DEEP LEARNING

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
April 13, 2017

GRADIENT DESCENT
AND COMPUTATIONAL GRAPHS

GRADIENT DESCENT

- Gradient descent: take the gradient w.r.t. weights, move in that
direction.

- Formally: for an error function E, targets y, and model f with
parameters 6,

E(0>: Z E(f(X79),y),

(x,y)eD

0, =0, —nVE(®,_1) =0, —n Z VE(f(x,0;_1),9)-
(x,y)eD

- So we need to sum over the entire dataset for every step?!..

GRADIENT DESCENT

- Hence, stochastic gradient descent: after every training sample
update

0, = 0,1 —nVE(f(x4,0:-1),9),

- In practice people usually use mini-batches, it's easy to
parallelize and smoothes out excessive “stochasticity”.

- So far the only parameter is the learning rate 7.

GRADIENT DESCENT

- Lots of problems with #:

(a) (6)

- We will get to them later, for now let's concentrate on the
certainly required step: the derivatives.

COMPUTATIONAL GRAPH, FROP AND BPROP

- Let us represent a function as a composition of simple
functions (“simple” means that we can take derivatives).

- Example - f(z,y) = 22 + 2y + (v + y)*

COMPUTATIONAL GRAPH, FROP AND BPROP

- This way we can take the gradient with the chain rule:
(feg)(x) = (flg(x)) = [(9(z))g (z).
- This simply means that an increment §x results in
6f = f'(g(x))dg = f'(g(x))g (z)ox.

- We only need to be able to take gradients, i.e., derivatives w.r.t.
vectors:

COMPUTATIONAL GRAPH, FROP AND BPROP

- Or, if f depends on z in several different ways,
f=flg1(z),g5(x),...,g,(x)), the increment d= now comes into
play several times:

of _ of 391+ Of Og 2{: af 9y,
dx ~ dg, Ox 8gk Ox dg; Ox

of of " of
Vif= Vg + oo+ =—Vege = Y V.0
f e o 09y, I ;agi /

- Note that we got matrix multiplication for the Jacobi matrix:

Vif =V,gV,f, where V,g =

COMPUTATIONAL GRAPH, FROP AND BPROP

- Let’'s now go back to the example:

f(xy)

COMPUTATIONAL GRAPH, FROP AND BPROP

- Forward propagation: we compute % by the chain rule.

f(x.y)

%=2x+y+2(x+y)

COMPUTATIONAL GRAPH, FROP AND BPROP

- Backpropagation: starting from the end node, go back as

of _ 3 o1 9
dg g’ €Children(g) 99" 9g

f{x.y)

CANPSRNIPYSIIN | C/AN Y
(572x+}/+2(¢\+))J[8v A+2(.\+})J

COMPUTATIONAL GRAPH, FROP AND BPROP

- Backprop is much better: we get all derivatives in a single pass
through the graph.

- Aaaand... that's it! We can now take the gradients of any
complicated composition of simple functions.

- Which is all we need to apply gradient descent!

- The libraries - theano, TensorFlow - are actually automatic
differentiation libraries. This is their main function.

- So you can implement lots of “classical” models in TensorFlow
and train them by gradient descent.

- And live neurons can’t do that because you need two different
“algorithms” to compute the value and the derivative.

REGULARIZATION
IN NEURAL NETWORKS

REGULARIZATION IN NEURAL NETWORKS

- NNs have lots of parameters.

- Regularization is necessary.

* Ly or Ly regularization (\3° w? or A3 |wl) is called weight
decay.

- Very easy to add, just another term in the objective function.

- Sometimes still useful.

REGULARIZATION IN NEURAL NETWORKS

- But there are better ways.

- Dropout: remove some units at random with probability p!

BbIxoAbI Y1

X1

REGULARIZATION IN NEURAL NETWORKS

- To apply, simply multiply the result by 1/p (preserving average
output); and you can usually take p= 1.

BbIxoAbl Y1

X1

REGULARIZATION IN NEURAL NETWORKS

- Dropout improved everything drastically. What the... why does it
work?

