Скрытые марковские модели

Сергей Николенко

Центр Речевых Технологий, 2012

Outline

- Скрытые марковские модели: основное
 - Марковские цепи
 - Возникающие задачи
 - Решения задач
- 2 Специальные виды марковских моделей
 - Смеси выпуклых распределений
 - Продолжительность состояния

Марковские цепи

- Марковская цепь задаётся начальным распределением вероятностей $p^0(x)$ и вероятностями перехода T(x';x).
- T(x';x) это распределение следующего элемента цепи в зависимости от следующего; распределение на (t+1)-м шаге равно

$$p^{t+1}(x') = \int T(x';x) p^t(x) dx.$$

ullet В дискретном случае T(x';x) — это матрица вероятностей p(x'=i|x=j).

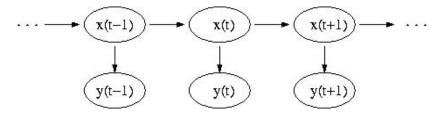
Дискретные марковские цепи

- Мы будем находиться в дискретном случае.
- Марковская модель это когда мы можем наблюдать какие-то функции от марковского процесса.



Дискретные марковские цепи

- ullet Здесь x(t) сам процесс (модель), а y(t) то, что мы наблюдаем.
- Задача определить скрытые параметры процесса.



Дискретные марковские цепи

 Главное свойство — следующее состояние не зависит от истории, только от предыдущего состояния.

$$egin{align} p(x(t) = x_j | x(t-1) = x_{j_{t-1}}, \dots, x(1) = x_{j_1}) = \ &= p(x(t) = x_j | x(t-1) = x_{j_{t-1}}). \end{split}$$

- $oldsymbol{\circ}$ Более того, эти вероятности $a_{ij} = p(x(t) = x_j | x(t-1) = x_i)$ ещё и от времени t не зависят.
- ullet Эти вероятности и составляют матрицу перехода $A=(a_{ij}).$

Вероятности перехода

- Естественные свойства:
- $a_{ij} \geq 0$.
- $\sum_{j} a_{ij} = 1$.

Прямая задача

- Естественная задача: с какой вероятностью выпадет та или иная последовательность событий?
- ullet Т.е. найти нужно для последовательности $Q=q_{i_1}\dots q_{i_k}$

$$p(\mathit{Q}|\mathsf{mogeлb}) = p(\mathit{q}_{i_1})p(\mathit{q}_{i_2}|\mathit{q}_{i_1})\dots p(\mathit{q}_{i_k}|\mathit{q}_{i_{k-1}}).$$

- Казалось бы, это тривиально.
- Что же сложного в реальных задачах?

Скрытые марковские модели

- А сложно то, что никто нам не скажет, что модель должна быть именно такой.
- И, кроме того, мы обычно наблюдаем не x(t), т.е. реальные состояния модели, а y(t), т.е. некоторую функцию от них (данные).
- Пример: распознавание речи.

Задачи скрытых марковских моделей

- Первая: найти вероятность последовательности наблюдений в данной модели.
- Вторая: найти «оптимальную» последовательность состояний при условии данной модели и данной последовательности наблюдений.
- Третья: найти наиболее правдоподобную модель (параметры модели).

Состояния и наблюдаемые

- $X = \{x_1, \dots, x_n\}$ множество состояний.
- $V = \{v_1, \dots, v_m\}$ алфавит, из которого мы выбираем наблюдаемые y (множество значений y).
- ullet q_t состояние во время t, y_t наблюдаемая во время t.

Распределения

- ullet $a_{ij}=p(q_{t+1}=x_j|q_t=x_i)$ вероятность перехода из i в j .
- $b_j(k) = p(v_k|x_j)$ вероятность получить данные v_k в состоянии j.
- ullet Начальное распределение $\pi=\{\pi_j\}$, $\pi_j=p(\mathit{q}_1=\mathit{x}_j)$.
- Данные будем обозначать через $D = d_1 \dots d_T$ (последовательность наблюдаемых, d_i принимают значения из V).

