
distributed word representations
Natural Language Processing

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
January 12, 2018

word embeddings

• Distributional hypothesis in linguistics: words with similar
meaning will occur in similar contexts.

• Distributed word representations map words to a Euclidean
space (usually of dimension several hundred):

• started in earnest in (Bengio et al. 2003; 2006), although there
were earlier ideas;

• word2vec (Mikolov et al. 2013): train weights that serve best for
simple prediction tasks between a word and its context:
continuous bag-of-words (CBOW) and skip-gram;

• Glove (Pennington et al. 2014): train word weights to decompose
the (log) cooccurrence matrix.

2

word embeddings

• Bengio et al.:
• each word 𝑖 ∈ 𝑉 corresponds to a feature vector w𝑖 ∈ ℝ𝑑 (word
embedding);

2

word embeddings

• Bengio et al.:
• probability of the event that 𝑖 occurs in a local context 𝑐1, … , 𝑐𝑛
is a function of these features:

�̂�(𝑖|𝑐1, … , 𝑐𝑛) = 𝑓(w𝑖, w𝑐1 , … , w𝑐𝑛 ; 𝜃),

where w𝑐1 , … , w𝑐𝑛 are vectors of context words and 𝑓 is a
function with parameters 𝜃;

• now we can simply train both 𝜃 and w at the same time,
maximizing the joint likelihood

𝐿(𝑊, 𝜃) = 1
𝑇 ∑

𝑡
log 𝑓(w𝑡, w𝑡−1, ..., w𝑡−𝑛+1; 𝜃) + 𝑅(𝑊, 𝜃),

where 𝑡 spans context windows and 𝑅(𝑊, 𝜃) is a regularizer.
• This was quite slow and did not work too well... but actually
word2vec is pretty much based on the same idea.

2

word2vec

• So what does word2vec do? Two main architectures.
• Difference between skip-gram and CBOW architectures:

• CBOW model predicts a word from its local context;
• skip-gram model predicts context words from the current word.

3

word2vec

• The CBOW word2vec model operates as follows:
• inputs are one-hot word representations of dimension 𝑉 ;
• the hidden layer is the matrix of vector embeddings 𝑊 ;
• the hidden layer’s output is the average of input vectors;
• as output we get an estimate 𝑢𝑗 for each word, and the posterior
is a simple softmax:

�̂�(𝑖|𝑐1, … , 𝑐𝑛) = exp(𝑢𝑗)
∑𝑉

𝑗′=1 exp(𝑢𝑗′)
;

• thus, the loss function on a local window is to make the posterior
distribution as close as possible to the data distribution:

𝐿 = − log 𝑝(𝑖|𝑐1, … , 𝑐𝑛) = −𝑢𝑗 + log
|𝑉 |
∑
𝑗′=1

exp(𝑢𝑗′).

3

word2vec

• In skip-gram, it’s the opposite:
• we predict each context word from the central word;
• so now there are several multinomial distributions, one softmax
for each context word:

�̂�(𝑐𝑘|𝑖) =
exp(𝑢𝑘𝑐𝑘)

∑𝑉
𝑗′=1 exp(𝑢𝑗′)

.

3

word embeddings

• How do we train a model like that?
• E.g., in skip-gram we choose 𝜃 to maximize

𝐿(𝜃) = ∏
𝑖∈𝐷

⎛⎜
⎝

∏
𝑐∈𝐶(𝑖)

𝑝(𝑐 ∣ 𝑖; 𝜃)⎞⎟
⎠

= ∏
(𝑖,𝑐)∈𝐷

𝑝(𝑐 ∣ 𝑖; 𝜃),

and we parameterize

𝑝(𝑐 ∣ 𝑖; 𝜃) = exp(w̃⊤
𝑐 w𝑖)

∑𝑐′ exp(w̃⊤
𝑐′w𝑖)

,

where w̃𝑐 is the context vector for word 𝑐; different from w𝑖!

4

word embeddings

• This leads to the total likelihood

arg max
𝜃

∏
(𝑖,𝑐)∈𝐷

𝑝(𝑐 ∣ 𝑖; 𝜃) = arg max
𝜃

∑
(𝑖,𝑐)∈𝐷

𝑝(𝑐 ∣ 𝑖; 𝜃) =

= arg max
𝜃

∑
(𝑖,𝑐)∈𝐷

(exp(w̃⊤
𝑐 w𝑖) − log ∑

𝑐′
exp(w̃⊤

𝑐′w𝑖)) .

• How do we maximize this? It’s a huge sum...

