REINFORCEMENT LEARNING I MULTIARMED BANDITS

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
April 11, 2017

MULTIARMED BANDITS

- So far we've either had a set of "correct answers" (supervised learning) or simply nothing (unsupervised learning).
- But is it really how learning works in real life?
- How does a baby learn?
- Hence, reinforcement learning.
- An agent interacts with the environment.
- On every step the agent can be in state $s \in S$ and choose an action $a \in A$.
- The environment tells the agent its reward r and the next state $s^{\prime} \in S$.

EXPLOITATION VS. EXPLORATION

- Exploitation vs. exploration: first learn, then apply.
- But when do we switch?
- Always a problem in reinforcement learning.
- Example: tic-tac-toe.
- How does an algorithm learn to play and win in tic-tac-toe?
- Example: genetic algorithm. Very slow, does not account for information.
- States are board positions.
- Value function $V(s)$ for every state.
- Reinforcement only at the end: the credit assignment problem.
- One version - propagate the reward back: if we got from s to s^{\prime}, we update

$$
V(s):=V(s)+\alpha\left[V\left(s^{\prime}\right)-V(s)\right] .
$$

- This is called TD-learning (temporal difference learning), works very well in practice; we'll get to it.

ONE-STATE AGENTS

- If $|S|=1$, the agent has a fixed set of actions A and the environment has no memory.
- The multiarmed bandit model.
- No credit assignment, only exploration vs. exploitation.

GREEDY ALGORITHM

- Always choose the best option, where best is defined with average reward so far:

$$
Q_{t}(a)=\frac{r_{1}+r_{2}+\ldots+r_{k_{a}}}{k_{a}}
$$

-What's wrong with this algorithm?

GREEDY ALGORITHM

- Always choose the best option, where best is defined with average reward so far:

$$
Q_{t}(a)=\frac{r_{1}+r_{2}+\ldots+r_{k_{a}}}{k_{a}}
$$

- What's wrong with this algorithm?
- Easy to miss the optimum if we're unlucky with the initial sample.
- Useful heuristic - optimism under uncertainty.
- You need evidence to reject, not to accept.

RANDOMIZED STRATEGIES

- ϵ-greedy strategy: choose the best (as above) action with probability $1-\epsilon$ and random action with probability ϵ.
- Start with large ϵ, then gradually decrease.
- Boltzmann exploration:

$$
\pi_{t}(a)=\frac{e^{Q_{t}(a) / T}}{\sum_{a^{\prime}} e^{Q_{t}\left(a^{\prime}\right) / T}},
$$

where $E R$ is the expected reward, T is the temperature.

- Temperature usually decreases with time.

LINEAR REWARD-INACTION ALGORITHM

- For the case of binary payoffs (0-1).
- The linear reward-inaction algorithm adds linear reward to probability of a_{i} if it is successful:

$$
\begin{gathered}
p_{i}:=p_{i}+\alpha\left(1-p_{i}\right), \\
p_{j}:=p_{j}-\alpha p_{j}, \quad j \neq i,
\end{gathered}
$$

and nothing changes if unsuccessful.

LINEAR REWARD-INACTION ALGORITHM

- The algorithm converges with probability 1 to a vector with one 1 and the rest 0 .
- Does not always converge to the optimal strategy; but by decreasing α we decrease the probability of error.
- Linear reward-penalty: same thing, but unsuccessful actions get punished (i.e., all the rest get a reward).

INTERVAL ESTIMATES

- One way to apply the optimism under uncertainty heuristic.
- Store the statistics n and w for every action, compute confidence interval with confidence $1-\alpha$, use the upper bound.
- Example: Bernoulli trials (coin tossing). With probability .95 the average lies in the interval

$$
\left(\bar{x}-1.96 \frac{s}{\sqrt{n}}, \bar{x}+1.96 \frac{s}{\sqrt{n}}\right),
$$

where 1.96 is taken from Student's t distribution, n is the number of trials, $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$.

- A great method if the assumptions hold (which is often unclear).

