
reinforcement learning i
multiarmed bandits

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
April 11, 2017

multiarmed bandits

problem setting

• So far we’ve either had a set of “correct answers” (supervised
learning) or simply nothing (unsupervised learning).

• But is it really how learning works in real life?
• How does a baby learn?

3

problem setting

• Hence, reinforcement learning.
• An agent interacts with the environment.
• On every step the agent can be in state 𝑠 ∈ 𝑆 and choose an
action 𝑎 ∈ 𝐴.

• The environment tells the agent its reward 𝑟 and the next state
𝑠′ ∈ 𝑆.

3

exploitation vs. exploration

• Exploitation vs. exploration: first learn, then apply.
• But when do we switch?
• Always a problem in reinforcement learning.

4

example

• Example: tic-tac-toe.
• How does an algorithm learn to play and win in tic-tac-toe?
• Example: genetic algorithm. Very slow, does not account for
information.

5

example

• States are board positions.
• Value function 𝑉 (𝑠) for every state.
• Reinforcement only at the end: the credit assignment problem.

5

example

• One version — propagate the reward back: if we got from 𝑠 to 𝑠′,
we update

𝑉 (𝑠) ∶= 𝑉 (𝑠) + 𝛼 [𝑉 (𝑠′) − 𝑉 (𝑠)] .

• This is called TD-learning (temporal difference learning), works
very well in practice; we’ll get to it.

5

one-state agents

• If |𝑆| = 1, the agent has a fixed set of actions 𝐴 and the
environment has no memory.

• The multiarmed bandit model.
• No credit assignment, only exploration vs. exploitation.

6

greedy algorithm

• Always choose the best option, where best is defined with
average reward so far:

𝑄𝑡(𝑎) =
𝑟1 + 𝑟2 + … + 𝑟𝑘𝑎

𝑘𝑎
.

• What’s wrong with this algorithm?

7

greedy algorithm

• Always choose the best option, where best is defined with
average reward so far:

𝑄𝑡(𝑎) =
𝑟1 + 𝑟2 + … + 𝑟𝑘𝑎

𝑘𝑎
.

• What’s wrong with this algorithm?
• Easy to miss the optimum if we’re unlucky with the initial
sample.

• Useful heuristic — optimism under uncertainty.
• You need evidence to reject, not to accept.

7

randomized strategies

• 𝜖-greedy strategy: choose the best (as above) action with
probability 1 − 𝜖 and random action with probability 𝜖.

• Start with large 𝜖, then gradually decrease.
• Boltzmann exploration:

𝜋𝑡(𝑎) = 𝑒𝑄𝑡(𝑎)/𝑇

∑𝑎′ 𝑒𝑄𝑡(𝑎′)/𝑇 ,

where 𝐸𝑅 is the expected reward, 𝑇 is the temperature.
• Temperature usually decreases with time.

8

linear reward-inaction algorithm

• For the case of binary payoffs (0-1).
• The linear reward-inaction algorithm adds linear reward to
probability of 𝑎𝑖 if it is successful:

𝑝𝑖 ∶= 𝑝𝑖 + 𝛼(1 − 𝑝𝑖),

𝑝𝑗 ∶= 𝑝𝑗 − 𝛼𝑝𝑗, 𝑗 ≠ 𝑖,

and nothing changes if unsuccessful.

9

linear reward-inaction algorithm

• The algorithm converges with probability 1 to a vector with one
1 and the rest 0.

• Does not always converge to the optimal strategy; but by
decreasing 𝛼 we decrease the probability of error.

• Linear reward-penalty: same thing, but unsuccessful actions get
punished (i.e., all the rest get a reward).

9

interval estimates

• One way to apply the optimism under uncertainty heuristic.
• Store the statistics 𝑛 and 𝑤 for every action, compute
confidence interval with confidence 1 − 𝛼, use the upper bound.

• Example: Bernoulli trials (coin tossing). With probability .95 the
average lies in the interval

(̄𝑥 − 1.96 𝑠√𝑛, ̄𝑥 + 1.96 𝑠√𝑛) ,

where 1.96 is taken from Student’s 𝑡 distribution, 𝑛 is the
number of trials, 𝑠 = √ ∑(𝑥−�̄�)2

𝑛−1 .
• A great method if the assumptions hold (which is often unclear).