Комментарий

- Проще говоря, вот как работает HMM (hidden Markov model).
- Выберем начальное состояние x_1 по распределению π .
- По t от 1 до T:
 - ullet Выберем наблюдаемую d_t по распределению $p(v_k|x_j).$
 - Выберем следующее состояние по распределению $p(q_{t+1} = x_j | q_t = x_i).$
- Таким алгоритмом можно выбрать случайную последовательность наблюдаемых.

Задачи

- Теперь можно формализовать постановку задач.
- Первая задача: по данной модели $\lambda = (A, B, \pi)$ и последовательности D найти $p(D|\lambda)$. Фактически, это нужно для того, чтобы оценить, насколько хорошо модель подходит к данным.
- Вторая задача: по данной модели λ и последовательности D найти «оптимальную» последовательность состояний $Q=q_1\dots q_T$. Как и раньше, будет два решения: «побитовое» и общее.
- Третья задача: оптимизировать параметры модели $\lambda = (A,B,\pi)$ так, чтобы максимизировать $p(D|\lambda)$ при данном D (найти модель максимального правдоподобия). Эта задача главная, в ней и заключается обучение скрытых марковских моделей.

Постановка первой задачи

• Формально, первая задача выглядит так. Нужно найти

$$egin{aligned} p(D|\lambda) &= \sum_{Q} p(D|Q,\lambda) p(D|\lambda) = \ &= \sum_{q_1,...,q_T} b_{q_1}(d_1) \dots b_{q_T}(d_T) \pi_{q_1} a_{q_1 q_2} \dots a_{q_{T-1} q_T}. \end{aligned}$$

• Ничего не напоминает?

Суть решения первой задачи

- Правильно, это такая же задача маргинализации, как мы решаем всё время.
- Мы воспользуемся так называемой forward—backward procedure, по сути — динамическим программированием на решётке.
- Будем последовательно вычислять промежуточные величины вида

$$\alpha_t(i) = p(d_1 \dots d_t, q_t = x_i | \lambda),$$

т.е. искомые вероятности, но ещё с учётом текущего состояния.

Решение первой задачи

- ullet Инициализируем $lpha_1(i)=\pi_i \, b_i(d_1).$
- Шаг индукции:

$$lpha_{t+1}(j) = \left[\sum_{i=1}^n lpha_t(i) a_{ij}
ight] b_j(d_{t+1}).$$

• После того как дойдём до шага T, подсчитаем то, что нам нужно:

$$p(D|\lambda) = \sum_{i=1}^{n} \alpha_T(i).$$

- Фактически, это только прямой проход, обратный нам здесь не понадобился.
- Что вычислял бы обратный проход?

Обратный проход

- Он вычислял бы условные вероятности $\beta_t(i) = p(d_{t+1} \dots d_T | q_t = x_i, \lambda).$
- Их можно вычислить, проинициализировав $eta_T(i)=1$, а затем по индукции:

$$eta_t(i) = \sum_{j=1}^n a_{ij} b_j(d_{t+1}) eta_{t+1}(j).$$

• Это нам пригодится чуть позже, при решении второй и третьей задачи.

Два варианта второй задачи

- Как мы уже упоминали, возможны два варианта.
- Первый: решать «побитово», отвечая на вопрос «какое наиболее вероятное состояние во время j?».
- Второй: решать задачу «какая наиболее вероятная последовательность состояний?».

Побитовое решение

• Рассмотрим вспомогательные переменные

$$\gamma_t(i) = p(q_t = x_i | D, \lambda).$$

• Наша задача – найти

$$q_t = rg \max_{1 \leq i \leq n} \gamma_t(i), \quad 1 \leq t \leq T.$$

• Как это сделать?

Побитовое решение

• Выражаем через α и β:

$$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{p(D|\lambda)} = \frac{\alpha_t(i)\beta_t(i)}{\sum_{i=1}^n \alpha_t(i)\beta_t(i)}.$$

 На знаменатель можно не обращать внимания — нам нужен arg max.

