
deep learning

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
April 13, 2017



gradient descent
and computational graphs



gradient descent

• Gradient descent: take the gradient w.r.t. weights, move in that
direction.

• Formally: for an error function 𝐸, targets 𝑦, and model 𝑓 with
parameters 𝜃,

𝐸(𝜃) = ∑
(x,𝑦)∈𝐷

𝐸(𝑓(x, 𝜃), 𝑦),

𝜃𝑡 = 𝜃𝑡−1 − 𝜂∇𝐸(𝜃𝑡−1) = 𝜃𝑡−1 − 𝜂 ∑
(x,𝑦)∈𝐷

∇𝐸(𝑓(x, 𝜃𝑡−1), 𝑦).

• So we need to sum over the entire dataset for every step?!..

3



gradient descent

• Hence, stochastic gradient descent: after every training sample
update

𝜃𝑡 = 𝜃𝑡−1 − 𝜂∇𝐸(𝑓(x𝑡, 𝜃𝑡−1), 𝑦𝑡),

• In practice people usually use mini-batches, it’s easy to
parallelize and smoothes out excessive “stochasticity”.

• So far the only parameter is the learning rate 𝜂.

3



gradient descent

• Lots of problems with 𝜂:

• We will get to them later, for now let’s concentrate on the
certainly required step: the derivatives.

3



computational graph, frop and bprop

• Let us represent a function as a composition of simple
functions (“simple” means that we can take derivatives).

• Example – 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + (𝑥 + 𝑦)2:

4



computational graph, frop and bprop

• This way we can take the gradient with the chain rule:

(𝑓 ∘ 𝑔)′(𝑥) = (𝑓(𝑔(𝑥)))′ = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥).

• This simply means that an increment 𝛿𝑥 results in

𝛿𝑓 = 𝑓 ′(𝑔(𝑥))𝛿𝑔 = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥)𝛿𝑥.

• We only need to be able to take gradients, i.e., derivatives w.r.t.
vectors:

∇x𝑓 = (
𝜕𝑓

𝜕𝑥1⋮
𝜕𝑓

𝜕𝑥𝑛

) .

∇x(𝑓 ∘ 𝑔) = (
𝜕𝑓∘𝑔
𝜕𝑥1⋮
𝜕𝑓∘𝑔
𝜕𝑥𝑛

) = (
𝜕𝑓
𝜕𝑔

𝜕𝑔
𝜕𝑥1⋮

𝜕𝑓
𝜕𝑔

𝜕𝑔
𝜕𝑥𝑛

) = 𝜕𝑓
𝜕𝑔 ∇x𝑔.

4



computational graph, frop and bprop

• Or, if 𝑓 depends on 𝑥 in several different ways,
𝑓 = 𝑓(𝑔1(𝑥), 𝑔2(𝑥), … , 𝑔𝑘(𝑥)), the increment 𝛿𝑥 now comes into
play several times:

𝜕𝑓
𝜕𝑥 = 𝜕𝑓

𝜕𝑔1

𝜕𝑔1
𝜕𝑥 + … + 𝜕𝑓

𝜕𝑔𝑘

𝜕𝑔𝑘
𝜕𝑥 =

𝑘
∑
𝑖=1

𝜕𝑓
𝜕𝑔𝑖

𝜕𝑔𝑖
𝜕𝑥 .

∇x𝑓 = 𝜕𝑓
𝜕𝑔1

∇x𝑔1 + … + 𝜕𝑓
𝜕𝑔𝑘

∇x𝑔𝑘 =
𝑘

∑
𝑖=1

𝜕𝑓
𝜕𝑔𝑖

∇x𝑔𝑖.

• Note that we got matrix multiplication for the Jacobi matrix:

∇x𝑓 = ∇xg∇g𝑓, where ∇xg = ⎛⎜⎜⎜
⎝

𝜕𝑔1
𝜕𝑥1

… 𝜕𝑔𝑘
𝜕𝑥1

⋮ ⋮
𝜕𝑔1
𝜕𝑥𝑛

… 𝜕𝑔𝑘
𝜕𝑥𝑛

⎞⎟⎟⎟
⎠

.

4



computational graph, frop and bprop

• Let’s now go back to the example:

4



computational graph, frop and bprop

• Forward propagation: we compute 𝜕𝑓
𝜕𝑥 by the chain rule.