10

incremental updates

• How do we recompute 𝑄𝑡(𝑎) = 𝑟1+…+𝑟𝑘𝑎
𝑘𝑎

when new information
arrives?

• Easy:

𝑄𝑘+1 = 1
𝑘 + 1

𝑘+1
∑
𝑖=1

𝑟𝑖 = 1
𝑘 + 1 [𝑟𝑘+1 +

𝑘
∑
𝑖=1

𝑟𝑖] =

= 1
𝑘 + 1 (𝑟𝑘+1 + 𝑘𝑄𝑘) = 𝑄𝑘 + 1

𝑘 + 1 (𝑟𝑘+1 − 𝑄𝑘) .

11

incremental updates

• This is a special case of a general rule:

NewEstimate ∶= OldEstimate + StepSize [Target − OldEstimate] .

• For the average, the step size is not constant: 𝛼𝑘(𝑎) = 1
𝑘𝑎
.

• Changing the sequence of steps, we can achieve other effects.

11

nonstationary case

• What if the payoffs change with time?
• We should value recent information highly and outdated
information low.

• Example: for an update rule

𝑄𝑘+1 = 𝑄𝑘 + 𝛼 [𝑟𝑘+1 − 𝑄𝑘]

with constant 𝛼 the weights decay exponentially:

𝑄𝑘 = 𝑄𝑘−1 + 𝛼 [𝑟𝑘 − 𝑄𝑘−1] = 𝛼𝑟𝑘 + (1 − 𝛼)𝑄𝑘−1 =

= 𝛼𝑟𝑘+(1−𝛼)𝛼𝑟𝑘−1+(1−𝛼)2𝑄𝑘−2 = (1−𝛼)𝑘𝑄0+
𝑘

∑
𝑖=1

𝛼(1−𝛼)𝑘−𝑖𝑟𝑖.

12

nonstationary case

• This update rule does not necessarily converge, which is good:
we want to follow new averages.

• General result – an update rule converges if the sequence of
weights satisfies

∞
∑
𝑘=1

𝛼𝑘(𝑎) = ∞ and
∞

∑
𝑘=1

𝛼2
𝑘(𝑎) < ∞.

• E.g., for 𝛼𝑘(𝑎) = 1
𝑘𝑎

it does.

12

optimism again

• We can simplify the search if we begin with optimistic initial
values.

• Start with large 𝑄0(𝑎), so that any real value is “disappointing”.
• But not too large — we need 𝑄0 to average out with the real 𝑟𝑖.

13

reinforcement comparison

• The intuition for reinforcement comparison is to look for “large”
payoffs; what is “large”?

• Let’s compare with average over all arms.
• These methods usually do not have action values 𝑄𝑘, only
preferences 𝑝𝑡(𝑎); probabilities can be obtained, e.g., with
softmax:

𝜋𝑡(𝑎) = 𝑒𝑝𝑡(𝑎)

∑𝑎′ 𝑒𝑝𝑡(𝑎′) .

14

reinforcement comparison

• And on every step we update both preference and average:

̄𝑟𝑡+1 = ̄𝑟𝑡 + 𝛼 (𝑟𝑡 − ̄𝑟𝑡) ,
𝑝𝑡+1(𝑎) =𝑝𝑡(𝑎𝑡) + 𝛽 (𝑟𝑡 − ̄𝑟𝑡) .

14

pursuit methods

• Pursuit methods store both expectation estimates and action
preferences, and preferences “follow” averages.

• E.g., 𝜋𝑡(𝑎) is the probability to choose 𝑎 at time 𝑡; after step 𝑡 we
look for a greedy strategy

𝑎∗
𝑡+1 = arg max𝑎𝑄𝑡+1(𝑎)

and change 𝜋 towards the greedy strategy:

𝜋𝑡+1(𝑎∗
𝑡+1) = 𝜋𝑡(𝑎∗

𝑡+1) + 𝛽 [1 − 𝜋𝑡(𝑎∗
𝑡+1)] ,

𝜋𝑡+1(𝑎) = 𝜋𝑡(𝑎) + 𝛽 [0 − 𝜋𝑡(𝑎)] .