Решение относительно последовательности

- Чтобы ответить на вопрос о наиболее вероятной последовательности, мы будем использовать так называемый *алгоритм Витерби* (то есть, по сути, то же самое динамическое программирование).
- Наши вспомогательные переменные это

$$\delta_t(i) = \max_{q_1,\ldots,q_{t-1}} p\left(q_1q_2\ldots q_t = x_i, d_1d_2\ldots d_t|\lambda
ight).$$

Решение относительно последовательности

- Т.е. $\delta_t(i)$ максимальная вероятность достичь состояния x_i на шаге t среди всех путей с заданными наблюдаемыми.
- По индукции:

$$\delta_{t+1}(j) = \left[\max_i \delta_t(i) a_{ij} \right] b_j(d_{t+1}).$$

• И надо ещё запоминать аргументы, а не только значения; для этого будет массив $\psi_t(j)$.

Решение относительно последовательности: алг

- ullet Проинициализируем $\delta_1(i) = \pi_i b_i(d_1)$, $\psi_1(i) = []$.
- Индукция:

$$\delta_t(j) = \max_{1 \leq i \leq n} \left[\delta_{t-1}(i) a_{ij} \right] b_j(d_t),$$

$$\psi_t(j) = \operatorname{arg\,max}_{1 \leq i \leq n} \left[\delta_{t-1}(i) a_{ij} \right]$$
 .

ullet Когда дойдём до шага T, финальный шаг:

$$p^* = \max_{1 \leq i \leq n} \delta_T(i), \qquad q_T^* = \arg\max_{1 \leq i \leq n} \delta_T(i).$$

ullet И вычислим последовательность: $q_t^* = \psi_{t+1}(q_{t+1}^*).$

Общая суть третьей задачи

- Аналитически найти глобальный максимум $p(D|\lambda)$ у нас никак не получится.
- Зато мы рассмотрим итеративную процедуру (по сути градиентный подъём), которая приведёт к локальному максимуму.
- Это называется алгоритм Баума–Велха (Baum–Welch algorithm). Он является на самом деле частным случаем алгоритма EM.

Вспомогательные переменные

• Теперь нашими вспомогательными переменными будут вероятности того, что мы во время t в состоянии x_i , а во время t+1 — в состоянии x_j :

$$\xi_t(i,j) = p(q_t = x_i, q_{t+1} = x_j | D, \lambda).$$

• Если переписать через уже знакомые переменные:

$$\xi_t(i,j) = \frac{\alpha_t(i) a_{ij} b_j(d_{t+1}) \beta_{t+1}(j)}{p(D|\lambda)} = \frac{\alpha_t(i) a_{ij} b_j(d_{t+1}) \beta_{t+1}(j)}{\sum_i \sum_j \alpha_t(i) a_{ij} b_j(d_{t+1}) \beta_{t+1}(j)}$$

ullet Отметим также, что $\gamma_t(i) = \sum_j \xi_t(i,j).$

Идея

- ullet $\sum_t \gamma_t(i)$ это ожидаемое количество переходов из состояния x_i , а $\sum_t \xi_t(i,j)$ из x_i в x_j .
- Теперь на шаге М мы будем переоценивать вероятности:

$$ar{\pi}_i =$$
 ожидаемая частота в x_i на шаге $1 = \gamma_1(i),$

$$ar{a}_{ij} = rac{ extsf{K-BO}}{ extsf{K-BO}}$$
 переходов из x_i в $x_j = rac{\sum_t \xi_t(i,j)}{\sum_t \gamma_t(i)}.$

$$ar{b}_j(k) = rac{ extsf{K-BO}}{ extsf{K-BO}}$$
 появлений в x_i и наблюдений $v_k = rac{\sum_{t:d_t=v_k} \gamma_t(i)}{\sum_t \gamma_t(i)}.$

• ЕМ-алгоритм приведёт к цели: начать с $\lambda = (A,B,\pi)$, подсчитать $\bar{\lambda} = (\bar{A},\bar{B},\bar{\pi})$, снова пересчитать параметры и т.д.

