev𝑖(𝑡) =sign(𝑡 − 𝑡𝑖) |𝑡 − 𝑡𝑖|𝛽 .

• This is called timeSVD++, one of the main components of the
Netflix Prize winner.
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social networks

• Suppose that users come from a social network.
• I.e., we know their friends, a part of the social graph etc.
• We can add this to the recommender model:

• filtering/reweighting in nearest neighbors;
• additional terms in an SVD-like decomposition;
• decomposing the trust matrix (from the social graph) together with
the matrix of ratings, change prior distribution for PMF and so on.
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other metrics

• Filter bubble: how do we take a user outside the usual bubble?
• Metrics that value “interesting” results:

• diversity – make items in the list less similar;
• novelty – choose less common items (with few ratings);
• serendipity – choose items that are not like the user’s history.

• We only need to be able to define the similarity of items
(preferably without the ratings, by content).
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cars

• CARS (context-aware recommender systems) – we recommend
in a context:

• temporal;
• situation;
• geographical;
• user behaviour, and so on.
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cars

• Formally this adds new dimensions to the preference matrix.
• We get a “hypercube” of data, there are tensor decomposition
methods similar to SVD.

• But simple approaches like slicing and filtering often work as
well as complicated tensor decompositions...

33



thank you!

Thank you for your attention!
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