INTRO TO NLP AND NAIVE BAYES

Natural Language Processing

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
January 8, 2018

NLP PROBLEMS

NLP PROBLEMS

- Three classes of problems.
- The first class - more "syntactic" problems:
- they are more or less well-defined,
- they can usually be posed as classification problems,
- it is clear how to collect datasets (albeit it may require manual labor, of course).
- These problems can be solved reasonably well by classical techniques, but DL improves upon these results.
- But we will see how even "simple" problems require "full-scale understanding" in hard cases.

NLP PROBLEMS

- Part-of-speech tagging:
- The panda eats shoots and leaves (ok, this one is about punctuation)

```
>>> text = word_tokenize("They refuse to permit us to obtain the refuse permit")
>>> nltk.pos_tag}(text
[('They', 'P\overline{RP'), ('refuse', 'VBP'), ('to', 'TO'), ('permit', 'VB'), ('us', 'PRP'),}
('to', 'TO'), ('obtain', 'VB'), ('the', 'DT'), ('refuse', 'NN'), ('permit', 'NN')]
```

- Morphological segmentation
- Stemming or lemmatization
- Sentence boundary disambiguation:
- Rolls-Royce Motor Cars Inc. said it expects its U.S. sales to remain steady at about 1,200 cars in 1990.
- Later, he recalls the words of his Marxist mentor: "The people! Theft! The holy fire!"
- About 40 Italian businesses, including Fiat S.p.A. and Ing. C. Olivetti \& Co., have formed a consortium to lobby for holding the expo in Venice.

NLP PROBLEMS

- Word segmentation (Asian languages)
- Named entity recognition:
- «In 2001, Michael Jordan retired from the editorial board of Machine Learning»
- «In 2001, Michael Jordan returned from his second retirement to play for the Washington Wizards»
- Word sense disambiguation:
- «I have a cold today» vs. «We've had a cold day»
- «After listening to the great bass, Boris Christoff, we ate sea bass at the restaurant»
- granularity is unclear (e.g., "knife" as a kitchen utensil vs. a weapon)

NLP PROBLEMS

- Syntactic parsing:

- Dependency parsing:

I saw a girl with a telescope

NLP PROBLEMS

- Coreference resolution, anaphora resolution:
- «The laptop did not fit in the bag because it was too small»;
- «The laptop did not fit in the bag because it was too big».
- Pragmatics:
- «Alice and Betty are mothers»;
- «Alice and Betty are sisters».
- Big problems with common sense reasoning:

Al models don't have it

NLP PROBLEMS

- Second class - more complex problems that require understanding even more often, but we still know the right answers and can get quality metrics.
- Language modeling:
- big breakthroughs from RNNs;
- direct use for speech recognition and the like, but generally the underlying problem for all NLP applications.
- Sentiment analysis:
- recursive neural networks;
- requires syntactic parsing first;
- can we solve sentiment analysis? yeah, right...

NLP PROBLEMS

- Relationship extraction, fact extraction:
- usually a CNN on vector representations of words + positional embeddings (how far each word is from each entity in the sentence).
- Question answering:
- formally contains everything else;
- in reality - only very simple questions:
- Mary went to the bathroom.
- John moved to the hallway.
- Mary travelled to the office.
- Where is Mary?
- QA will probably encode "general text understanding".

NLP PROBLEMS

- Problems where we not only understand text but try to generate new text:
- text generation per se;
- automatic summarization;
- machine translation;
- dialog and conversational models.
- There are machine learning models for all these problems, and currently state of the art models come from deep learning.
- But we will have to start at an earlier point.

TEXT CATEGORIZATION: NAIVE BAYES

TEXT CATEGORIZATION

- Classical NLP problem: text categorization (classification).
- Given a text, which category is it in?
- Bag-of-words model: forget about word order, construct a vocabulary.
- Now a document is a vector of word counts.

NAIVE BAYES

- Even this is a very big simplification.
- But still, we can't expect to get enough statistics for $p\left(a_{1}, a_{2}, \ldots, a_{n} \mid x=v\right)$.
- We need more simplifying assumptions.
- Naive Bayes classifier - the simplest model: assume that all words in a dictionary are conditionally independent given the category/

NAIVE BAYES

- In other words:

$$
p\left(w_{1}, w_{2}, \ldots, w_{n} \mid x=v\right)=p\left(w_{1} \mid x=v\right) p\left(w_{2} \mid x=v\right) \ldots p\left(w_{n} \mid x=v\right)
$$

- Naive Bayes classifier chooses v as

$$
v_{N B}\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\arg \max _{v \in V} p(x=v) \prod_{i=1}^{n} p\left(w_{i} \mid x=v\right)
$$

- Despite indeed very naive assumptions, NB works pretty well in practice (and there are reasons for this).
- There are important details in NB implementation.
- Two basic approaches: multinomial and multivariate.
- In the multivariate model a document is a vector of binary attributes that show whether a word has occurred there.
- Let $V=\left\{w_{t}\right\}_{t=1}^{|V|}$ be the vocabulary.
- Then a document d_{i} is a vector of size $|V|$ consisting of bits $B_{i t}$; $B_{i t}=1$ iff w_{t} occurs in d_{i}.
- Likelihood of a document is the product of probabilities for multivariate Bernoulli trials:

$$
p\left(d_{i} \mid c_{j}\right)=\prod_{t=1}^{|V|}\left(B_{i t} p\left(w_{t} \mid c_{j}\right)+\left(1-B_{i t}\right)\left(1-p\left(w_{t} \mid c_{j}\right)\right)\right) .
$$