Расстояние Кульбака-Лейблера

• Kullback–Leibler distance (divergence) — это информационно-теоретическая мера того, насколько далеки распределения друг от друга.

$$D_{KL}(p_1,p_2) = \sum_x p_1(x) \log rac{p_1(x)}{p_2(x)}.$$

• Известно, что это расстояние всегда неотрицательно, равно нулю iff $p_1 \equiv p_2.$

Применительно к НММ

• Мы определим

$$p_1(Q) = rac{p(Q,D|\lambda)}{p(D|\lambda)}, \quad p_2(Q) = rac{p(Q,D|\lambda')}{p(D|\lambda')}.$$

ullet Тогда p_1 и p_2 — распределения, и расстояние Kullback–Leibler:

$$0 \leq D_{LK}(\lambda, \lambda') = \sum_{Q} rac{p(Q, D|\lambda)}{p(D|\lambda)} \log rac{p(Q, D|\lambda)p(D|\lambda')}{p(Q, D|\lambda')p(D|\lambda)} = \ = \log rac{p(D|\lambda')}{p(D|\lambda)} + \sum_{Q} rac{p(Q, D|\lambda)}{p(D|\lambda)} \log rac{p(Q, D|\lambda)}{p(Q, D|\lambda')}.$$

Вспомогательная функция

• Введём вспомогательную функцию

$$Q(\lambda, \lambda') = \sum_{Q} p(Q|D, \lambda) \log p(Q|D, \lambda').$$

• Тогда из неравенства следует, что

$$\frac{Q(\lambda,\lambda')-Q(\lambda,\lambda)}{p(D|\lambda)} \leq \log \frac{p(D|\lambda')}{p(D|\lambda)}.$$

- ullet Т.е., если $Q(\lambda,\lambda')>Q(\lambda,\lambda)$, то $p(D|\lambda')>p(D|\lambda).$
- Т.е., если мы максимизируем $Q(\lambda, \lambda')$ по λ' , мы тем самым будем двигаться в нужную сторону.

Функция $oldsymbol{Q}$

• Нужно максимизировать $Q(\lambda, \lambda')$. Перепишем:

$$egin{aligned} Q(\lambda,\lambda') &= \sum_{Q} p(Q|D,\lambda) \log p(Q|D,\lambda') = \ &= \sum_{Q} p(Q|D,\lambda) \log \pi_{q_1} \prod_{t} a_{q_{t-1}q_t} b_{q_t}(d_t) = \ &= \sum_{Q} p(Q|D,\lambda) \log \pi_{q_1} + \sum_{Q} p(Q|D,\lambda) \sum_{t} \log a_{q_{t-1}q_t} b_{q_t}(d_t). \end{aligned}$$

• Последнее выражение легко дифференцировать по a_{ij} , $b_i(k)$ и π_i , добавлять соответствующие множители Лагранжа и решать. Получится именно пересчёт по алгоритму Баума—Велха (проверьте!).

Outline

- 1 Скрытые марковские модели: основное
 - Марковские цепи
 - Возникающие задачи
 - Решения задач
- 2 Специальные виды марковских моделей
 - Смеси выпуклых распределений
 - Продолжительность состояния

Непрерывные плотности наблюдаемых

- ullet У нас были дискретные наблюдаемые с вероятностями $B=(b_j(k)).$
- Но в реальной жизни всё сложнее: зачастую мы наблюдаем непрерывные сигналы, а не дискретные величины, и дискретизовать их или плохо, или неудобно.
- При этом саму цепь можно оставить дискретной, т.е. перейти к непрерывным $b_j(D)$.