4



computational graph, frop and bprop

• Backpropagation: starting from the end node, go back as
𝜕𝑓
𝜕𝑔 = ∑𝑔′∈Children(𝑔)

𝜕𝑓
𝜕𝑔′

𝜕𝑔′
𝜕𝑔 .

4



computational graph, frop and bprop

• Backprop is much better: we get all derivatives in a single pass
through the graph.

• Aaaand... that’s it! We can now take the gradients of any
complicated composition of simple functions.

• Which is all we need to apply gradient descent!
• The libraries – theano, TensorFlow – are actually automatic
differentiation libraries. This is their main function.

• So you can implement lots of “classical” models in TensorFlow
and train them by gradient descent.

• And live neurons can’t do that because you need two different
“algorithms” to compute the value and the derivative.

4



regularization
in neural networks



regularization in neural networks

• NNs have lots of parameters.
• Regularization is necessary.
• 𝐿2 or 𝐿1 regularization (𝜆 ∑𝑤 𝑤2 or 𝜆 ∑𝑤 |𝑤|) is called weight
decay.

• Very easy to add, just another term in the objective function.
• Sometimes still useful.

6



regularization in neural networks

• But there are better ways.
• Dropout: remove some units at random with probability 𝑝!

6



regularization in neural networks

• To apply, simply multiply the result by 1/𝑝 (preserving average
output); and you can usually take 𝑝 = 1

2 .

6



regularization in neural networks

• Dropout improved everything drastically. What the... why does it
work?

• Idea 1: we are making the units learn features by themselves,
without relying on the others.

• Idea 2: we are kind of averaging a huge number of networks
with shared weights, training each for one step. Like
bootstrapping taken to the extreme.

• Idea 3: this is just like sex!
• Idea 4: dropout is a special kind of prior (this has led to proper
dropout in recurrent NNs).

6



weight initialization



weight initialization

• The deep learning revolution began with unsupervised
pretraining.

• Main idea: get to a good region of the search space, then
fine-tune with gradient descent.

• Turns out by now we don’t need unsupervised pretraining with
complex models like RBM to get to a good region.

• Weight initialization is an important part of why.

8



weight initialization

• Xavier initialization (Glorot, Bengio, 2010).
• Let’s consider a single linear unit:

𝑦 = w⊤x + 𝑏 = ∑
𝑖

𝑤𝑖𝑥𝑖 + 𝑏.

• The variance is

Var [𝑦𝑖] = Var [𝑤𝑖𝑥𝑖] = 𝔼 [𝑋2𝑌 2] − (𝔼 [𝑋𝑌 ])2 =
= 𝔼 [𝑥𝑖]2 Var [𝑤𝑖] + 𝔼 [𝑤𝑖]2 Var [𝑥𝑖] + Var [𝑤𝑖] Var [𝑥𝑖] .

8



weight initialization

• The variance is

Var [𝑦𝑖] = Var [𝑤𝑖𝑥𝑖] = 𝔼 [𝑋2𝑌 2] − (𝔼 [𝑋𝑌 ])2 =
= 𝔼 [𝑥𝑖]2 Var [𝑤𝑖] + 𝔼 [𝑤𝑖]2 Var [𝑥𝑖] + Var [𝑤𝑖] Var [𝑥𝑖] .

• For symmetric activation functions and zero mean of the weights

Var [𝑦𝑖] = Var [𝑤𝑖] Var [𝑥𝑖] .

• And if 𝑤𝑖 and 𝑥𝑖 are initialized independently from the same
distribution,

Var [𝑦] = Var [
𝑛out

∑
𝑖=1

𝑦𝑖] =
𝑛out

∑
𝑖=1

Var [𝑤𝑖𝑥𝑖] = 𝑛outVar [𝑤𝑖] Var [𝑥𝑖] .

• In other words, the output variance is proportional to the input
variance with coefficient 𝑛outVar [𝑤𝑖]. 8



weight initialization

• Before (Glorot, Bengio, 2010), the standard way to initialize was
(it’s all over older literature)

𝑤𝑖 ∼ 𝑈 [− 1√𝑛out
, 1√𝑛out

] .