- To train this classifier we need to train $p\left(w_{t} \mid c_{j}\right)$.
- How?
- Easy: consider the training set $D=\left\{d_{i}\right\}_{i=1}^{|D|}$, where words are already distributed among classes c_{j} (perhaps even probabilistically) with vocabulary $V=\left\{w_{t}\right\}_{t=1}^{|V|}$. We know $B_{i t}$.
- Optimal probability estimates for Bernoulli trials with Bayesian (Laplace) smoothing:

$$
p\left(w_{t} \mid c_{j}\right)=\frac{1+\sum_{i=1}^{|D|} B_{i t} p\left(c_{j} \mid d_{i}\right)}{2+\sum_{i=1}^{|D|} p\left(c_{j} \mid d_{i}\right)}
$$

- Prior probabilities of classes are simply

$$
p\left(c_{j}\right)=\frac{1}{|D|} \sum_{i=1}^{|D|} p\left(c_{j} \mid d_{i}\right)
$$

- Now classification becomes

$$
\begin{aligned}
& c=\arg \max _{j} p\left(c_{j}\right) p\left(d_{i} \mid c_{j}\right)= \\
= & \arg \max _{j}\left(\frac{1}{|D|} \sum_{i=1}^{|D|} p\left(c_{j} \mid d_{i}\right)\right) \prod_{t=1}^{|V|}\left(B_{i t} p\left(w_{t} \mid c_{j}\right)+\left(1-B_{i t}\right)\left(1-p\left(w_{t} \mid c_{j}\right)\right)\right)= \\
= & \arg \max _{j}\left(\log \left(\sum_{i=1}^{|D|} p\left(c_{j} \mid d_{i}\right)\right)+\sum_{t=1}^{|V|} \log \left(B_{i t} p\left(w_{t} \mid c_{j}\right)+\left(1-B_{i t}\right)\left(1-p\left(w_{t} \mid c_{j}\right)\right)\right)\right.
\end{aligned}
$$

MULTINOMIAL MODEL

- In the multinomial model a document is a sequence of events; each event means taking a word out of the bag.
- The naive assumption is that we take words out of a bag independently of each other.
- We get a multiplicative generative model: a document d_{i} is a vector of length $\left|d_{i}\right|$ consisting of words each of which was taken with probability $p\left(w_{t} \mid c_{j}\right)$.

MULTINOMIAL MODEL

- Likelihood that d_{i} belongs to class c_{j} :

$$
p\left(d_{i} \mid c_{j}\right)=p\left(\left|d_{i}\right|\right)\left|d_{i}\right|!\prod_{t=1}^{|V|} \frac{1}{N_{i t}!} p\left(w_{t} \mid c_{j}\right)^{N_{i t}}
$$

where $N_{i t}$ is the number of times w_{t} occurs in d_{i}.

- To train this classifier we need to train the probabilities $p\left(w_{t} \mid c_{j}\right)$.
- How?

MULTINOMIAL MODEL

- Easy: for a training set $D=\left\{d_{i}\right\}_{i=1}^{|D|}$ distributed among classes c_{j} (perhaps probabilistically) with vocabulary $V=\left\{w_{t}\right\}_{t=1}^{|V|}$ we know $N_{i t}$.
- Again we compute posterior estimates with Bayesian smoothing:

$$
p\left(w_{t} \mid c_{j}\right)=\frac{1+\sum_{i=1}^{|D|} N_{i t} p\left(c_{j} \mid d_{i}\right)}{|V|+\sum_{s=1}^{|V|} \sum_{i=1}^{|D|} N_{i s} p\left(c_{j} \mid d_{i}\right)}
$$

MULTINOMIAL MODEL

- Prior probabilities of classes are again $p\left(c_{j}\right)=\frac{1}{|D|} \sum_{i=1}^{|D|} p\left(c_{j} \mid d_{i}\right)$.
- Now classification becomes

$$
\begin{aligned}
& c=\arg \max _{j} p\left(c_{j}\right) p\left(d_{i} \mid c_{j}\right)= \\
& =\arg \max _{j}\left(\frac{1}{|D|} \sum_{i=1}^{|D|} p\left(c_{j} \mid d_{i}\right)\right) p\left(\left|d_{i}\right|\right)\left|d_{i}\right|!\prod_{t=1}^{|V|} \frac{1}{N_{i t}!} p\left(w_{t} \mid c_{j}\right)^{N_{i t}}= \\
& \quad=\arg \max _{j}\left(\log \left(\sum_{i=1}^{|D|} p\left(c_{j} \mid d_{i}\right)\right)+\sum_{t=1}^{|V|} N_{i t} \log p\left(w_{t} \mid c_{j}\right)\right) .
\end{aligned}
$$

Thank you for your attention!

