DISTRIBUTED WORD REPRESENTATIONS

NATURAL LANGUAGE PROCESSING

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
January 12, 2018

WORD EMBEDDINGS

- Distributional hypothesis in linguistics: words with similar
meaning will occur in similar contexts.

- Distributed word representations map words to a Euclidean
space (usually of dimension several hundred):

- started in earnest in (Bengio et al. 2003; 2006), although there
were earlier ideas;

- word2vec (Mikolov et al. 2013): train weights that serve best for
simple prediction tasks between a word and its context:
continuous bag-of-words (CBOW) and skip-gram;

- Glove (Pennington et al. 2014): train word weights to decompose
the (log) cooccurrence matrix.

WORD EMBEDDINGS

Bengio et al.:

each word i € V corresponds to a feature vector w, € R (word
embedding);

i-th output = P(w, = i| context)

softmax
[X

eee)

most| computation here

tanh

W

\ :
/

- 2
. (o o D)
Table .. ., Matrix ¢
!Ooé—UP shared parameters
in across words

index for wy_p1 index for w;_» index for w,_;

WORD EMBEDDINGS

- Bengio et al.:
- probability of the event that ¢ occurs in a local context ¢y, ..., ¢
is a function of these features:

n

]5(’1:‘01, e Cn) = f(wivwc17 000 g Wc 79)7

n

wherew, , ... are vectors of context words and f is a
function with parameters 6,

- now we can simply train both 6 and w at the same time,
maximizing the joint likelihood

W
? Ten

L(W,0) Zlogf W, Wy 1, Wy 13 0) + R(W,0),

where ¢t spans context windows and R(W,) is a regularizer.

- This was quite slow and did not work too well... but actually
word2vec is pretty much based on the same idea.

WORD2VEC

- So what does word2vec do? Two main architectures.
- Difference between skip-gram and CBOW architectures:
- CBOW model predicts a word from its local context;
- skip-gram model predicts context words from the current word.

QOutput
Input layer layer
e

Qq

Xi Yy
Hidden Qutput Hidden

layer Input layer layer

(01010 eXe]

- Cxv

ol

Q

Yc

WORD2VEC

- The CBOW word2vec model operates as follows:
- inputs are one-hot word representations of dimension V;
- the hidden layer is the matrix of vector embeddings W;
- the hidden layer’s output is the average of input vectors;
- as output we get an estimate u; for each word, and the posterior
is a simple softmax:
exp(u;)

Plilers o cn) = ey
SV expluy)

)

- thus, the loss function on a local window is to make the posterior
distribution as close as possible to the data distribution:

\4

L = —logp(ilcy, ..., c,) = —u; + log Z exp(u;).
=1

WORD2VEC

- In skip-gram, it's the opposite:
- we predict each context word from the central word;
- so now there are several multinomial distributions, one softmax
for each context word:

exp(uge,)

plewki) = v s

WORD EMBEDDINGS

- How do we train a model like that?

- E.g, in skip-gram we choose # to maximize
H(H pcz@) = I[»lcli;0),
i€D \ceC(i) (i,c)eD

and we parameterize

exp(We w;)

Zc/ eXp(‘;/I’WL) 7

where W, is the context vector for word ¢; different from w,!

p(c|i;0) =

WORD EMBEDDINGS

- This leads to the total likelihood

arg max H p(c|i;0) = arg max Z p(c|i;0) =
(i,c)eD (i,c)eD

= 1 .
arg max Z (exp wow,) ogZexp)

(i,c)eD

- How do we maximize this? It's a huge sum...

WORD EMBEDDINGS

* Negative sampling: instead of 3_ , exp(Ww/,w;) we sample a few

~T .
elements and compute Zc/eD, exp(w,,w;). Why does this work?
- Consider a pair (i, ¢) of word 7 and context ¢; we want to

maximize p((4,c) € D;0), parameterized by 6.
- There are lots of pairs like this:

arg max H p((i,c) € D;0) = arg max Z logp((4,¢) € D;0).
(i,c)eD (i,c)eD

WORD EMBEDDINGS

- Let's parameterize p((i,¢) € D;0) via softmax, i.e., via logistic

sigmoid o(z) = m:

1
] D;0) = .
p(li€) € Di0) = e

- We maximize the overall log-likelihood:

~ log p((i,) € D;0) = arg]
arg max Z ogp((i,c) € D;0) = arg max Z og

_wl)
(i,c)eD (i,c)eD 1 +exp (We Wl)

- How do we solve this?..