4

word embeddings

• Negative sampling: instead of ∑𝑐′ exp(w̃⊤
𝑐′w𝑖) we sample a few

elements and compute ∑𝑐′∈𝐷′ exp(w̃⊤
𝑐′w𝑖). Why does this work?

• Consider a pair (𝑖, 𝑐) of word 𝑖 and context 𝑐; we want to
maximize 𝑝((𝑖, 𝑐) ∈ 𝐷; 𝜃), parameterized by 𝜃.

• There are lots of pairs like this:

arg max
𝜃

∏
(𝑖,𝑐)∈𝐷

𝑝((𝑖, 𝑐) ∈ 𝐷; 𝜃) = arg max
𝜃

∑
(𝑖,𝑐)∈𝐷

log 𝑝((𝑖, 𝑐) ∈ 𝐷; 𝜃).

4

word embeddings

• Let’s parameterize 𝑝((𝑖, 𝑐) ∈ 𝐷; 𝜃) via softmax, i.e., via logistic
sigmoid 𝜎(𝑥) = 1

1+exp(−𝑥) :

𝑝((𝑖, 𝑐) ∈ 𝐷; 𝜃) = 1
1 + exp (−w̃⊤𝑐 w𝑖)

.

• We maximize the overall log-likelihood:

arg max
𝜃

∑
(𝑖,𝑐)∈𝐷

log 𝑝((𝑖, 𝑐) ∈ 𝐷; 𝜃) = arg max
𝜃

∑
(𝑖,𝑐)∈𝐷

log 1
1 + exp (−w̃⊤𝑐 w𝑖)

.

• How do we solve this?..

4

word embeddings

• Let’s parameterize 𝑝((𝑖, 𝑐) ∈ 𝐷; 𝜃) via softmax, i.e., via logistic
sigmoid 𝜎(𝑥) = 1

1+exp(−𝑥) :

𝑝((𝑖, 𝑐) ∈ 𝐷; 𝜃) = 1
1 + exp (−w̃⊤𝑐 w𝑖)

.

• We maximize the overall log-likelihood:

arg max
𝜃

∑
(𝑖,𝑐)∈𝐷

log 𝑝((𝑖, 𝑐) ∈ 𝐷; 𝜃) = arg max
𝜃

∑
(𝑖,𝑐)∈𝐷

log 1
1 + exp (−w̃⊤𝑐 w𝑖)

.

• How do we solve this?..
• ...easy: just set all w̃𝑐 and w𝑖 equal to each other and very large,
then w̃⊤

𝑐 w𝑖 will be large. :)
• What’s wrong with it?

4

word embeddings

• We have basically binary classification with only positive
examples and no negative ones!

• This is what negative sampling does: provide a set 𝐷′ of
negative examples. The maximal likelihood problem becomes

arg max
𝜃

∏
(𝑖,𝑐)∈𝐷

𝑝((𝑖, 𝑐) ∈ 𝐷; 𝜃) ∏
(𝑖′,𝑐′)∈𝐷′

𝑝((𝑖′, 𝑐′) ∉ 𝐷; 𝜃).

4

word embeddings

• Transforming:

arg max
𝜃

∏
(𝑖,𝑐)∈𝐷

𝑝((𝑖, 𝑐) ∈ 𝐷; 𝜃) ∏
(𝑖′,𝑐′)∈𝐷′

(1 − 𝑝((𝑖′, 𝑐′) ∈ 𝐷; 𝜃)) =

= arg max
𝜃

⎡⎢
⎣

∑
(𝑖,𝑐)∈𝐷

log 𝑝((𝑖, 𝑐) ∈ 𝐷; 𝜃) + ∑
(𝑖′,𝑐′)∈𝐷′

log (1 − 𝑝((𝑖′, 𝑐′) ∈ 𝐷; 𝜃))⎤⎥
⎦

=

= arg max
𝜃

∑
(𝑖,𝑐)∈𝐷

⎡⎢
⎣

log
1

1 + exp (−w̃⊤
𝑐 w𝑖) + ∑

(𝑖,𝑐′)∈𝐷′
log

1
1 + exp (w̃⊤

𝑐′ w𝑖)
⎤⎥
⎦

=

= arg max
𝜃

∑
(𝑖,𝑐)∈𝐷

⎡⎢
⎣

log 𝜎 (w̃⊤
𝑐 w𝑖) + ∑

(𝑖,𝑐′)∈𝐷′
log 𝜎 (−w̃⊤

𝑐′ w𝑖)⎤⎥
⎦

.

