
clustering and naive bayes
Natural Language Processing

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
January 9, 2018



generalizing naive bayes



where to generalize

• Naive Bayes makes two additional simplifying assumptions:
• we know class labels for all documents;
• each document belongs to only one class (has only one topic).

• It turns out we can remove both of these constraints.
• First, what do we do if we don’t know class labels, i.e., the
dataset is unlabeled?

• What kind of a problem is it and how can we solve it?
• It’s clustering, but we need to start with the EM algorithm...
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problem setting

• Often the data has latent (missing) variables.
• We have the result of sampling a distribution, but some of the
parameters are not known.

• We can treat latent variables as random values and look for the
maximal likelihood hypothesis ℎ, i.e., maximize

E[𝑝(𝐷|ℎ)] = E[∫ 𝑝(𝐷, 𝑧|ℎ)d𝑧]

for latent variables 𝑧.
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special case

• Example: consider a random variable 𝑥 sampled from a mixture
of two Gaussians with the same variance 𝜎2 and different means
𝜇1, 𝜇2.

• Two-stage sampling, but we don’t know the first stage results.
• One point is a triple ⟨𝑥𝑖, 𝑧𝑖1, 𝑧𝑖2⟩, where 𝑧𝑖𝑗 = 1 iff 𝑥𝑖 was
generated from distribution 𝑗, and we don’t know 𝑧𝑖𝑗.
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em algorithm

• EM algorithm idea:
• generate a hypothesis ℎ = (𝜇1, 𝜇2);
• while we have not reached local maximum:

• compute the expectation 𝐸(𝑧𝑖𝑗) given the current hypothesis
(𝐸–step);

• compute the new hypothesis ℎ′ = (𝜇′
1, 𝜇′

2) assuming that 𝑧𝑖𝑗 take
values 𝐸(𝑧𝑖𝑗) computed before (𝑀–step).
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for the gaussians

• For the Gaussians:

𝐸(𝑧𝑖𝑗) = 𝑝(𝑥 = 𝑥𝑖|𝜇 = 𝜇𝑗)
𝑝(𝑥 = 𝑥𝑖|𝜇 = 𝜇1) + 𝑝(𝑥 = 𝑥𝑖|𝜇 = 𝜇2) =

= 𝑒− 1
2𝜎2 (𝑥𝑖−𝜇𝑗)2

𝑒− 1
2𝜎2 (𝑥𝑖−𝜇1)2 + 𝑒− 1

2𝜎2 (𝑥𝑖−𝜇2)2 .

• We compute the expectations and then tune the hypothesis:

𝜇𝑗 ← 1
𝑚

𝑚
∑
𝑖=1

𝐸(𝑧𝑖𝑗)𝑥𝑖.
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em formally

• Formally, we are maximizing the likelihood with data
𝒳 = {𝑥1, … , 𝑥𝑁}.

𝐿(𝜃 ∣ 𝒳) = 𝑝(𝒳 ∣ 𝜃) = ∏ 𝑝(𝑥𝑖 ∣ 𝜃)

or, which is the same, maximizing ℓ(𝜃 ∣ 𝒳) = log 𝐿(𝜃 ∣ 𝒳).
• EM can help if this maximum is hard to find, but easy once we
know something else...
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em formally

• Suppose that the data has latent variables such that the
problem would be easy if we knew them.

• They don’t necessarily have to correspond to anything
interesting, maybe they are there just for convenience.

• In any case, we get a dataset 𝒵 = (𝒳, 𝒴) with joint density

𝑝(𝑧 ∣ 𝜃) = 𝑝(𝑥, 𝑦 ∣ 𝜃) = 𝑝(𝑦 ∣ 𝑥, 𝜃)𝑝(𝑥 ∣ 𝜃).

• Full likelihood 𝐿(𝜃 ∣ 𝒵) = 𝑝(𝒳, 𝒴 ∣ 𝜃) is a random variable since
we don’t know 𝒴.
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em formally

• Note that the real likelihood is 𝐿(𝜃) = 𝐸𝑌 [𝑝(𝒳, 𝒴 ∣ 𝜃) ∣ 𝒳, 𝜃].
• E-step computes the conditional expectation of the (log) full
likelihood given 𝒳 and current estimates for parameters 𝜃𝑛:

𝑄(𝜃, 𝜃𝑛) = 𝐸 [log 𝑝(𝒳, 𝒴 ∣ 𝜃) ∣ 𝒳, 𝜃𝑛] .

• Here 𝜃𝑛 are current estimates, 𝜃 are unknown values (which we
want to get at the end); i.e., 𝑄(𝜃, 𝜃𝑛) is a function of 𝜃.
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em formally

• E-step computes the conditional expectation of the (log) full
likelihood given 𝒳 and current estimates for parameters 𝜃:

𝑄(𝜃, 𝜃𝑛) = 𝐸 [log 𝑝(𝒳, 𝒴 ∣ 𝜃) ∣ 𝒳, 𝜃𝑛] .

