REINFORCEMENT LEARNING I
MULTIARMED BANDITS

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
April 11, 2017

MULTIARMED BANDITS

PROBLEM SETTING

- So far we've either had a set of “correct answers” (supervised
learning) or simply nothing (unsupervised learning).

- Butis it really how learning works in real life?
- How does a baby learn?

PROBLEM SETTING

- Hence, reinforcement learning.

- An agent interacts with the environment.

- On every step the agent can be in state s € .S and choose an
action a € A.

- The environment tells the agent its reward r and the next state
s’es.

EXPLOITATION VS. EXPLORATION

- Exploitation vs. exploration: first learn, then apply.
- But when do we switch?

- Always a problem in reinforcement learning.

EXAMPLE

- Example: tic-tac-toe.
- How does an algorithm learn to play and win in tic-tac-toe?

- Example: genetic algorithm. Very slow, does not account for
information.

EXAMPLE

- States are board positions.
- Value function V(s) for every state.
- Reinforcement only at the end: the credit assignment problem.

EXAMPLE

- One version — propagate the reward back: if we got from s to s,

we update
V(s):=V(s)+alV(s)—V(s)].

- This is called TD-learning (temporal difference learning), works
very well in practice; we'll get to it.

ONE-STATE AGENTS

- If |S| = 1, the agent has a fixed set of actions A and the
environment has no memory.

- The multiarmed bandit model.

- No credit assignment, only exploration vs. exploitation.

GREEDY ALGORITHM

- Always choose the best option, where best is defined with
average reward so far:

75, ar g O coe TP Tk,

Qi(a) = k

a

- What's wrong with this algorithm?

GREEDY ALGORITHM

- Always choose the best option, where best is defined with
average reward so far:

75, ar P S ooe +7"ka
2 .

Qi(a) =

a

- What's wrong with this algorithm?

- Easy to miss the optimum if we're unlucky with the initial
sample.

- Useful heuristic — optimism under uncertainty.
- You need evidence to reject, not to accept.

RANDOMIZED STRATEGIES

- e-greedy strategy: choose the best (as above) action with
probability 1 — e and random action with probability e.

- Start with large ¢, then gradually decrease.

- Boltzmann exploration:

th, (a)/T

mila) = > e@a/T

where ER is the expected reward, T is the temperature.
- Temperature usually decreases with time.

LINEAR REWARD-INACTION ALGORITHM

- For the case of binary payoffs (0-1).

- The linear reward-inaction algorithm adds linear reward to
probability of a; if it is successful:

pi i=p; + ol —py),

b; :=p; —apy, J# i,

and nothing changes if unsuccessful.

LINEAR REWARD-INACTION ALGORITHM

- The algorithm converges with probability 1 to a vector with one
1 and the rest 0.

- Does not always converge to the optimal strategy; but by
decreasing a we decrease the probability of error.

- Linear reward-penalty: same thing, but unsuccessful actions get
punished (i.e., all the rest get a reward).

INTERVAL ESTIMATES

- One way to apply the optimism under uncertainty heuristic.

- Store the statistics n and w for every action, compute
confidence interval with confidence 1 — «, use the upper bound.

- Example: Bernoulli trials (coin tossing). With probability .95 the
average lies in the interval

S S
7 —1.96—=,% + 1.96—=
(;L 96—=.8+ 96\/5)7

where 1.96 is taken from Student’s ¢ distribution, n is the

number of trials, s = 4/ 2e=2*

- A great method if the assumptions hold (which is often unclear).

INCREMENTAL UPDATES

- How do we recompute @, (a) = « when new information

arrives?

rT1+...+7g
k(l

- Easy:

L | k
Qrr1 = m;ﬁ =] lrm +Zri1 =

g=il

1 1
“rr1 (Tir1 +EQy) = Qp + — Er1 (Thr1 — Q) -

1

INCREMENTAL UPDATES

- This is a special case of a general rule:
NewEstimate := OldEstimate + StepSize [Target — OldEstimate] .

- For the average, the step size is not constant: ay(a) = ;L.

- Changing the sequence of steps, we can achieve other effects.

1

NONSTATIONARY CASE

- What if the payoffs change with time?

- We should value recent information highly and outdated
information low.

- Example: for an update rule
Qi1 = Qp + [y — Q]
with constant a the weights decay exponentially:
Qr=Qp 1 +afr,—Qpql=ar,+(1-a)Q_1 =

k
= arpt(l—a)ar, 1 +(1-0)?Qpp = (1—(1)"'@0-1-2 a(l—a)*ir,

Bo
i=1

NONSTATIONARY CASE

- This update rule does not necessarily converge, which is good:
we want to follow new averages.

- General result - an update rule converges if the sequence of
weights satisfies

Zozk(a) =oco and Zai(a) < 0.
k=1 k=1

- Eg, for ay(a) = L it does.