- ldea 1: we are making the units learn features by themselves,
without relying on the others.

- ldea 2: we are kind of averaging a huge number of networks
with shared weights, training each for one step. Like
bootstrapping taken to the extreme.

- ldea 3: this is just like sex!

- Idea 4: dropout is a special kind of prior (this has led to proper
dropout in recurrent NNs).

WEIGHT INITIALIZATION

WEIGHT INITIALIZATION

- The deep learning revolution began with unsupervised
pretraining.

- Main idea: get to a good region of the search space, then
fine-tune with gradient descent.

- Turns out by now we don't need unsupervised pretraining with
complex models like RBM to get to a good region.

- Weight initialization is an important part of why.

WEIGHT INITIALIZATION

- Xavier initialization (Glorot, Bengio, 2010).

- Let's consider a single linear unit:
y:wa—i—b:Zwixi—&—b.
%
- The variance is

Var[y,] = Var [wz] = E[X?Y?] — (E[XY])? =
=E [xi]Z Var [w;] + E [wl}2 Var [z,] + Var [w;] Var [z,] .

WEIGHT INITIALIZATION

- The variance is

Var[y] = Var [wa,] = E[X?Y?] - (E[XY])’ =
=L [J:i]2 Var [w;] + E [wl}2 Var [z,] + Var [w;] Var [z,] .

- For symmetric activation functions and zero mean of the weights
Var [y,] = Var [w,;] Var [z,] .

- And if w; and x; are initialized independently from the same

distribution,
Var [y] = Var Z yZ] = Z Var [w,x,;] = n,, Var [w;] Var [z,] .
i—1 -1

- In other words, the output variance is proportional to the input
variance with coefficient n, Var [w;]. o

WEIGHT INITIALIZATION

- Before (Glorot, Bengio, 2010), the standard way to initialize was
(it's all over older literature)

1 1
wl‘ ~J U - 5 o
|: vV Nout vV Nout :|

- So in this case we get

1 1 1 \? 1
Var [w;] = — + = , SO
12 \Y% nout vV nout 3nout
1

nout\/var [wz] = 57

and after a few layers the signal dies down; the same happens
in backprop.

WEIGHT INITIALIZATION

- Xavier initialization tries to reduce the change in variance, so we

take B,
Var [w;,] = ———,
Min + Nout

which for uniform distribution means

V6 V6

w; ~U |—
K3 b
\/nin + Nout \/nin + Mout

- But it only works for symmetric activations, i.e., not for RelLU...

WEIGHT INITIALIZATION

- ..until (He et al, 2015)! Let's go back to
Var [w;z;] = E [z;]* Var [w;] + E [w,]? Var [z,] + Var [w;] Var [z;]
- We now can only make the second term zero:
Var [w;z;] = E [2;]° Var [w;]+Var [w,] Var [z,] = Var [w,] E [22], s0

?

Var [y(”] = nYVar [w<l)] E {(x(”)ﬂ .

m

WEIGHT INITIALIZATION

- We now can only make the second term zero:
Var [y<l)] = nEQVar [w<l)] t [(xa))z} .

- Suppose now that) = max(0,y*~), and y*~Y has a
symmetric distribution around zero. Then

()2 1 -1 l ”'(11) l -1
E [(m)] = SVar [y¢-V], Var [y] = Z2Var [w®] Var [y¢1)].

- And this leads to the variance for ReLU init; there is no n,, now:
Var [w;] = 2/n@

in *

- You don't have to make it uniform, btw; e.g., a normal

distribution is fine:
wi~N<O,\/2/ni<Q> . 8

BATCH NORMALIZATION

BATCH NORMALIZATION

- Important problem in deep neural networks: internal covariate
shift.

- When we change the weights of a layer, the distribution of its
outputs changes.

- This means that the next layer has to re-train almost from
scratch, it did not expect these outputs.

- Moreover, these neurons might have already reached saturation,
so they can't re-train quickly.

- This seriously impedes learning.

BATCH NORMALIZATION

- A characteristic example; note how different the distributions

are:
% -4 2 0 2 4 6
-6 -4 2 0 2 4 &

(a)

- What can we do?

