DISTRIBUTED WORD REPRESENTATIONS

Natural Language Processing

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
January 12, 2018

WORD EMBEDDINGS

- Distributional hypothesis in linguistics: words with similar meaning will occur in similar contexts.
- Distributed word representations map words to a Euclidean space (usually of dimension several hundred):
- started in earnest in (Bengio et al. 2003; 2006), although there were earlier ideas;
- word2vec (Mikolov et al. 2013): train weights that serve best for simple prediction tasks between a word and its context: continuous bag-of-words (CBOW) and skip-gram;
- Glove (Pennington et al. 2014): train word weights to decompose the (log) cooccurrence matrix.

WORD EMBEDDINGS

- Bengio et al.:
- each word $i \in V$ corresponds to a feature vector $\mathbf{w}_{i} \in \mathbb{R}^{d}$ (word embedding);

WORD EMBEDDINGS

- Bengio et al.:
- probability of the event that i occurs in a local context c_{1}, \ldots, c_{n} is a function of these features:

$$
\hat{p}\left(i \mid c_{1}, \ldots, c_{n}\right)=f\left(\mathbf{w}_{i}, \mathbf{w}_{c_{1}}, \ldots, \mathbf{w}_{c_{n}} ; \theta\right)
$$

where $\mathbf{w}_{c_{1}}, \ldots, \mathbf{w}_{c_{n}}$ are vectors of context words and f is a function with parameters θ;

- now we can simply train both θ and \mathbf{w} at the same time, maximizing the joint likelihood

$$
L(W, \theta)=\frac{1}{T} \sum_{t} \log f\left(\mathbf{w}_{t}, \mathbf{w}_{t-1}, \ldots, \mathbf{w}_{t-n+1} ; \theta\right)+R(W, \theta)
$$

where t spans context windows and $R(W, \theta)$ is a regularizer.

- This was quite slow and did not work too well... but actually word2vec is pretty much based on the same idea.

WORD2VEC

- So what does word2vec do? Two main architectures.
- Difference between skip-gram and CBOW architectures:
- CBOW model predicts a word from its local context;
- skip-gram model predicts context words from the current word.

word2vec

- The CBOW word2vec model operates as follows:
- inputs are one-hot word representations of dimension V;
- the hidden layer is the matrix of vector embeddings W;
- the hidden layer's output is the average of input vectors;
- as output we get an estimate u_{j} for each word, and the posterior is a simple softmax:

$$
\hat{p}\left(i \mid c_{1}, \ldots, c_{n}\right)=\frac{\exp \left(u_{j}\right)}{\sum_{j^{\prime}=1}^{V} \exp \left(u_{j^{\prime}}\right)}
$$

- thus, the loss function on a local window is to make the posterior distribution as close as possible to the data distribution:

$$
L=-\log p\left(i \mid c_{1}, \ldots, c_{n}\right)=-u_{j}+\log \sum_{j^{\prime}=1}^{|V|} \exp \left(u_{j^{\prime}}\right)
$$

word2vec

- In skip-gram, it's the opposite:
- we predict each context word from the central word;
- so now there are several multinomial distributions, one softmax for each context word:

$$
\hat{p}\left(c_{k} \mid i\right)=\frac{\exp \left(u_{k c_{k}}\right)}{\sum_{j^{\prime}=1}^{V} \exp \left(u_{j^{\prime}}\right)} .
$$

WORD EMBEDDINGS

- How do we train a model like that?
- E.g., in skip-gram we choose θ to maximize

$$
L(\theta)=\prod_{i \in D}\left(\prod_{c \in C(i)} p(c \mid i ; \theta)\right)=\prod_{(i, c) \in D} p(c \mid i ; \theta),
$$

and we parameterize

$$
p(c \mid i ; \theta)=\frac{\exp \left(\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)}{\sum_{c^{\prime}} \exp \left(\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right)},
$$

where $\tilde{\mathbf{w}}_{c}$ is the context vector for word c; different from \mathbf{w}_{i} !

WORD EMBEDDINGS

- This leads to the total likelihood

$$
\begin{aligned}
& \arg \max _{\theta} \prod_{(i, c) \in D} p(c \mid i ; \theta)=\arg \max _{\theta} \sum_{(i, c) \in D} p(c \mid i ; \theta)= \\
&=\arg \max _{\theta} \sum_{(i, c) \in D}\left(\exp \left(\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)-\log \sum_{c^{\prime}} \exp \left(\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right)\right)
\end{aligned}
$$

- How do we maximize this? It's a huge sum...