15

dynamic programming

• Assume finite horizon of ℎ steps.
• We use the Bayesian approach to find the optimal strategy.
• Begin with random parameters {𝑝𝑖}, e.g., uniform; compute the
mapping from belief states (after several rounds) to actions.

• A state is expressed as 𝒮 = {𝑛1, 𝑤1, … , 𝑛𝑘, 𝑤𝑘}, where each
bandit 𝑖 has been run 𝑛𝑖 times with 𝑤𝑖 positive (binary) results.

16

dynamic programming

• 𝑉 ∗(𝒮) — expected remaining payoff.
• Recursion: if ∑𝑘

𝑖=1 𝑛𝑖 = ℎ, 𝑉 ∗(𝒮) = 0 since there’s no time left.
• If we know 𝑉 ∗ for all states when 𝑡 time slots are left, we can
recompute for 𝑡 + 1:

𝑉 ∗(𝑛1, 𝑤1, … , 𝑛𝑘, 𝑤𝑘) =
= max

𝑖
(𝜌𝑖(1 + 𝑉 ∗(… , 𝑛𝑖 + 1, 𝑤𝑖 + 1, …))+

(1 − 𝜌𝑖)𝑉 ∗(… , 𝑛𝑖 + 1, 𝑤𝑖, …)) ,

where 𝜌𝑖 is the posterior probability of action 𝑖 to be rewarded
(if 𝑝𝑖 had uniform priors then Laplace rule applies: 𝜌𝑖 = 𝑤𝑖+1

𝑛𝑖+2).

16

bayesian approach to multiarmed bandits

• Let’s look at multiarmed bandits in a general probabilistic form.
• Binary case for simplicity: reward either 1 or 0.
• Suppose that at time 𝑡 we have state 𝜃𝑡 = (𝜃1𝑡, … , 𝜃𝐾𝑡) for 𝐾
arms, and we want to maximize the total expected number of
successes.

• Reward function 𝑅𝑖(𝜃𝑡, 𝜃𝑡+1) – reward for choosing action 𝑖 (𝑎𝑖)
that changes state 𝜃𝑡 to 𝜃𝑡+1.

• Transition probability 𝑝 (𝜃𝑡+1 ∣ 𝜃𝑡, 𝑎𝑖).
• And we want to traing a strategy 𝜋(𝜃𝑡) that says which arm to
pull.

17

bayesian approach to multiarmed bandits

• Then the value function in the most general form until horizon
𝑇 is

𝑉𝑇 (𝜋, 𝜃0) = E [𝑅𝜋(𝜃0) (𝜃0, 𝜃1) + 𝑉𝑇 −1(𝜋, 𝜃1)] =

= ∫ 𝑝 (𝜃1 ∣ 𝜃0, 𝜋(𝜃0)) [𝑅𝜋(𝜃0) (𝜃0, 𝜃1) + 𝑉𝑇 −1(𝜋, 𝜃1)] 𝑑𝜃1.

• If we know everything, and 𝑇 is small, we can use dynamic
programming.

• But it’s usually very expensive.

17

bayesian approach to multiarmed bandits

• For large/unbounded 𝑇 let’s consider

𝑅 = 𝑅(0) + 𝛾𝑅(1) + 𝛾2𝑅(2) + … , 0 < 𝛾 < 1.

• Gittins’ theorem (1979): the search for an optimal strategy

𝜋(𝜃𝑡) = arg max𝜋𝑉 (𝜋, 𝜃𝑡 = (𝜃1𝑡, … , 𝜃𝐾𝑡))

can be factorized and reduced to

𝜋(𝜃𝑡) = arg max𝑖𝑔(𝜃𝑖𝑡).

• 𝑔(𝜃𝑖𝑡) is called the Gittins index; the gold standard, but also hard
to compute (there are approximations).

17

bayesian approach to multiarmed bandits

• Other possibility – let’s compute the priority for every arm 𝑖 in
order to bound regret immediately.