• So in this case we get

Var [𝑤𝑖] = 1
12 ( 1√𝑛out

+ 1√𝑛out
)

2
= 1

3𝑛out
, so

𝑛outVar [𝑤𝑖] = 1
3 ,

and after a few layers the signal dies down; the same happens
in backprop.

8



weight initialization

• Xavier initialization tries to reduce the change in variance, so we
take

Var [𝑤𝑖] = 2
𝑛in + 𝑛out

,

which for uniform distribution means

𝑤𝑖 ∼ 𝑈 [−
√

6√𝑛in + 𝑛out
,

√
6√𝑛in + 𝑛out

] .

• But it only works for symmetric activations, i.e., not for ReLU...

8



weight initialization

• ...until (He et al., 2015)! Let’s go back to

Var [𝑤𝑖𝑥𝑖] = 𝔼 [𝑥𝑖]2 Var [𝑤𝑖] + 𝔼 [𝑤𝑖]2 Var [𝑥𝑖] + Var [𝑤𝑖] Var [𝑥𝑖]

• We now can only make the second term zero:

Var [𝑤𝑖𝑥𝑖] = 𝔼 [𝑥𝑖]2 Var [𝑤𝑖]+Var [𝑤𝑖] Var [𝑥𝑖] = Var [𝑤𝑖] 𝔼 [𝑥2
𝑖 ] , so

Var [𝑦(𝑙)] = 𝑛(𝑙)
in Var [𝑤(𝑙)] 𝔼 [(𝑥(𝑙))2] .

8



weight initialization

• We now can only make the second term zero:

Var [𝑦(𝑙)] = 𝑛(𝑙)
in Var [𝑤(𝑙)] 𝔼 [(𝑥(𝑙))2] .

• Suppose now that 𝑥(𝑙) = max(0, 𝑦(𝑙−1)), and 𝑦(𝑙−1) has a
symmetric distribution around zero. Then

𝔼 [(𝑥(𝑙))2] = 1
2Var [𝑦(𝑙−1)] , Var [𝑦(𝑙)] = 𝑛(𝑙)

in
2 Var [𝑤(𝑙)] Var [𝑦(𝑙−1)] .

• And this leads to the variance for ReLU init; there is no 𝑛out now:

Var [𝑤𝑖] = 2/𝑛(𝑙)
in .

• You don’t have to make it uniform, btw; e.g., a normal
distribution is fine:

𝑤𝑖 ∼ 𝒩 (0, √2/𝑛(𝑙)
in ) . 8



batch normalization



batch normalization

• Important problem in deep neural networks: internal covariate
shift.

• When we change the weights of a layer, the distribution of its
outputs changes.

• This means that the next layer has to re-train almost from
scratch, it did not expect these outputs.

• Moreover, these neurons might have already reached saturation,
so they can’t re-train quickly.

• This seriously impedes learning.

10



batch normalization

• A characteristic example; note how different the distributions
are:

• What can we do?
10



batch normalization

• We could try to normalize (whiten) after every layer.
• Does not work: consider a layer that simply adds a bias 𝑏 to its
inputs 𝑢:

x̂ = x − 𝔼 [x] , where x = 𝑢 + 𝑏.

• On the next gradient descent step, we’ll have 𝑏 ∶= 𝑏 + Δ𝑏...
• ...but x̂ will not change:

𝑢 + 𝑏 + Δ𝑏 − 𝔼 [𝑢 + 𝑏 + Δ𝑏] = 𝑢 + 𝑏 − 𝔼 [𝑢 + 𝑏] .

• So the biases will simply increase unboundedly, and that’s all
the training we’ll get; not a good thing.

10



batch normalization

• We can try to add normalization as a layer:

x̂ = Norm(x, 𝒳).

• But note that the entire dataset 𝒳 is required here.
• So on the gradient descent step we’ll need to compute 𝜕Norm

𝜕x
and 𝜕Norm

𝜕𝒳 , and also the covariance matrix

Cov[x] = 𝔼x∈𝒳 [xx⊤] − 𝔼 [x] 𝔼 [x]⊤ .

• Definitely won’t work.

10



batch normalization

• The solution is to normalize each component separately, and
not over the whole dataset but over the current mini-batch;
hence batch normalization.