OPTIMISM AGAIN

- We can simplify the search if we begin with optimistic initial
values.

- Start with large Q,(a), so that any real value is “disappointing”.

- But not too large — we need @, to average out with the real ;.

REINFORCEMENT COMPARISON

- The intuition for reinforcement comparison is to look for “large”
payoffs; what is “large”?

- Let's compare with average over all arms.

- These methods usually do not have action values @, only

preferences p,(a); probabilities can be obtained, e.g., with
softmax:
ept,(a/)

Z , ept(a/) '
a

m(a) =

14

REINFORCEMENT COMPARISON

- And on every step we update both preference and average:

Typ1 =Ty +a(ry —7y),

Pe1(a) =pilay) + B(ry — 7).

14

PURSUIT METHODS

- Pursuit methods store both expectation estimates and action
preferences, and preferences “follow” averages.

- E.g, m(a) is the probability to choose a at time ¢; after step t we
look for a greedy strategy

ay;; = argmax Q. q(a)
and change 7 towards the greedy strategy:

7Tt+1(a1*s+1) = ﬂt(a;‘:—l) + 8 [1 - ﬂ't(aj‘fﬂ)])

Ty1(a) = m(a) + B0 —my(a)].

DYNAMIC PROGRAMMING

- Assume finite horizon of h steps.
- We use the Bayesian approach to find the optimal strategy.

- Begin with random parameters {p,}, e.g, uniform; compute the
mapping from belief states (after several rounds) to actions.

- A state is expressed as & = {ny,wy, ..., n;, w; }, where each
bandit i has been run n, times with w, positive (binary) results.

16

DYNAMIC PROGRAMMING

- V*(8) — expected remaining payoff.
- Recursion: if Zf:l n; = h, V*(8) = 0 since there’s no time left.

- If we know V* for all states when ¢ time slots are left, we can
recompute for ¢ + 1:

V*(nlawla ankawk> =

=max (p,(1+V*(...,n; +1L,w, +1,...))+

(1—=p)V*(eeoyn; + Lw,, ...)),

where p; is the posterior probability of action ¢ to be rewarded

(if p, had uniform priors then Laplace rule applies: p;, = j’jj;)

16

BAYESIAN APPROACH TO MULTIARMED BANDITS

- Let’s look at multiarmed bandits in a general probabilistic form.
- Binary case for simplicity: reward either 1 or 0.

- Suppose that at time ¢ we have state 8, = (01, ...,0x;) for K
arms, and we want to maximize the total expected number of
successes.

- Reward function R;(,,0,,,) - reward for choosing action i (a;)
that changes state 6, to 6, ;.

- Transition probability p (6,4 | 0, a;).

- And we want to traing a strategy =(6,) that says which arm to
pull.

BAYESIAN APPROACH TO MULTIARMED BANDITS

- Then the value function in the most general form until horizon
Tis
Vp(m,6y) =E I:RTF(HO) (69,01) + Vp_y (m, 91)] =

= /P(91 | 6, m(65)) [Rﬂ(eo) (00,61) + VT71(7T791)] db; .

- If we know everything, and T is small, we can use dynamic
programming.

- But it's usually very expensive.

BAYESIAN APPROACH TO MULTIARMED BANDITS

- For large/unbounded T let's consider
R =R(0)+~vR(1)++v*R2)+ .., 0<y<1l.
- Gittins' theorem (1979): the search for an optimal strategy
m(6,) = argmaxﬂv(ﬂ'aet = (014, -+ s 0xe))
can be factorized and reduced to
m(0,) = arg maxig(eit>'

- g(6,,) is called the Gittins index; the gold standard, but also hard
to compute (there are approximations).

BAYESIAN APPROACH TO MULTIARMED BANDITS

- Other possibility - let’'s compute the priority for every arm 4 in
order to bound regret immediately.

- [Auer, 2002]: UCB1 strategy. Accounts for the uncertainty “left” in
an action, aims to bound regret.

- If we've have n experiments, including n, experiments with
action ¢ and average reward f,;, the UCB1 algorithm assigns it
priority

- 21
Priority, = p; + i)

3

Then we simply choose the action with highest priority.

BAYESIAN APPROACH TO MULTIARMED BANDITS

- Theorem: suboptimal actions will be selected O(logn) times,
and regret is bounded by O(logn).

- There is a matching lower bound but constants are important
too.

- UCB1is a good strategy, but there are even better variations
(with better constants).

EXAMPLE: BANDITS FOR A/B TESTING

- Suppose you want to test a set of changes in a web site’s
interface or some such.
- Often done with A/B testing:
- choose experimental group (separate for every change);
- choose control group that remains unchanged;
- collect statistics and estimate whether improvement (if any) is
significant.

EXAMPLE: BANDITS FOR A/B TESTING

- Main problem: how much statistics is sufficient?
- Bandits can help; it's exactly the same problem setting:

- showing a variation corresponds to an action;

- user actions represent the environment;

- there is no need to ever stop, “sufficient sample size” is
determined automatically.