• [Auer, 2002]: UCB1 strategy. Accounts for the uncertainty “left” in
an action, aims to bound regret.

• If we’ve have 𝑛 experiments, including 𝑛𝑖 experiments with
action 𝑖 and average reward ̂𝜇𝑖, the UCB1 algorithm assigns it
priority

Priority𝑖 = ̂𝜇𝑖 + √2 log 𝑛
𝑛𝑖

.

Then we simply choose the action with highest priority.

17

bayesian approach to multiarmed bandits

• Theorem: suboptimal actions will be selected 𝑂(log 𝑛) times,
and regret is bounded by 𝑂(log 𝑛).

• There is a matching lower bound but constants are important
too.

• UCB1 is a good strategy, but there are even better variations
(with better constants).

17

example: bandits for a/b testing

• Suppose you want to test a set of changes in a web site’s
interface or some such.

• Often done with A/B testing:
• choose experimental group (separate for every change);
• choose control group that remains unchanged;
• collect statistics and estimate whether improvement (if any) is
significant.

18

example: bandits for a/b testing

• Main problem: how much statistics is sufficient?
• Bandits can help; it’s exactly the same problem setting:

• showing a variation corresponds to an action;
• user actions represent the environment;
• there is no need to ever stop, “sufficient sample size” is
determined automatically.

• Bandits are a great way to A/B test.

18

example: clicks on a news site

• Example:

19

example: clicks on a news site

• We want, at time 𝑡, to redistribute page views (𝑥1, 𝑥2, … , 𝑥𝐾) in
order to optimize CTR.

• The simplest case: two time moments, 𝑡 = 0 and 𝑡 = 1, choice of
two objects:

• object 𝑃 has CTR 𝑝0 at time moment 𝑡 = 0 and 𝑝1 at time
moment 𝑡 = 1, but we are not sure what, there is a distribution;

• object 𝑄 is known exactly, 𝑞0 and 𝑞1.

• We need to find 𝑥, share of views for 𝑃 at time moment 𝑡 = 0;
we have 𝑁0 views to distribute at 𝑡 = 0 and 𝑁1 to 𝑡 = 1.

19

example: clicks on a news site

• Suppose we’ve had 𝑐 clicks after choosing 𝑥; 𝑐 is a random value.
• We observe 𝑐 and on the second step the optimal solution is
clear: we give all 𝑁1 clicks to 𝑃 iff

̂𝑝1(𝑥, 𝑐) = E [𝑝1 ∣ 𝑥, 𝑐] > 𝑞1.

• I.e., we need to optimize 𝑥 w.r.t. the total expected number of
clicks, before we have this new information on 𝑝1 that we will
have at time 𝑡 = 1.

19

example: clicks on a news site

• Expected number of clicks:

𝑁0𝑥 ̂𝑝0 + 𝑁0(1 − 𝑥)𝑞0 + 𝑁1E𝑐 [max{ ̂𝑝1(𝑥, 𝑐), 𝑞1}] =
= 𝑁0𝑞0 + 𝑁1𝑞1 + 𝑁0𝑥(̂𝑝0 − 𝑞0) + 𝑁1E𝑐 [max{ ̂𝑝1(𝑥, 𝑐) − 𝑞1, 0}] .

• The second term is the profit for exporing 𝑃 :

Gain(𝑥, 𝑞0, 𝑞1) = 𝑁0𝑥(̂𝑝0 − 𝑞0) + 𝑁1E𝑐 [max{ ̂𝑝1(𝑥, 𝑐) − 𝑞1, 0}] ,

this is the function we optimize w.r.t. 𝑥.

19

example: clicks on a news site

• If we approximate ̂𝑝1(𝑥, 𝑐) by a normal distribution (central limit
theorem):

Gain(𝑥, 𝑞0, 𝑞1) = 𝑁0𝑥(̂𝑝0 − 𝑞0) + 𝑁1 [𝜎1(𝑥)Φ (𝑞1 − ̂𝑝1
𝜎1(𝑥)) +

+ (1 − Φ (𝑞1 − ̂𝑝1
𝜎1(𝑥))) (̂𝑝1 − 𝑞1)] ,

𝑝1 ∼ Beta(𝑎, 𝑏) (prior),
̂𝑝1 = E𝑐 [̂𝑝1(𝑥, 𝑐)] = 𝑎

𝑎 + 𝑏 ,

𝜎2
1(𝑥) = Var [̂𝑝1(𝑥, 𝑐)] = 𝑥𝑁0

𝑎 + 𝑏 + 𝑥𝑁0

𝑎𝑏
(𝑎 + 𝑏)2(1 + 𝑎 + 𝑏) .