• After batch normalization we get

̂𝑥𝑘 = 𝑥𝑘 − 𝔼 [𝑥𝑘]
√Var [𝑥𝑘]

,

where the statistics are computed over the current mini-batch.
• However, one more problem: now nonlinearities disappear!
• E.g., we will almost always get into the region where 𝜎 is very
close to linear.

10



batch normalization

• To fix this, we have to allow the batchnorm layer enough
flexibility to sometimes do nothing with the inputs.

• So we introduce additional shift and scale parameters:

𝑦𝑘 = 𝛾𝑘 ̂𝑥𝑘 + 𝛽𝑘 = 𝛾𝑘
𝑥𝑘 − 𝔼 [𝑥𝑘]
√Var[𝑥𝑘]

+ 𝛽𝑘.

• 𝛾𝑘 and 𝛽𝑘 are new variables and will be trained just like the
weights.

10



batch normalization

• Last remark: it matters where to put the batchnorm.
• You can put it either before or after the nonlinearity.

10



variations of
gradient descent



momentum

• Gradient descent:

𝜃𝑡 = 𝜃𝑡−1 − 𝜂∇𝐸(x𝑡, 𝜃𝑡−1, 𝑦𝑡).

• It all depends on the learning rate 𝜂.
• First idea – let’s make it decrease over time:

• linear decay:
𝜂 = 𝜂0 (1 − 𝑡

𝑇 ) ;

• exponential decay:
𝜂 = 𝜂0𝑒− 𝑡

𝑇 .

• But this does not take 𝐸 into account; it’s better to be adaptive.

12



momentum

• Momentum methods: let’s keep part of the speed, like a real
material point would.

• With the inertia we now have

𝑢𝑡 = 𝛾𝑢𝑡−1 + 𝜂∇𝜃𝐸(𝜃),
𝜃 = 𝜃 − 𝑢𝑡.

• So we now preserve 𝛾𝑢𝑡−1.

12



momentum

• But we already know we will go to 𝛾𝑢𝑡−1!
• Why don’t we compute the gradients right there, halfway?
• Nesterov’s momentum:

𝑢𝑡 = 𝛾𝑢𝑡−1 + 𝜂∇𝜃𝐸(𝜃 − 𝛾𝑢𝑡−1)

• Can we do even better?..

12



momentum

• ...well, yeah, we can try second-order methods.
• Newton’s method:

𝐸(𝜃) ≈ 𝐸(𝜃0) + ∇𝜃𝐸(𝜃0)(𝜃 − 𝜃0) + 1
2(𝜃 − 𝜃0)⊤𝐻(𝐸(𝜃))(𝜃 − 𝜃0).

• This is usually much faster, and there’s nothing to tune (no 𝜂).
• But we need to compute the Hessian 𝐻(𝐸(𝜃)), and this is
infeasible.

• Interesting problem: can we make Newton’s method work for
deep learning?

12



adaptive methods

• But we can still do better!
• Note that so far the learning rate was the same in all directions.
• Idea: rate of change should be higher for parameters that do
not change much over the input samples, and lower for highly
variable parameters.

• Denoting 𝑔𝑡,𝑖 = ∇𝜃𝑖
𝐿(𝜃), we get

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − 𝜂
√𝐺𝑡,𝑖𝑖 + 𝜖 ⋅ 𝑔𝑡,𝑖,

where 𝐺𝑡 is a diagonal matrix with 𝐺𝑡,𝑖𝑖 = 𝐺𝑡−1,𝑖𝑖 + 𝑔2
𝑡,𝑖 that

accumulates the total gradient value over learning history.
• So learning rate always goes down, but at different rates for
different 𝜃𝑖.

13



adaptive methods

• One problem: 𝐺 keeps increasing, and learning rate sometimes
decreases too rapidly.

• Adadelta – same idea, but gradient history is computed with
decay:

𝐺𝑡,𝑖𝑖 = 𝜌𝐺𝑡−1,𝑖𝑖 + (1 − 𝜌)𝑔2
𝑡,𝑖.

• The rest is the same:

𝑢𝑡 = − 𝜂
√𝐺𝑡−1 + 𝜖g𝑡−1.

13



thank you!

Thank you for your attention!

14


	Gradient descentand computational graphs
	Regularizationin neural networks
	Weight initialization
	Batch normalization
	Variations ofgradient descent