WORD EMBEDDINGS

- Let's parameterize p((i,¢) € D;0) via softmax, i.e., via logistic

sigmoid o(z) = m:

1
] D;0) = .
p(li€) € Di0) = e

- We maximize the overall log-likelihood:

~ log p((i,) € D;0) = arg]
arg max Z ogp((i,c) € D;0) = arg max Z og

_wl)
(i,c)eD (i,c)eD 1 +exp (We W’L)

- How do we solve this?..

- ..easy: just set all W, and w; equal to each other and very large,
then w]!w, will be large. :)

- What's wrong with it?

WORD EMBEDDINGS

- We have basically binary classification with only positive
examples and no negative ones!

- This is what negative sampling does: provide a set D’ of
negative examples. The maximal likelihood problem becomes

arg max H p((i,c) € D;0) H p((i',¢") ¢ D;0).

(i,c)eD (i ,c’)eD’

WORD EMBEDDINGS

- Transforming:

g 8 _ X 8 —
arg max H p((i,c) € D;0)) II (-,) e Do) =
(i,c)eD (i’,c’)eD’

=arg max { Z logp((4,c) € D;0) + Z log (1 —p((i’,c") € D;Q))} =

(i,c)eD (i’,¢")eD’

=arg max Z |: ﬁ T Z log 1~T’L):| =

(i/0eD Wow, (i,e")eD’ 1+ exp (wc,w
=arg max Z {loga (Wiow,) + Z log o (—\TVI/W,L-)} .
(i,c)eD (¢,e”)eD’

WORD EMBEDDINGS

- This is the main formula, it remains to take a gradient descent
step for every local window:

—logo (W/w,) — Z logo (—W)w,).
(i,c¢’)eD’

- CBOW works in a very similar way.

WORD EMBEDDINGS

- Another view of word2vec (Levy, Goldberg, 2014) - let's consider
the loss function again:

(= Z (logo (Wl w,;) + kE, [logo (—W] w,)]).
(i,c)eD

WORD EMBEDDINGS

- Another view of word2vec (Levy, Goldberg, 2014) - let's consider
the loss function again:

f= Z (logo (Wl w;) + kE, [logo (—W] w;)]).
(i,c)eD

- We rewrite it, collecting the sums w.r.t. each pair (i, c); let n, . be
the number of times it occurs, n; — occurrences of i, n,, of ¢

E_ZZ 10g0’ w, W)-Fk??L(E([loga(_w;r/wt)])’

and the second part is

Zanw o |logo (—w /) w;) Zk‘nﬂi [logo (—w] w;)],

WORD EMBEDDINGS

- Before we estimated the expectation via samples, now let’s write
it down in full:

E. [logo (—%,w)] =Y "< logo (—w]w,) =

- So w.rt. each pair we have

o =, logo (Ww;) + kn, e logo (—wlw;).

27

WORD EMBEDDINGS

- To optimize this, we denote z = W] w, and differentiate w.rt. =
on both sides:

o, .
=n

or — %@

() — kny 0 (@)

- Equating to zero, we get a quadratic equation w.rt. e®:

n; . n; .
e2$ _ L] | e — Le .
o, s o, s
D] D]

- Two roots, —1 doesn't fit:

WORD EMBEDDINGS

- Thus, to optimize the original likelihood we need to find w,
and w; such that

~ n, (,|D|
wiow, =log | —— | —logk.
n;ne

- log <¥> is the pointwise mutual information (PMI).

- So finding W, and w; is basically singular decomposition of the
PMI matrix!

- Question: why do we need separate w and w vectors?

- Live demo: nearest neighbors, simple geometric relations.

THANK YOU!

Thank you for your attention!