INCREMENTAL UPDATES

- How do we recompute $Q_{t}(a)=\frac{r_{1}+\ldots+r_{k_{a}}}{k_{a}}$ when new information arrives?
- Easy:

$$
\begin{aligned}
Q_{k+1}=\frac{1}{k+1} & \sum_{i=1}^{k+1} r_{i}=\frac{1}{k+1}\left[r_{k+1}+\sum_{i=1}^{k} r_{i}\right]= \\
& =\frac{1}{k+1}\left(r_{k+1}+k Q_{k}\right)=Q_{k}+\frac{1}{k+1}\left(r_{k+1}-Q_{k}\right) .
\end{aligned}
$$

INCREMENTAL UPDATES

- This is a special case of a general rule:

NewEstimate := OldEstimate + StepSize [Target - OldEstimate].

- For the average, the step size is not constant: $\alpha_{k}(a)=\frac{1}{k_{a}}$.
- Changing the sequence of steps, we can achieve other effects.

NONSTATIONARY CASE

- What if the payoffs change with time?
- We should value recent information highly and outdated information low.
- Example: for an update rule

$$
Q_{k+1}=Q_{k}+\alpha\left[r_{k+1}-Q_{k}\right]
$$

with constant α the weights decay exponentially:

$$
\begin{aligned}
& Q_{k}=Q_{k-1}+\alpha\left[r_{k}-Q_{k-1}\right]=\alpha r_{k}+(1-\alpha) Q_{k-1}= \\
= & \alpha r_{k}+(1-\alpha) \alpha r_{k-1}+(1-\alpha)^{2} Q_{k-2}=(1-\alpha)^{k} Q_{0}+\sum_{i=1}^{k} \alpha(1-\alpha)^{k-i} r_{i} .
\end{aligned}
$$

NONSTATIONARY CASE

- This update rule does not necessarily converge, which is good: we want to follow new averages.
- General result - an update rule converges if the sequence of weights satisfies

$$
\sum_{k=1}^{\infty} \alpha_{k}(a)=\infty \quad \text { and } \quad \sum_{k=1}^{\infty} \alpha_{k}^{2}(a)<\infty
$$

- E.g., for $\alpha_{k}(a)=\frac{1}{k_{a}}$ it does.

OPTIMISM AGAIN

- We can simplify the search if we begin with optimistic initial values.
- Start with large $Q_{0}(a)$, so that any real value is "disappointing".
- But not too large - we need Q_{0} to average out with the real r_{i}.

REINFORCEMENT COMPARISON

- The intuition for reinforcement comparison is to look for "large" payoffs; what is "large"?
- Let's compare with average over all arms.
- These methods usually do not have action values Q_{k}, only preferences $p_{t}(a)$; probabilities can be obtained, e.g., with softmax:

$$
\pi_{t}(a)=\frac{e^{p_{t}(a)}}{\sum_{a^{\prime}} e^{p_{t}\left(a^{\prime}\right)}}
$$

REINFORCEMENT COMPARISON

- And on every step we update both preference and average:

$$
\begin{aligned}
\bar{r}_{t+1} & =\bar{r}_{t}+\alpha\left(r_{t}-\bar{r}_{t}\right) \\
p_{t+1}(a) & =p_{t}\left(a_{t}\right)+\beta\left(r_{t}-\bar{r}_{t}\right) .
\end{aligned}
$$

PURSUIT METHODS

- Pursuit methods store both expectation estimates and action preferences, and preferences "follow" averages.
- E.g., $\pi_{t}(a)$ is the probability to choose a at time t; after step t we look for a greedy strategy

$$
a_{t+1}^{*}=\arg \max _{a} Q_{t+1}(a)
$$

and change π towards the greedy strategy:

$$
\begin{aligned}
\pi_{t+1}\left(a_{t+1}^{*}\right) & =\pi_{t}\left(a_{t+1}^{*}\right)+\beta\left[1-\pi_{t}\left(a_{t+1}^{*}\right)\right] \\
\pi_{t+1}(a) & =\pi_{t}(a)+\beta\left[0-\pi_{t}(a)\right]
\end{aligned}
$$

DYNAMIC PROGRAMMING

- Assume finite horizon of h steps.
- We use the Bayesian approach to find the optimal strategy.
- Begin with random parameters $\left\{p_{i}\right\}$, e.g., uniform; compute the mapping from belief states (after several rounds) to actions.
- A state is expressed as $\mathcal{S}=\left\{n_{1}, w_{1}, \ldots, n_{k}, w_{k}\right\}$, where each bandit i has been run n_{i} times with w_{i} positive (binary) results.