Специальный вид плотности

- Не для всех плотностей найдены алгоритмы пересчёта (обобщения алгоритма Баума–Велха).
- Наиболее общий результат верен, когда $b_j(D)$ можно представить в виде

$$b_j(D) = \sum_{m=1}^{M} c_{jm} \mathcal{P}(D, \mu_{jm}, \sigma_{jm}),$$

где c_{jm} — коэффициенты смеси $(\sum_m c_{jm}=1)$, а ${\cal P}$ — выпуклое распределение со средним μ и вариацией σ (гауссиан подойдёт).

 К счастью, такой конструкцией можно приблизить любое непрерывное распределение, поэтому это можно широко применять.

Вспомогательные переменные

- ullet $\gamma_t(j,m)$ вероятность быть в состоянии j во время t, причём за D отвечает m–й компонент смеси.
- Формально говоря,

$$\gamma_t(j,m) = \left[rac{lpha_t(j)eta_t(j)}{\sum_{j=1}^N lpha_t(j)eta_t(j)}
ight] \left[rac{c_{jm}\mathcal{P}(d_t,\mu_{jm},\sigma_{jm})}{\sum_{m=1}^M c_{jm}\mathcal{P}(d_t,\mu_{jm},\sigma_{jm})}
ight].$$

ullet Если M=1, то это уже известные нам $\gamma_t(j).$

Алгоритм для этого случая

- Нужно научиться пересчитывать $b_j(D)$, т.е. пересчитывать c_{jm} , μ_{jm} и σ_{jm} .
- Это делается так:

$$egin{aligned} ar{c}_{jm} &= rac{\sum_{t=1}^{T} \gamma_t(j,m)}{\sum_{t=1}^{T} \sum_{m=1}^{M} \gamma_t(j,m)}, \ ar{\mu}_{jm} &= rac{\sum_{t=1}^{T} \gamma_t(j,m) \cdot d_t}{\sum_{t=1}^{T} \gamma_t(j,m)}, \ ar{\sigma}_{jm} &= rac{\sum_{t=1}^{T} \gamma_t(j,m) \cdot (d_t - \mu_{jm}) (d_t - \mu_{jm})^t}{\sum_{t=1}^{T} \gamma_t(j,m)}. \end{aligned}$$

Проблема

- Как моделировать продолжительность нахождения в том или ином состоянии?
- В дискретном случае вероятность пробыть в состоянии $i \ d$ шагов:

$$p_i(d) = a_{ii}^{d-1}(1 - a_{ii}).$$

- Однако для большинства физических сигналов такое экспоненциальное распределение не соответствует действительности. Мы бы хотели явно задавать плотность пребывания в данном состоянии.
- Т.е. вместо коэффициентов перехода в себя a_{ii} явное задание распределения $p_i(d)$.

Вспомогательные переменные

• Введём переменные

$$lpha_t(i) = p(d_1 \dots d_t, x_i)$$
 заканчивается во время $t|\lambda)$.

ullet Всего за первые t шагов посещено r состояний $q_1 \dots q_r$, и мы там оставались d_1, \dots, d_r . Т.е. ограничения:

$$q_r = x_i, \qquad \sum_{s=1}^r d_s = t.$$

Вычисление $lpha_t(i)$

• Тогда получается

$$egin{aligned} lpha_t(i) &= \sum_q \sum_d \pi_{q_1} p_{q_1}(d_1) p(d_1 d_2 \dots d_{d_1} | q_1) \ &= a_{q_1 q_2} p_{q_2}(d_2) p(d_{d_1+1} \dots d_{d_1+d_2} | q_2) \dots \ &= \dots a_{q_{r-1} q_r} p_{q_r}(d_r) p(d_{d_1+\dots+d_{r-1}+1} \dots d_t | q_r). \end{aligned}$$

Вычисление $\alpha_t(i)$

• По индукции

$$lpha_t(j) = \sum_{i=1}^n \sum_{d=1}^D lpha_{t-d}(j) a_{ij} p_j(d) \prod_{s=t-d+1}^t b_j(d_s),$$

где D — максимальная остановка в любом из состояний.

