# WORD EMBEDDINGS II: GLOVE AND EXTENSIONS

NATURAL LANGUAGE PROCESSING

Sergey Nikolenko

Harbour Space University, Barcelona, Spain January 15, 2018

- GloVe in a way, a variation of LSA.
- We are trying to approximate the cooccurrence matrix  $X \in \mathbb{R}^{V \times V}.$
- Let  $X_{ij}$  be how many times word i cooccurs in our corpus with word  $j,\ X_i=\sum_j X_{ij}.$  Then

$$p_{ij} = p(j \mid i) = \frac{X_{ij}}{X_i} = \frac{X_{ij}}{\sum_k X_{ik}}.$$

i.e.,  $p_{ij}$  is the probability of the fact that word j occurs in the context of word i.

- If we tried to approximate the matrix of  $p_{ij}\!\!\!\!\!$  , it would be almost exactly like LSA.

- But we want to approximate the matrix of ratios  $\frac{p_{ij}}{p_{ki}}$ .
- The values  $p_{ij} = p(j \mid i)$  themselves are hard to compare.
- But  $p_{ik}$  and  $p_{jk}$  for the same word k do become comparable.
- Example from a 6 billion token corpus:

| Probability and Ratio | k = solid            | k = gas             | k = water           | k = fashion          |
|-----------------------|----------------------|---------------------|---------------------|----------------------|
| P(k ice)              | $1.9 \times 10^{-4}$ | $6.6 	imes 10^{-5}$ | $3.0 	imes 10^{-3}$ | $1.7 \times 10^{-5}$ |
| P(k steam)            | $2.2 \times 10^{-5}$ | $7.8 	imes 10^{-4}$ | $2.2 	imes 10^{-3}$ | $1.8 	imes 10^{-5}$  |
| P(k ice)/P(k steam)   | 8.9                  | $8.5\times10^{-2}$  | 1.36                | 0.96                 |

• We train the function

$$F(\mathbf{w}_i, \mathbf{w}_j; \tilde{\mathbf{w}}_k) \approx \frac{p_{ij}}{p_{jk}},$$

where  $\mathbf{w}_i$  and  $\mathbf{w}_j$  are word vectors (embeddings) for words iand j in the space  $\mathbb{R}^d$ , and  $\tilde{\mathbf{w}}_k$  are *context vectors* that ensure that we approximate the ratio in the context of k.

- What is F going to be?
- Theoretically, it could be a very complicated function, say, a deep neural network.
- But in reality we want the relations between word vectors to be simple (king—man+woman≈queen).

 $\cdot$  So we train a simple function, assuming that

$$F(\left(\mathbf{w}_{i}-\mathbf{w}_{j}\right)^{\top}\tilde{\mathbf{w}}_{k}) = \frac{F\left(\mathbf{w}_{i}^{\top}\tilde{\mathbf{w}}_{k}\right)}{F\left(\mathbf{w}_{j}^{\top}\tilde{\mathbf{w}}_{k}\right)} = \frac{p_{ij}}{p_{kj}}.$$

This makes the model train simple relations between word vectors.

- And one more reasonable assumption: F shouldn't change when we pass from X to  $X^{\top}$  and from w to  $\tilde{w}$ .
- To add this symmetry, we assume that F not only maps  $\mathbf{w}_i \mathbf{w}_j$  to the ratio of probabilities, but in general maps sums of arguments to products of function values:

$$F(\left(\mathbf{w}_{i}-\mathbf{w}_{j}\right)^{\top}\tilde{\mathbf{w}}_{k}) = \frac{F\left(\mathbf{w}_{i}^{\top}\tilde{\mathbf{w}}_{k}\right)}{F\left(\mathbf{w}_{j}^{\top}\tilde{\mathbf{w}}_{k}\right)} = \frac{p_{ij}}{p_{jk}}.$$

• What kind of a function is F then?

 $\cdot$  *F* actually has to be an exponent:

$$\mathbf{w}_i^\top \tilde{\mathbf{w}}_k = \log(p_{ik}) = \log(X_{ik}) - \log(X_i).$$

- We can hide  $\log(X_i)$  in bias terms  $\mathbf{b}_i$ , getting a nice symmetric model:

$$\mathbf{w}_i^\top \tilde{\mathbf{w}}_k + b_i + \tilde{b}_k = \log(X_{ik}).$$

- Two problems left:
  - +  $\log(X_{ik})$  very often diverges because  $X_{ik}$  is often zero; generally, X is a very sparse matrix;
  - the model treats all  $X_{ik}$  the same, but for rare words the ratio is very random, and for very frequent words it's not very important.
- In GloVe, we solve these problems by training w and  $\widetilde{w}$  via weighted sum of squares loss function.