DYNAMIC PROGRAMMING

- $V^{*}(\mathcal{S})$ - expected remaining payoff.
- Recursion: if $\sum_{i=1}^{k} n_{i}=h, V^{*}(\mathcal{S})=0$ since there's no time left.
- If we know V^{*} for all states when t time slots are left, we can recompute for $t+1$:

$$
\begin{aligned}
& V^{*}\left(n_{1}, w_{1}, \ldots, n_{k}, w_{k}\right)= \\
& \quad=\max _{i}\left(\rho_{i}\left(1+V^{*}\left(\ldots, n_{i}+1, w_{i}+1, \ldots\right)\right)+\right. \\
& \left.\quad\left(1-\rho_{i}\right) V^{*}\left(\ldots, n_{i}+1, w_{i}, \ldots\right)\right),
\end{aligned}
$$

where ρ_{i} is the posterior probability of action i to be rewarded (if p_{i} had uniform priors then Laplace rule applies: $\rho_{i}=\frac{w_{i}+1}{n_{i}+2}$).

- Let's look at multiarmed bandits in a general probabilistic form.
- Binary case for simplicity: reward either 1 or 0 .
- Suppose that at time t we have state $\theta_{t}=\left(\theta_{1 t}, \ldots, \theta_{K t}\right)$ for K arms, and we want to maximize the total expected number of successes.
- Reward function $R_{i}\left(\theta_{t}, \theta_{t+1}\right)$ - reward for choosing action $i\left(a_{i}\right)$ that changes state θ_{t} to θ_{t+1}.
- Transition probability $p\left(\theta_{t+1} \mid \theta_{t}, a_{i}\right)$.
- And we want to traing a strategy $\pi\left(\theta_{t}\right)$ that says which arm to pull.
- Then the value function in the most general form until horizon T is

$$
\begin{aligned}
& V_{T}\left(\pi, \theta_{0}\right)=\mathrm{E}\left[R_{\pi\left(\theta_{0}\right)}\left(\theta_{0}, \theta_{1}\right)+V_{T-1}\left(\pi, \theta_{1}\right)\right]= \\
& \quad=\int p\left(\theta_{1} \mid \theta_{0}, \pi\left(\theta_{0}\right)\right)\left[R_{\pi\left(\theta_{0}\right)}\left(\theta_{0}, \theta_{1}\right)+V_{T-1}\left(\pi, \theta_{1}\right)\right] d \theta_{1} .
\end{aligned}
$$

- If we know everything, and T is small, we can use dynamic programming.
- But it's usually very expensive.

BAYESIAN APPROACH TO MULTIARMED BANDITS

- For large/unbounded T let's consider

$$
R=R(0)+\gamma R(1)+\gamma^{2} R(2)+\ldots, \quad 0<\gamma<1 .
$$

- Gittins' theorem (1979): the search for an optimal strategy

$$
\pi\left(\theta_{t}\right)=\arg \max _{\pi} V\left(\pi, \theta_{t}=\left(\theta_{1 t}, \ldots, \theta_{K t}\right)\right)
$$

can be factorized and reduced to

$$
\pi\left(\theta_{t}\right)=\arg \max _{i} g\left(\theta_{i t}\right) .
$$

- $g\left(\theta_{i t}\right)$ is called the Gittins index; the gold standard, but also hard to compute (there are approximations).
- Other possibility - let's compute the priority for every arm i in order to bound regret immediately.
- [Auer, 2002]: UCB1 strategy. Accounts for the uncertainty "left" in an action, aims to bound regret.
- If we've have n experiments, including n_{i} experiments with action i and average reward $\hat{\mu}_{i}$, the UCB1 algorithm assigns it priority

$$
\text { Priority }_{i}=\hat{\mu}_{i}+\sqrt{\frac{2 \log n}{n_{i}}} .
$$

Then we simply choose the action with highest priority.