- Bandits are a great way to A/B test.

AN}
=
n
%
=
NN}
=
<
=z
(@)
%)
A
O
|
O
o
-
a
=
<
>
Ll

- Example:

10 pajeds

00:00
00:ce
00:0¢
0081
00:91
00:¥1
oo:¢t
0001
00:80
00:90
00:¥0
00:20

00:00

00:ze
00:0¢C
00:81L
0091
00:vL
oo:ct
00:0L
00:80
00:90
00:¥0
00:20
00:00

Time

19

EXAMPLE: CLICKS ON A NEWS SITE

- We want, at time ¢, to redistribute page views (zy,xq, ..., Z) iN
order to optimize CTR.

- The simplest case: two time moments, t = 0 and ¢ = 1, choice of
two objects:

- object P has CTR p, at time moment ¢ = 0 and p, at time
moment ¢ = 1, but we are not sure what, there is a distribution;
- object Q is known exactly, g, and q;.

- We need to find z, share of views for P at time moment ¢ = 0,
we have N, views to distribute att =0and N, to¢t = 1.

19

EXAMPLE: CLICKS ON A NEWS SITE

- Suppose we've had ¢ clicks after choosing z; ¢ is a random value.

- We observe ¢ and on the second step the optimal solution is
clear: we give all N, clicks to P iff

py(w,c) =E[p |2, c] > qy.

- l.e, we need to optimize x w.rt. the total expected number of
clicks, before we have this new information on p; that we will
have at time ¢t = 1.

19

EXAMPLE: CLICKS ON A NEWS SITE

- Expected number of clicks:

Nozpy + No(1 —)qy + N E, [max{p,(z,c),q, }] =
= Noqo + N1q; + Noz (Do — qo) + N1 E, [max{p; (z,¢) — q,0}] .

- The second term is the profit for exporing P:
Gain(z, g9, ¢1) = Nox(pg — qo) + N1 E, [max{p, (z,c) — ¢;,0}],

this is the function we optimize w.rt. x.

19

EXAMPLE: CLICKS ON A NEWS SITE

- If we approximate p, (x,c) by a normal distribution (central limit
theorem):

Gain(z, gy, q1) = Nox(Pg — qo) + N3 [‘71(35)‘1’ (ql_pl> +

(e (5a)) o]

p; ~ Beta(a,b) (prior),
a

a+b’
TN, ab

a+b+aNy(a+b)?2(1+a+bd)

P =E.[pi(z,0)] =

of(z) = Var [, (z,c)] =

- For K > 2 the problem is much harder.
- What changes for several time slots?

19

DGP

- But this is simply estimating a static situation; how do we follow
trends? (online recommender systems)

- Dynamic Gamma-Poisson (DGP) model: fix a (short) period of
time ¢ and count shows and clicks over time t.

- Suppose that over time ¢t we have shown an item n, times and
got total reward r, (e.g., total number of clicks r, < n,).

- Then we know at time ¢ a SeqUENCE ny, 1y, Ny, T'y, ... , Ny, Ty, AN
want to predict p,,, (CTR at time moment ¢ + 1).

20

DGP

- Probabilistic assumptions of the DGP model:

1. (r, | ny,p;) ~ Poisson(n,, p,) (for given n, and p, the
probability r, follows a Poisson distribution).

2. p, = €,p;_1, Where ¢, ~ Gamma(u = 1,0 = n) (average share of
successes p, does not change too fast, it is multiplied by a
random value e, which has gamma distrubition with mean 1).

3. Model parameters are parameters of
p; ~ Gamma(u = py, 0 = oy) and n that shows how “smooth”
p, can change.

4. Accordingly, the problem is to estimate the parameters of the
posterior distribution

(Pria I mysmymg, 7oy oy, 1) ~ Gamma(pu = 7,0 = 7).

20

DGP

- And Bayesian updates can be computed analytically.
- Suppose that on the previous step ¢ — 1 we have obtained
estimates p,, o, for model parameters:

(e | 1,71, m9, 79, oy My g, 7)) ~ Gamma(p = py, 0 = 0y),

and then got a new data point (n,r,).
- Then, denoting v, = ’O% (efficient sample size), we first refine the
t
estimates p,, o;:

Veje = Ve T Ny
HeYe T Ty
e =)
Vet
Myt
2 _
T = .

Vit

20

DGP

- And then generate a new prediction for (p,q | ny, 7, ..., 0y, 7y)

Hit1 = Myt
2 _ 2 2 2
Ot41 = Oy 1 (:“t\t + Ut\t) a

20

EXAMPLE

0.6

Scaled CTR

0.2

10:00 —
' 12:00 —
14:00 —

21

THANK YOU!

Thank you for your attention!

22

	Multiarmed bandits