• Тогда, как и раньше,

$$p(d|\lambda) = \sum_{i=1}^{n} \alpha_T(i).$$

Вспомогательные переменные

• Для пересчёта потребуются ещё три переменные:

$$lpha_t^*(i)=p(d_1\dots d_t,x_i$$
 начинается во время $t+1|\lambda),$ $eta_t(i)=p(d_{t+1}\dots d_T|x_i$ заканчивается во время $t,\lambda),$ $eta_t^*(i)=p(d_{t+1}\dots d_T|x_i$ начинается во время $t+1,\lambda).$

Вспомогательные переменные

• Соотношения между ними:

$$egin{aligned} lpha_t^*(j) &= \sum_{i=1}^n lpha_t(i) \, a_{ij}, \ lpha_t(i) &= \sum_{d=1}^D lpha_{t-d}^*(i) p_i(d) \prod_{s=t-d+1}^t b_i(d_s), \ eta_t(i) &= \sum_{j=1}^n a_{ij} eta_t^*(j), \ eta_t^*(i) &= \sum_{d=1}^D eta_{t+d}(i) p_i(d) \prod_{s=t+1}^{t+d} b_i(d_s). \end{aligned}$$

Формулы пересчёта

- Приведём формулы пересчёта.
- π_i просто вероятность того, что x_i был первым состоянием:

$$\widehat{\pi}_i = rac{\pi_i eta_0^*(i)}{p(d|\lambda)}.$$

• a_{ij} — та же формула, что обычно, только вместе с α есть ещё и β , которая говорит, что новое состояние начинается на следующем шаге:

$$\hat{a}_{ij} = rac{\sum_{t=1}^T lpha_t(i) a_{ij} eta_t^*(j)}{\sum_{k=1}^n \sum_{t=1}^T lpha_t(i) a_{ik} eta_t^*(k)}.$$

Формулы пересчёта

• $b_i(k)$ — отношение ожидания количества событий $d_t=v_k$ в состоянии x_i к ожиданию количества любого v_j в состоянии x_i :

$$\hat{b}_i(k) = \frac{\sum_{t=1, d_t=v_k}^T \left(\sum_{\tau < t} \alpha_\tau^*(i) \beta_\tau^*(i) - \sum_{\tau < t} \alpha_\tau(i) \beta_\tau(i)\right)}{\sum_{k=1}^m \sum_{t=1, d_t=v_k}^T \left(\sum_{\tau < t} \alpha_\tau^*(i) \beta_\tau^*(i) - \sum_{\tau < t} \alpha_\tau(i) \beta_\tau(i)\right)}.$$

• $p_i(d)$ — отношение ожидания количества раз, которые x_i случилось с продолжительностью d, к количеству раз, которые x_i вообще случалось:

$$\hat{p}_i(d) = \frac{\sum_{t=1}^{T} \alpha_t^*(i) p_i(d) \beta_{t+d}(i) \prod_{s=t+1}^{t+d} b_i(d_s)}{\sum_{d=1}^{D} \sum_{t=1}^{T} \alpha_t^*(i) p_i(d) \beta_{t+d}(i) \prod_{s=t+1}^{t+d} b_i(d_s)}.$$

За и против

- ullet Такой подход очень полезен, когда $p_i(d)$ далеко от экспоненциального.
- Однако он сильно увеличивает вычислительную сложность (в D^2 раз).
- И, кроме того, становится гораздо больше параметров, т.е. нужно, вообще говоря, больше данных, чтобы эти параметры надёжно оценить.

Параметрическая продолжительность состояния

- Чтобы уменьшить количество параметров, можно иногда считать, что $p_i(d)$ классическое распределение с не слишком большим количеством параметров.
- Например, $p_i(d)$ может быть равномерным, или нормальным $(p_i(d) = \mathcal{N}(d, \mu_i, \sigma_i^2))$, или гамма–распределением:

$$p_i(d) = rac{\eta_i^{\gamma_i} d^{\gamma_i-1} e^{-\eta_i d}}{\Gamma(\gamma_i)}.$$

Thank you!

Спасибо за внимание!