4

word embeddings

• This is the main formula, it remains to take a gradient descent
step for every local window:

− log 𝜎 (w̃⊤
𝑐 w𝑖) − ∑

(𝑖,𝑐′)∈𝐷′
log 𝜎 (−w̃⊤

𝑐′w𝑖) .

• CBOW works in a very similar way.

4

word embeddings

• Another view of word2vec (Levy, Goldberg, 2014) – let’s consider
the loss function again:

ℓ = ∑
(𝑖,𝑐)∈𝐷

(log 𝜎 (w̃⊤
𝑐 w𝑖) + 𝑘𝔼𝑐′ [log 𝜎 (−w̃⊤

𝑐′w𝑖)]) .

4

word embeddings

• Another view of word2vec (Levy, Goldberg, 2014) – let’s consider
the loss function again:

ℓ = ∑
(𝑖,𝑐)∈𝐷

(log 𝜎 (w̃⊤
𝑐 w𝑖) + 𝑘𝔼𝑐′ [log 𝜎 (−w̃⊤

𝑐′w𝑖)]) .

• We rewrite it, collecting the sums w.r.t. each pair (𝑖, 𝑐); let 𝑛𝑖,𝑐 be
the number of times it occurs, 𝑛𝑖 — occurrences of 𝑖, 𝑛𝑐, of 𝑐:

ℓ = ∑
𝑖

∑
𝑐

(𝑛𝑖,𝑐 log 𝜎 (w̃⊤
𝑐 w𝑖) + 𝑘𝑛𝑖,𝑐𝔼𝑐′ [log 𝜎 (−w̃⊤

𝑐′w𝑖)]) ,

and the second part is

∑
𝑖

∑
𝑐

𝑘𝑛𝑖,𝑐𝔼𝑐′ [log 𝜎 (−w̃⊤
𝑐′w𝑖)] = ∑

𝑖
𝑘𝑛𝑖𝔼𝑐′ [log 𝜎 (−w̃⊤

𝑐′w𝑖)] ,

4

word embeddings

• Before we estimated the expectation via samples, now let’s write
it down in full:

𝔼𝑐′ [log 𝜎 (−w̃⊤
𝑐′w𝑖)] = ∑

𝑐′

𝑛𝑐′

|𝐷| log 𝜎 (−w̃⊤
𝑐′w𝑖) =

= 𝑛𝑐
|𝐷| log 𝜎 (−w̃⊤

𝑐 w𝑖) + ∑
𝑐′≠𝑐

𝑛𝑐′

|𝐷| log 𝜎 (−w̃⊤
𝑐′w𝑖) .

• So w.r.t. each pair we have

ℓ𝑖,𝑐 = 𝑛𝑖,𝑐 log 𝜎 (w̃⊤
𝑐 w𝑖) + 𝑘𝑛𝑖

𝑛𝑐
|𝐷| log 𝜎 (−w̃⊤

𝑐 w𝑖) .

4

word embeddings

• To optimize this, we denote 𝑥 = w̃⊤
𝑐 w𝑖 and differentiate w.r.t. 𝑥

on both sides:

𝜕ℓ𝑖,𝑐
𝜕𝑥 = 𝑛𝑖,𝑐𝜎(−𝑥) − 𝑘𝑛𝑖

𝑛𝑐
|𝐷|𝜎(𝑥).

• Equating to zero, we get a quadratic equation w.r.t. 𝑒𝑥:

𝑒2𝑥 − (𝑛𝑖,𝑐
𝑘𝑛𝑖

𝑛𝑐
|𝐷|

− 1) 𝑒𝑥 − 𝑛𝑖,𝑐
𝑘𝑛𝑖

𝑛𝑐
|𝐷|

= 0.

• Two roots, −1 doesn’t fit:

𝑒𝑥 = 𝑛𝑖,𝑐
𝑘𝑛𝑖

𝑛𝑐
|𝐷|

= 1
𝑘

𝑛𝑖,𝑐|𝐷|
𝑛𝑖𝑛𝑐

.

4

word embeddings

• Thus, to optimize the original likelihood we need to find w̃𝑐
and w𝑖 such that

w̃⊤
𝑐 w𝑖 = log (𝑛𝑖,𝑐|𝐷|

𝑛𝑖𝑛𝑐
) − log 𝑘.

• log(𝑛𝑖,𝑐|𝐷|
𝑛𝑖𝑛𝑐) is the pointwise mutual information (PMI).

• So finding w̃𝑐 and w𝑖 is basically singular decomposition of the
PMI matrix!

• Question: why do we need separate w̃ and w vectors?
• Live demo: nearest neighbors, simple geometric relations.

4

thank you!

Thank you for your attention!

5