 $\cdot$  Thus, the objective function for GloVe will be

$$J = \sum_{i,j=1}^{V} f(X_{ij}) \left( \mathbf{w}_i^\top \tilde{\mathbf{w}}_j + b_i + \tilde{b}_j - \log X_{ij} \right)^2,$$

where f is a nondecreasing function with f(0) = 0 that doesn't grow too fast, e.g.,

$$f(x) = \begin{cases} \left(\frac{x}{x_{\max}}\right)^{\alpha}, & \text{ if } x < x_{\max}, \\ 1 & \text{ otherwise.} \end{cases}$$

• Demo: nearest neighbors, geometric relations.

## EXTENSIONS

- Some modifications of word embeddings add external information.
- (Levy et al., 2014): use dependency parsing for local context.



# WORD VECTORS WITH EXTERNAL INFORMATION

• The RC-NET model (Xu et al. 2014) extends skip-grams with relations (semantic and syntactic) and categorical knowledge (sets of synonyms, domain knowledge etc.).



• We would like to add relations from *Freebase* or similar knowledge bases – how?

#### WORD VECTORS WITH EXTERNAL INFORMATION

• The basic *word2vec* model gets a regularizer for every relation that tries to bring it closer to a linear relation between the vectors, so that, e.g.,



- Another important problem with both word vectors and char-level models: homonyms.
- How do we distinguish different senses of the same word?
  - the model usually just chooses one meaning;
  - e.g., let's check nearest neighbors for words like **converse**, **jaguar**, and other homonyms.
- We have to add *latent* variables for different meaning and infer them from context.

- To train the meanings with latent variables Bayesian inference with stochastic variational inference (Bartunov et al., 2015).
- Problem: we don't know in advance how many senses a word has.
- Basic idea set a prior distribution that allows for any number of senses, just with decreasing probabilities.
- Stick-breaking priors on the senses  $z_w$ :

$$p(z=k\mid w,\beta)=\beta_{wk}\prod_{r=1}^{k-1}(1-\beta_{wr}), \quad p(\beta_{wk}\mid \alpha)=\mathrm{Beta}(\beta_{wk}\mid 1,\alpha).$$

 $\cdot$  The total likelihood is now

$$\begin{split} p(C,Z,\beta \mid W,\alpha,\theta) &= \\ &= \prod_{w=1}^V \prod_{k=1}^\infty p(\beta_{wk} \mid \alpha) \prod_{i=1}^N p(z_i \mid w_i,\beta) \prod_{j=1}^N p(c_{ij} \mid z_i,w_i,\theta). \end{split}$$

And we are optimizing

$$p(C \mid W, \alpha, \theta) = \int \sum_{Z} p(C, Z, \beta \mid W, \alpha, \theta) \mathrm{d}\beta.$$

• Hard but possible to optimize – stochastic variational inference.

# WORD SENSE DISAMBIGUATION

• Nice results:

| ALPHA     | p(z)                                         | "LIGHT"<br>nearest neighbours                                                                                                                            | p(z)                                 | "CORE"<br>nearest neighbours                                                                                                             |  |
|-----------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Skip-gram | 1.00                                         | far-red, emitting                                                                                                                                        | 1.00                                 | cores, component, i7                                                                                                                     |  |
| 0.05      | 1.00                                         | far-red, illumination                                                                                                                                    | 0.40<br>0.60                         | corium, cores, sub-critical<br>basic, i7, standards-based<br>competencies, curriculum<br>cpu, cores, i7, powerxcell<br>nucleus, backbone |  |
| 0.075     | 0.28<br>0.72                                 | armoured, amx-13, kilcrease bright, sunlight, luminous                                                                                                   | 0.30<br>0.34<br>0.36                 |                                                                                                                                          |  |
| 0.1       | 0.09<br>0.17<br>0.09<br>0.26<br>0.28<br>0.11 | tvärbanan, hudson-bergen<br>dark, bright, green<br>4th, dragoons, 2nd<br>radiation, ultraviolet<br>darkness, shining, shadows<br>self-propelled, armored | 0.21<br>0.13<br>0.27<br>0.15<br>0.24 | reactor, hydrogen-rich<br>intel, processors<br>curricular, competencies<br>downtown, cores, center<br>nucleus, rag-tag, roster           |  |

• The hyperparameter  $\alpha$  controls how many senses are probable:



6

# Thank you for your attention!