WORD EMBEDDINGS

- Negative sampling: instead of $\sum_{c^{\prime}} \exp \left(\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right)$ we sample a few elements and compute $\sum_{c^{\prime} \in D^{\prime}} \exp \left(\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right)$. Why does this work?
- Consider a pair (i, c) of word i and context c; we want to maximize $p((i, c) \in D ; \theta)$, parameterized by θ.
- There are lots of pairs like this:
$\arg \max _{\theta} \prod_{(i, c) \in D} p((i, c) \in D ; \theta)=\arg \max _{\theta} \sum_{(i, c) \in D} \log p((i, c) \in D ; \theta)$.

WORD EMBEDDINGS

- Let's parameterize $p((i, c) \in D ; \theta)$ via softmax, i.e., via logistic sigmoid $\sigma(x)=\frac{1}{1+\exp (-x)}$:

$$
p((i, c) \in D ; \theta)=\frac{1}{1+\exp \left(-\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)} .
$$

- We maximize the overall log-likelihood:

$$
\arg \max _{\theta} \sum_{(i, c) \in D} \log p((i, c) \in D ; \theta)=\arg \max _{\theta} \sum_{(i, c) \in D} \log \frac{1}{1+\exp \left(-\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)} .
$$

- How do we solve this?..

WORD EMBEDDINGS

- Let's parameterize $p((i, c) \in D ; \theta)$ via softmax, i.e., via logistic sigmoid $\sigma(x)=\frac{1}{1+\exp (-x)}$:

$$
p((i, c) \in D ; \theta)=\frac{1}{1+\exp \left(-\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)} .
$$

- We maximize the overall log-likelihood:

$$
\arg \max _{\theta} \sum_{(i, c) \in D} \log p((i, c) \in D ; \theta)=\arg \max _{\theta} \sum_{(i, c) \in D} \log \frac{1}{1+\exp \left(-\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)} .
$$

- How do we solve this?..
- ...easy: just set all $\tilde{\mathbf{w}}_{c}$ and \mathbf{w}_{i} equal to each other and very large, then $\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}$ will be large. :)
- What's wrong with it?

WORD EMBEDDINGS

- We have basically binary classification with only positive examples and no negative ones!
- This is what negative sampling does: provide a set D^{\prime} of negative examples. The maximal likelihood problem becomes

$$
\arg \max _{\theta} \prod_{(i, c) \in D} p((i, c) \in D ; \theta) \prod_{\left(i^{\prime}, c^{\prime}\right) \in D^{\prime}} p\left(\left(i^{\prime}, c^{\prime}\right) \notin D ; \theta\right)
$$

WORD EMBEDDINGS

- Transforming:

$$
\begin{aligned}
& \arg \max _{\theta} \prod_{(i, c) \in D} p((i, c) \in D ; \theta) \prod_{\left(i^{\prime}, c^{\prime}\right) \in D^{\prime}}\left(1-p\left(\left(i^{\prime}, c^{\prime}\right) \in D ; \theta\right)\right)= \\
= & \arg \max _{\theta}\left[\sum_{(i, c) \in D} \log p((i, c) \in D ; \theta)+\sum_{\left(i^{\prime}, c^{\prime}\right) \in D^{\prime}} \log \left(1-p\left(\left(i^{\prime}, c^{\prime}\right) \in D ; \theta\right)\right)\right]= \\
= & \arg \max _{\theta} \sum_{(i, c) \in D}\left[\log \frac{1}{1+\exp \left(-\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)}+\sum_{\left(i, c^{\prime}\right) \in D^{\prime}} \log \frac{1}{1+\exp \left(\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right)}\right]= \\
= & \arg \max _{\theta} \sum_{(i, c) \in D}\left[\log \sigma\left(\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)+\sum_{\left(i, c^{\prime}\right) \in D^{\prime}} \log \sigma\left(-\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right)\right] .
\end{aligned}
$$

WORD EMBEDDINGS

- This is the main formula, it remains to take a gradient descent step for every local window:

$$
-\log \sigma\left(\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)-\sum_{\left(i, c^{\prime}\right) \in D^{\prime}} \log \sigma\left(-\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right) .
$$

- CBOW works in a very similar way.