BAYESIAN APPROACH TO MULTIARMED BANDITS

- Theorem: suboptimal actions will be selected $O(\log n)$ times, and regret is bounded by $O(\log n)$.
- There is a matching lower bound but constants are important too.
- UCB1 is a good strategy, but there are even better variations (with better constants).

EXAMPLE: BANDITS FOR A/B TESTING

- Suppose you want to test a set of changes in a web site's interface or some such.
- Often done with A/B testing:
- choose experimental group (separate for every change);
- choose control group that remains unchanged;
- collect statistics and estimate whether improvement (if any) is significant.

EXAMPLE: BANDITS FOR A/B TESTING

- Main problem: how much statistics is sufficient?
- Bandits can help; it's exactly the same problem setting:
- showing a variation corresponds to an action;
- user actions represent the environment;
- there is no need to ever stop, "sufficient sample size" is determined automatically.
- Bandits are a great way to A/B test.

EXAMPLE: CLICKS ON A NEWS SITE

- Example:

- We want, at time t, to redistribute page views $\left(x_{1}, x_{2}, \ldots, x_{K}\right)$ in order to optimize CTR.
- The simplest case: two time moments, $t=0$ and $t=1$, choice of two objects:
- object P has CTR p_{0} at time moment $t=0$ and p_{1} at time moment $t=1$, but we are not sure what, there is a distribution;
- object Q is known exactly, q_{0} and q_{1}.
- We need to find x, share of views for P at time moment $t=0$; we have N_{0} views to distribute at $t=0$ and N_{1} to $t=1$.
- Suppose we've had c clicks after choosing $x ; c$ is a random value.
- We observe c and on the second step the optimal solution is clear: we give all N_{1} clicks to P iff

$$
\hat{p}_{1}(x, c)=\mathrm{E}\left[p_{1} \mid x, c\right]>q_{1} .
$$

- I.e., we need to optimize x w.r.t. the total expected number of clicks, before we have this new information on p_{1} that we will have at time $t=1$.

EXAMPLE: CLICKS ON A NEWS SITE

- Expected number of clicks:

$$
\begin{aligned}
& N_{0} x \hat{p}_{0}+N_{0}(1-x) q_{0}+N_{1} \mathrm{E}_{c}\left[\max \left\{\hat{p}_{1}(x, c), q_{1}\right\}\right]= \\
= & N_{0} q_{0}+N_{1} q_{1}+N_{0} x\left(\hat{p}_{0}-q_{0}\right)+N_{1} \mathrm{E}_{c}\left[\max \left\{\hat{p}_{1}(x, c)-q_{1}, 0\right\}\right] .
\end{aligned}
$$

- The second term is the profit for exporing P :

$$
\operatorname{Gain}\left(x, q_{0}, q_{1}\right)=N_{0} x\left(\hat{p}_{0}-q_{0}\right)+N_{1} \mathrm{E}_{c}\left[\max \left\{\hat{p}_{1}(x, c)-q_{1}, 0\right\}\right],
$$

this is the function we optimize w.r.t. x.