• Conditional expectation:

𝐸 [log 𝑝(𝒳, 𝒴 ∣ 𝜃) ∣ 𝒳, 𝜃𝑛] = ∫
𝑦

log 𝑝(𝒳, 𝑦 ∣ 𝜃)𝑝(𝑦 ∣ 𝒳, 𝜃𝑛)d𝑦,

where 𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) is the marginal distribution of latent variables.
• EM works best when it’s easy to compute, maybe even
analytically.

• Instead of 𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) we can substitute
𝑝(𝑦, 𝒳 ∣ 𝜃𝑛) = 𝑝(𝑦 ∣ 𝒳, 𝜃𝑛)𝑝(𝒳 ∣ 𝜃𝑛), it won’t change anything.
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em formally

• As a result, after the E-step of the EM algorithm we get the
function 𝑄(𝜃, 𝜃𝑛).

• On the M-step, we maximize

𝜃𝑛+1 = arg max𝜃𝑄(𝜃, 𝜃𝑛).

• And repeat until convergence.
• Actually, it suffices to find 𝜃𝑛+1 such that 𝑄(𝜃𝑛+1, 𝜃𝑛) > 𝑄(𝜃𝑛, 𝜃𝑛)
– Generalized EM.

• It remains to see what 𝑄(𝜃, 𝜃𝑛) means and why it all works.

8



em formally

• We wanted to pass from 𝜃𝑛 to 𝜃 such that ℓ(𝜃) > ℓ(𝜃𝑛).

ℓ(𝜃) − ℓ(𝜃𝑛) =

= log (∫
𝑦

𝑝(𝒳 ∣ 𝑦, 𝜃)𝑝(𝑦 ∣ 𝜃)d𝑦) − log 𝑝(𝒳 ∣ 𝜃𝑛) =

= log (∫
𝑦

𝑝(𝑦 ∣ 𝒳, 𝜃𝑛)𝑝(𝒳 ∣ 𝑦, 𝜃)𝑝(𝑦 ∣ 𝜃)
𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) d𝑦) − log 𝑝(𝒳 ∣ 𝜃𝑛) ≥

≥ ∫
𝑦

𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) log (𝑝(𝒳 ∣ 𝑦, 𝜃)𝑝(𝑦 ∣ 𝜃)
𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) ) d𝑦 − log 𝑝(𝒳 ∣ 𝜃𝑛) =

= ∫
𝑦

𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) log ( 𝑝(𝒳 ∣ 𝑦, 𝜃)𝑝(𝑦 ∣ 𝜃)
𝑝(𝒳 ∣ 𝜃𝑛)𝑝(𝑦 ∣ 𝒳, 𝜃𝑛)) d𝑦.
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em formally

• Thus, we get

ℓ(𝜃) ≥ 𝑙(𝜃, 𝜃𝑛) =

= ℓ(𝜃𝑛) + ∫
𝑦

𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) log ( 𝑝(𝒳 ∣ 𝑦, 𝜃)𝑝(𝑦 ∣ 𝜃)
𝑝(𝒳 ∣ 𝜃𝑛)𝑝(𝑦 ∣ 𝒳, 𝜃𝑛)) d𝑦.

Упражнение. Prove that 𝑙(𝜃𝑛, 𝜃𝑛) = ℓ(𝜃𝑛).
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em formally

• In other words, we have found a lower bound on ℓ(𝜃)
everywhere that touches it at point 𝜃𝑛.

• I.e., we have found a lower bound for the likelihood and move to
a point that maximizes it (or at least improves).

• This is called minorization-maximization (MM).
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justification of em
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justification of em

• It remains to see that we can maximize 𝑄.

𝜃𝑛+1 = arg max𝜃𝑙(𝜃, 𝜃𝑛) = arg max𝜃 {ℓ(𝜃𝑛)+

+ ∫
𝑦

𝑓(𝑦 ∣ 𝒳, 𝜃𝑛) log ( 𝑝(𝒳 ∣ 𝑦, 𝜃)𝑓(𝑦 ∣ 𝜃)
𝑝(𝒳 ∣ 𝜃𝑛)𝑓(𝑦 ∣ 𝒳, 𝜃𝑛)) d𝑦} =

= arg max𝜃 {∫
𝑦

𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) log (𝑝(𝒳 ∣ 𝑦, 𝜃)𝑝(𝑦 ∣ 𝜃)) d𝑦} =

= arg max𝜃 {∫
𝑦

𝑝(𝑦 ∣ 𝒳, 𝜃𝑛) log 𝑝(𝒳, 𝑦 ∣ 𝜃)d𝑦} =

= arg max𝜃 {𝑄(𝜃, 𝜃𝑛)} ,

and the rest does not depend on 𝜃.
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em and clustering



ideas?