BATCH NORMALIZATION

-+ We could try to normalize (whiten) after every layer.

- Does not work: consider a layer that simply adds a bias b to its
inputs w:

x=x—[E[x], wherex=u+b.

- On the next gradient descent step, we'll have b := b + Ab...
- ...but x will not change:

u+b+Ab—Efu+b+Abl=u+b—E[u+bdl.

- So the biases will simply increase unboundedly, and that's all
the training we'll get; not a good thing.

BATCH NORMALIZATION

- We can try to add normalization as a layer:
x = Norm(x, X).

- But note that the entire dataset XX is required here.

- So on the gradient descent step we'll need to compute aN‘“m
and 2¥am and also the covariance matrix

Covlx] = Egey [xxT] —E[X]E[x]".

- Definitely won't work.

BATCH NORMALIZATION

- The solution is to normalize each component separately, and
not over the whole dataset but over the current mini-batch;
hence batch normalization.

- After batch normalization we get

F— zj, — Efzy]
T /Var [z]
where the statistics are computed over the current mini-batch.
- However, one more problem: now nonlinearities disappear!

- E.g, we will almost always get into the region where o is very
close to linear.

BATCH NORMALIZATION

- To fix this, we have to allow the batchnorm layer enough
flexibility to sometimes do nothing with the inputs.

- So we introduce additional shift and scale parameters:

T, — Ezy]

Var[z,] * i

Yk = YTk + Bk = W

v, and B, are new variables and will be trained just like the
weights.

BATCH NORMALIZATION

- Last remark: it matters where to put the batchnorm.
- You can put it either before or after the nonlinearity.

Hopmaansaums A0 HEAMHEMHOCTH 1 AO HEAMHEMHOCTH

I MocA€ HEAMHEMHOCTH

700
600
500

400

° 300

(a)

VARIATIONS OF
GRADIENT DESCENT

MOMENTUM

- Gradient descent:
0, =0, — UVE(Xta at—lvyt)'

- It all depends on the learning rate .
- First idea - let’s make it decrease over time:

- linear decay:
t
= 1——=):
77 770(T)’

n= "7067%~

- exponential decay:

- But this does not take E into account; it's better to be adaptive.

MOMENTUM

- Momentum methods: let's keep part of the speed, like a real
material point would.

+ With the inertia we now have

Uy = Yup_q +nVeE(0),
0=0—u,.

- SO we now preserve yu, ;.

MOMENTUM

- But we already know we will g0 to yu, 4!
- Why don't we compute the gradients right there, halfway?
- Nesterov's momentum:

uy = YUy +NVeE(0 — yuy_;)

- Can we do even better?..

MOMENTUM

- ..well, yeah, we can try second-order methods.
- Newton's method:

B(6) ~ B(By) + V4B (60)(6 — 0) + 5(8 —)T H(E®)(® — by).

- This is usually much faster, and there’s nothing to tune (no n).

- But we need to compute the Hessian H(E(#)), and this is
infeasible.

- Interesting problem: can we make Newton’s method work for
deep learning?

ADAPTIVE METHODS

- But we can still do better!
- Note that so far the learning rate was the same in all directions.

- ldea: rate of change should be higher for parameters that do
not change much over the input samples, and lower for highly
variable parameters.

- Denoting g, ; = V. L(0), we get

n
01+1i:0ti* ———— " G¢.i»

where G, is a diagonal matrix with G, ;; = G,_; ;; + g7, that
accumulates the total gradient value over learning history.

- So learning rate always goes down, but at different rates for
different 6,.

ADAPTIVE METHODS

- One problem: G keeps increasing, and learning rate sometimes
decreases too rapidly.
- Adadelta - same idea, but gradient history is computed with
decay:
Gy =pGyq 4+ (11— P)gf,r

- The rest is the same:

THANK YOU!

Thank you for your attention!

14

	Gradient descentand computational graphs
	Regularizationin neural networks
	Weight initialization
	Batch normalization
	Variations ofgradient descent