• For 𝐾 > 2 the problem is much harder.
• What changes for several time slots?

19

dgp

• But this is simply estimating a static situation; how do we follow
trends? (online recommender systems)

• Dynamic Gamma–Poisson (DGP) model: fix a (short) period of
time 𝑡 and count shows and clicks over time 𝑡.

• Suppose that over time 𝑡 we have shown an item 𝑛𝑡 times and
got total reward 𝑟𝑡 (e.g., total number of clicks 𝑟𝑡 ≤ 𝑛𝑡).

• Then we know at time 𝑡 a sequence 𝑛1, 𝑟1, 𝑛2, 𝑟2, … , 𝑛𝑡, 𝑟𝑡, and
want to predict 𝑝𝑡+1 (CTR at time moment 𝑡 + 1).

20

dgp

• Probabilistic assumptions of the DGP model:
1. (𝑟𝑡 ∣ 𝑛𝑡, 𝑝𝑡) ∼ Poisson(𝑛𝑡, 𝑝𝑡) (for given 𝑛𝑡 and 𝑝𝑡 the

probability 𝑟𝑡 follows a Poisson distribution).
2. 𝑝𝑡 = 𝜖𝑡𝑝𝑡−1, where 𝜖𝑡 ∼ Gamma(𝜇 = 1, 𝜎 = 𝜂) (average share of

successes 𝑝𝑡 does not change too fast, it is multiplied by a
random value 𝜖𝑡 which has gamma distrubition with mean 1).

3. Model parameters are parameters of
𝑝1 ∼ Gamma(𝜇 = 𝜇0, 𝜎 = 𝜎0) and 𝜂 that shows how “smooth”
𝑝𝑡 can change.

4. Accordingly, the problem is to estimate the parameters of the
posterior distribution

(𝑝𝑡+1 ∣ 𝑛1, 𝑟1, 𝑛2, 𝑟2, … , 𝑛𝑡, 𝑟𝑡) ∼ Gamma(𝜇 = ?, 𝜎 = ?).

20

dgp

• And Bayesian updates can be computed analytically.
• Suppose that on the previous step 𝑡 − 1 we have obtained
estimates 𝜇𝑡, 𝜎𝑡 for model parameters:

(𝑝𝑡 ∣ 𝑛1, 𝑟1, 𝑛2, 𝑟2, … , 𝑛𝑡−1, 𝑟𝑡−1) ∼ Gamma(𝜇 = 𝜇𝑡, 𝜎 = 𝜎𝑡),

and then got a new data point (𝑛𝑡, 𝑟𝑡).
• Then, denoting 𝛾𝑡 = 𝜇𝑡

𝜎2
𝑡
(efficient sample size), we first refine the

estimates 𝜇𝑡, 𝜎𝑡:

𝛾𝑡|𝑡 = 𝛾𝑡 + 𝑛𝑡,

𝜇𝑡|𝑡 = 𝜇𝑡𝛾𝑡 + 𝑟𝑡
𝛾𝑡|𝑡

,

𝜎2
𝑡|𝑡 =

𝜇𝑡|𝑡
𝛾𝑡|𝑡

.

20

dgp

• And then generate a new prediction for (𝑝𝑡+1 ∣ 𝑛1, 𝑟1, … , 𝑛𝑡, 𝑟𝑡):

𝜇𝑡+1 = 𝜇𝑡|𝑡,
𝜎2

𝑡+1 = 𝜎2
𝑡|𝑡 + 𝜂 (𝜇2

𝑡|𝑡 + 𝜎2
𝑡|𝑡) .

20

example

21

thank you!

Thank you for your attention!

22

	Multiarmed bandits