• How can we apply EM to clustering?
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hypothesis

• Hypothesis: test examples are drawn independently from a
mixture of cluster distributions

𝑝(𝑥) = ∑
𝑐∈𝐶

𝑤𝑐𝑝𝑐(𝑥), ∑
𝑐∈𝐶

𝑤𝑐 = 1,

where 𝑤𝑐 is the probability to get a point from cluster 𝑐, 𝑝𝑐 is the
density of cluster 𝑐.
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hypothesis cont'd

• What would be the form of 𝑝𝑐?
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hypothesis cont'd

• What would be the form of 𝑝𝑐?
• Let’s try... mmm... well, Gaussians. :)
• Hypothesis 2: each cluster 𝑐 is a 𝑑–dimensional Gaussian
distribution with mean 𝜇𝑐 = {𝜇𝑐1, … , 𝜇𝑐𝑑} and diagonal matrix
of covariances Σ𝑐 = diag(𝜎2

𝑐1, … , 𝜎2
𝑐2) (i.e., separate variance for

every independent coordinate).
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problem setting

• Thus, we have formalized clustering as learning a mixture of
distributions. That’s where EM comes into play.

• Each test example looks like (𝑓1(𝑥), … , 𝑓𝑛(𝑥)).
• Latent variables in this case are probabilities 𝑔𝑖𝑐 of 𝑥𝑖 to belong
to cluster 𝑐 ∈ 𝐶 .
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idea

• 𝐸–step: by Bayes theorem, we compute latent variables 𝑔𝑖𝑐:
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∑
𝑖=1
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∑
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∑
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idea

• 𝐸–step: by Bayes theorem, we compute latent variables 𝑔𝑖𝑐:

𝑔𝑖𝑐 = 𝑤𝑐𝑝𝑐(𝑥𝑖)
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• 𝑀–step: with 𝑔𝑖𝑐 we refine cluster parameters 𝑤, 𝜇, 𝜎:

𝑤𝑐 = 1
𝑛

𝑛
∑
𝑖=1

𝑔𝑖𝑐, 𝜇𝑐𝑗 = 1
𝑛𝑤𝑐

𝑛
∑
𝑖=1

𝑔𝑖𝑐𝑓𝑗(𝑥𝑖),

𝜎2
𝑐𝑗 = 1

𝑛𝑤𝑐

𝑛
∑
𝑖=1

𝑔𝑖𝑐 (𝑓𝑗(𝑥𝑖) − 𝜇𝑐𝑗)
2 .
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algorithm

EMCluster(𝑋, |𝐶|):

• Initialize |𝐶| clusters; initial approximation: 𝑤𝑐 ∶= 1/|𝐶|,
𝜇𝑐 ∶= random 𝑥𝑖, 𝜎2

𝑐𝑗 ∶= 1
𝑛|𝐶| ∑𝑛

𝑖=1 (𝑓𝑗(𝑥𝑖) − 𝜇𝑐𝑗)
2.

• While cluster composition changes:
• 𝐸–step: 𝑔𝑖𝑐 ∶= 𝑤𝑐𝑝𝑐(𝑥𝑖)

∑𝑐′∈𝐶 𝑤𝑐′ 𝑝𝑐′ (𝑥𝑖) .
• 𝑀–step: 𝑤𝑐 = 1𝑛 ∑𝑛

𝑖=1 𝑔𝑖𝑐, 𝜇𝑐𝑗 = 1𝑛𝑤𝑐 ∑𝑛
𝑖=1 𝑔𝑖𝑐𝑓𝑗(𝑥𝑖),

𝜎2
𝑐𝑗 = 1

𝑛𝑤𝑐

𝑛
∑
𝑖=1

𝑔𝑖𝑐 (𝑓𝑗(𝑥𝑖) − 𝜇𝑐𝑗)2 .

• Find which cluster 𝑥𝑖 falls into:

clust𝑖 ∶= arg max𝑐∈𝐶𝑔𝑖𝑐.

Упражнение. Prove that E-step and M-step indeed look like this.
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example
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example
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example
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problem

• We still need to specify the number of clusters.
• Possible solution: BIC.
• Other possible solution: non-parametric methods (out of our
scope for now).
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𝑘--means

• 𝑘-means is a simplification of EM.
• Instead of computing probabilities of clusters, we use hard
clustering.

• Besides, we cannot change the form of clusters in 𝑘–means (and
that’s not so bad).
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objective

• Formally, 𝑘–means minimizes the error

𝐸(𝑋, 𝐶) =
𝑛

∑
𝑖=1

||𝑥𝑖 − 𝜇𝑖||2,

where 𝜇𝑖 is the cluster centroid nearest to 𝑥𝑖.
• I.e., we move centers and automatically relate points to nearest
clusters.
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naive bayes clustering

• So now we can come back to clustering with the naive Bayes
assumptions.

• It is discrete, and it’s best to solve directly with the EM algorithm
(Expectation–Maximization):

• on the E-step we compute expectations of which document
belongs to which topic/class;

• on the M-step, recompute probabilities 𝑝(𝑤 ∣ 𝑡) for fixed labels
with naive Bayes.

• This is a simple generalization.
• Harder problem – generalize to multiple topics per document.
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thank you!

Thank you for your attention!
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