WORD EMBEDDINGS

- Another view of word2vec (Levy, Goldberg, 2014) - let's consider the loss function again:

$$
\ell=\sum_{(i, c) \in D}\left(\log \sigma\left(\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)+k \mathbb{E}_{c^{\prime}}\left[\log \sigma\left(-\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right)\right]\right)
$$

WORD EMBEDDINGS

- Another view of word2vec (Levy, Goldberg, 2014) - let's consider the loss function again:

$$
\ell=\sum_{(i, c) \in D}\left(\log \sigma\left(\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)+k \mathbb{E}_{c^{\prime}}\left[\log \sigma\left(-\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right)\right]\right)
$$

- We rewrite it, collecting the sums w.r.t. each pair (i, c); let $n_{i, c}$ be the number of times it occurs, $n_{i}-$ occurrences of i, n_{c}, of c :

$$
\ell=\sum_{i} \sum_{c}\left(n_{i, c} \log \sigma\left(\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)+k n_{i, c} \mathbb{E}_{c^{\prime}}\left[\log \sigma\left(-\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right)\right]\right),
$$

and the second part is

$$
\sum_{i} \sum_{c} k n_{i, c} \mathbb{E}_{c^{\prime}}\left[\log \sigma\left(-\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right)\right]=\sum_{i} k n_{i} \mathbb{E}_{c^{\prime}}\left[\log \sigma\left(-\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right)\right]
$$

WORD EMBEDDINGS

- Before we estimated the expectation via samples, now let's write it down in full:

$$
\begin{aligned}
& \mathbb{E}_{c^{\prime}}\left[\log \sigma\left(-\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right)\right]=\sum_{c^{\prime}} \frac{n_{c^{\prime}}}{|D|} \log \sigma\left(-\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right)= \\
&=\frac{n_{c}}{|D|} \log \sigma\left(-\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)+\sum_{c^{\prime} \neq c} \frac{n_{c^{\prime}}}{|D|} \log \sigma\left(-\tilde{\mathbf{w}}_{c^{\prime}}^{\top} \mathbf{w}_{i}\right) .
\end{aligned}
$$

- So w.r.t. each pair we have

$$
\ell_{i, c}=n_{i, c} \log \sigma\left(\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right)+k n_{i} \frac{n_{c}}{|D|} \log \sigma\left(-\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}\right) .
$$

WORD EMBEDDINGS

- To optimize this, we denote $x=\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}$ and differentiate w.r.t. x on both sides:

$$
\frac{\partial \ell_{i, c}}{\partial x}=n_{i, c} \sigma(-x)-k n_{i} \frac{n_{c}}{|D|} \sigma(x) .
$$

- Equating to zero, we get a quadratic equation w.r.t. e^{x} :

$$
e^{2 x}-\left(\frac{n_{i, c}}{k n_{i} \frac{n_{c}}{|D|}}-1\right) e^{x}-\frac{n_{i, c}}{k n_{i} \frac{n_{c}}{|D|}}=0 .
$$

- Two roots, -1 doesn't fit:

$$
e^{x}=\frac{n_{i, c}}{k n_{i} \frac{n_{c}}{|D|}}=\frac{1}{k} \frac{n_{i, c}|D|}{n_{i} n_{c}} .
$$

WORD EMBEDDINGS

- Thus, to optimize the original likelihood we need to find $\tilde{\mathbf{w}}_{c}$ and \mathbf{w}_{i} such that

$$
\tilde{\mathbf{w}}_{c}^{\top} \mathbf{w}_{i}=\log \left(\frac{n_{i, c}|D|}{n_{i} n_{c}}\right)-\log k .
$$

- $\log \left(\frac{n_{i, c}|D|}{n_{i} n_{c}}\right)$ is the pointwise mutual information (PMI).
- So finding $\tilde{\mathbf{w}}_{c}$ and \mathbf{w}_{i} is basically singular decomposition of the PMI matrix!
- Question: why do we need separate $\tilde{\mathbf{w}}$ and \mathbf{w} vectors?
- Live demo: nearest neighbors, simple geometric relations.

Thank you for your attention!