EXAMPLE: CLICKS ON A NEWS SITE

- If we approximate $\hat{p}_{1}(x, c)$ by a normal distribution (central limit theorem):

$$
\begin{aligned}
\operatorname{Gain}\left(x, q_{0}, q_{1}\right) & =N_{0} x\left(\hat{p}_{0}-q_{0}\right)+N_{1}\left[\sigma_{1}(x) \Phi\left(\frac{q_{1}-\hat{p}_{1}}{\sigma_{1}(x)}\right)+\right. \\
& \left.+\left(1-\Phi\left(\frac{q_{1}-\hat{p}_{1}}{\sigma_{1}(x)}\right)\right)\left(\hat{p}_{1}-q_{1}\right)\right], \\
p_{1} & \sim \operatorname{Beta}(a, b) \text { (prior), } \\
\hat{p}_{1} & =\mathrm{E}_{c}\left[\hat{p}_{1}(x, c)\right]=\frac{a}{a+b}, \\
\sigma_{1}^{2}(x) & =\operatorname{Var}\left[\hat{p}_{1}(x, c)\right]=\frac{x N_{0}}{a+b+x N_{0}} \frac{a b}{(a+b)^{2}(1+a+b)} .
\end{aligned}
$$

- For $K>2$ the problem is much harder.
-What changes for several time slots?
- But this is simply estimating a static situation; how do we follow trends? (online recommender systems)
- Dynamic Gamma-Poisson (DGP) model: fix a (short) period of time t and count shows and clicks over time t.
- Suppose that over time t we have shown an item n_{t} times and got total reward r_{t} (e.g., total number of clicks $r_{t} \leq n_{t}$).
- Then we know at time t a sequence $n_{1}, r_{1}, n_{2}, r_{2}, \ldots, n_{t}, r_{t}$, and want to predict p_{t+1} (CTR at time moment $t+1$).
- Probabilistic assumptions of the DGP model:

1. $\left(r_{t} \mid n_{t}, p_{t}\right) \sim \operatorname{Poisson}\left(n_{t}, p_{t}\right)$ (for given n_{t} and p_{t} the probability r_{t} follows a Poisson distribution).
2. $p_{t}=\epsilon_{t} p_{t-1}$, where $\epsilon_{t} \sim \operatorname{Gamma}(\mu=1, \sigma=\eta)$ (average share of successes p_{t} does not change too fast, it is multiplied by a random value ϵ_{t} which has gamma distrubition with mean 1).
3. Model parameters are parameters of
$p_{1} \sim \operatorname{Gamma}\left(\mu=\mu_{0}, \sigma=\sigma_{0}\right)$ and η that shows how "smooth" p_{t} can change.
4. Accordingly, the problem is to estimate the parameters of the posterior distribution

$$
\left(p_{t+1} \mid n_{1}, r_{1}, n_{2}, r_{2}, \ldots, n_{t}, r_{t}\right) \sim \operatorname{Gamma}(\mu=?, \sigma=?)
$$

- And Bayesian updates can be computed analytically.
- Suppose that on the previous step $t-1$ we have obtained estimates μ_{t}, σ_{t} for model parameters:

$$
\left(p_{t} \mid n_{1}, r_{1}, n_{2}, r_{2}, \ldots, n_{t-1}, r_{t-1}\right) \sim \operatorname{Gamma}\left(\mu=\mu_{t}, \sigma=\sigma_{t}\right)
$$

and then got a new data point $\left(n_{t}, r_{t}\right)$.

- Then, denoting $\gamma_{t}=\frac{\mu_{t}}{\sigma_{t}^{2}}$ (efficient sample size), we first refine the estimates μ_{t}, σ_{t} :

$$
\begin{aligned}
\gamma_{t \mid t} & =\gamma_{t}+n_{t} \\
\mu_{t \mid t} & =\frac{\mu_{t} \gamma_{t}+r_{t}}{\gamma_{t \mid t}} \\
\sigma_{t \mid t}^{2} & =\frac{\mu_{t \mid t}}{\gamma_{t \mid t}}
\end{aligned}
$$

- And then generate a new prediction for $\left(p_{t+1} \mid n_{1}, r_{1}, \ldots, n_{t}, r_{t}\right)$:

$$
\begin{aligned}
\mu_{t+1} & =\mu_{t \mid t} \\
\sigma_{t+1}^{2} & =\sigma_{t \mid t}^{2}+\eta\left(\mu_{t \mid t}^{2}+\sigma_{t \mid t}^{2}\right) .
\end{aligned}
$$

EXAMPLE

Thank you for your attention!

