
word embeddings ii: glove and extensions
Natural Language Processing

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
January 15, 2018

glove

glove

• GloVe – in a way, a variation of LSA.
• We are trying to approximate the cooccurrence matrix

𝑋 ∈ ℝ𝑉 ×𝑉 .
• Let 𝑋𝑖𝑗 be how many times word 𝑖 cooccurs in our corpus with
word 𝑗, 𝑋𝑖 = ∑𝑗 𝑋𝑖𝑗. Then

𝑝𝑖𝑗 = 𝑝(𝑗 ∣ 𝑖) = 𝑋𝑖𝑗
𝑋𝑖

= 𝑋𝑖𝑗
∑𝑘 𝑋𝑖𝑘

.

i.e., 𝑝𝑖𝑗 is the probability of the fact that word 𝑗 occurs in the
context of word 𝑖.

• If we tried to approximate the matrix of 𝑝𝑖𝑗, it would be almost
exactly like LSA.

3

glove

• But we want to approximate the matrix of ratios 𝑝𝑖𝑗
𝑝𝑘𝑗
.

• The values 𝑝𝑖𝑗 = 𝑝(𝑗 ∣ 𝑖) themselves are hard to compare.
• But 𝑝𝑖𝑘 and 𝑝𝑗𝑘 for the same word 𝑘 do become comparable.
• Example from a 6 billion token corpus:

3

glove

• We train the function

𝐹(w𝑖, w𝑗; w̃𝑘) ≈ 𝑝𝑖𝑗
𝑝𝑗𝑘

,

where w𝑖 and w𝑗 are word vectors (embeddings) for words 𝑖
and 𝑗 in the space ℝ𝑑, and w̃𝑘 are context vectors that ensure
that we approximate the ratio in the context of 𝑘.

• What is 𝐹 going to be?
• Theoretically, it could be a very complicated function, say, a
deep neural network.

• But in reality we want the relations between word vectors to be
simple (king−man+woman≈queen).

3

glove

• So we train a simple function, assuming that

𝐹((w𝑖 − w𝑗)
⊤ w̃𝑘) = 𝐹 (w⊤

𝑖 w̃𝑘)
𝐹 (w⊤

𝑗 w̃𝑘)
= 𝑝𝑖𝑗

𝑝𝑘𝑗
.

This makes the model train simple relations between word
vectors.

• And one more reasonable assumption: 𝐹 shouldn’t change
when we pass from 𝑋 to 𝑋⊤ and from w to w̃.

• To add this symmetry, we assume that 𝐹 not only maps w𝑖 − w𝑗
to the ratio of probabilities, but in general maps sums of
arguments to products of function values:

𝐹((w𝑖 − w𝑗)
⊤ w̃𝑘) = 𝐹 (w⊤

𝑖 w̃𝑘)
𝐹 (w⊤

𝑗 w̃𝑘)
= 𝑝𝑖𝑗

𝑝𝑗𝑘
.

• What kind of a function is 𝐹 then?
3

glove

• 𝐹 actually has to be an exponent:

w⊤
𝑖 w̃𝑘 = log(𝑝𝑖𝑘) = log(𝑋𝑖𝑘) − log(𝑋𝑖).

• We can hide log(𝑋𝑖) in bias terms b𝑖, getting a nice symmetric
model:

w⊤
𝑖 w̃𝑘 + 𝑏𝑖 + ̃𝑏𝑘 = log(𝑋𝑖𝑘).

3

glove

• Two problems left:
• log(𝑋𝑖𝑘) very often diverges because 𝑋𝑖𝑘 is often zero; generally,

𝑋 is a very sparse matrix;
• the model treats all 𝑋𝑖𝑘 the same, but for rare words the ratio is
very random, and for very frequent words it’s not very important.

• In GloVe, we solve these problems by training w and w̃ via
weighted sum of squares loss function.

3

glove

• Thus, the objective function for GloVe will be

𝐽 =
𝑉

∑
𝑖,𝑗=1

𝑓(𝑋𝑖𝑗) (w⊤
𝑖 w̃𝑗 + 𝑏𝑖 + ̃𝑏𝑗 − log 𝑋𝑖𝑗)

2 ,

where 𝑓 is a nondecreasing function with 𝑓(0) = 0 that doesn’t
grow too fast, e.g.,

𝑓(𝑥) = {(𝑥𝑥max)𝛼 , if 𝑥 < 𝑥max,
1 otherwise.

• Demo: nearest neighbors, geometric relations.

3

extensions

• Some modifications of word embeddings add external
information.

• (Levy et al., 2014): use dependency parsing for local context.

4

word vectors with external information

• The RC-NET model (Xu et al. 2014) extends skip-grams with
relations (semantic and syntactic) and categorical knowledge
(sets of synonyms, domain knowledge etc.).

• We would like to add relations from Freebase or similar
knowledge bases – how?

5

word vectors with external information

• The basic word2vec model gets a regularizer for every relation
that tries to bring it closer to a linear relation between the
vectors, so that, e.g.,

wHinton − wWimbledon ≈ 𝑟born at ≈ wEuler − wBasel

5

word sense disambiguation

• Another important problem with both word vectors and
char-level models: homonyms.

• How do we distinguish different senses of the same word?
• the model usually just chooses one meaning;
• e.g., let’s check nearest neighbors for words like converse, jaguar,
and other homonyms.

• We have to add latent variables for different meaning and infer
them from context.

6

word sense disambiguation

• To train the meanings with latent variables — Bayesian inference
with stochastic variational inference (Bartunov et al., 2015).

• Problem: we don’t know in advance how many senses a word
has.

• Basic idea – set a prior distribution that allows for any number
of senses, just with decreasing probabilities.

• Stick-breaking priors on the senses 𝑧𝑤:

𝑝(𝑧 = 𝑘 ∣ 𝑤, 𝛽) = 𝛽𝑤𝑘
𝑘−1
∏
𝑟=1

(1−𝛽𝑤𝑟), 𝑝(𝛽𝑤𝑘 ∣ 𝛼) = Beta(𝛽𝑤𝑘 ∣ 1, 𝛼).

6

word sense disambiguation

• The total likelihood is now

𝑝(𝐶, 𝑍, 𝛽 ∣ 𝑊, 𝛼, 𝜃) =

=
𝑉

∏
𝑤=1

∞
∏
𝑘=1

𝑝(𝛽𝑤𝑘 ∣ 𝛼)
𝑁

∏
𝑖=1

𝑝(𝑧𝑖 ∣ 𝑤𝑖, 𝛽)
𝑁

∏
𝑗=1

𝑝(𝑐𝑖𝑗 ∣ 𝑧𝑖, 𝑤𝑖, 𝜃).

• And we are optimizing

𝑝(𝐶 ∣ 𝑊, 𝛼, 𝜃) = ∫ ∑
𝑍

𝑝(𝐶, 𝑍, 𝛽 ∣ 𝑊, 𝛼, 𝜃)d𝛽.

• Hard but possible to optimize – stochastic variational inference.

6

word sense disambiguation

• Nice results:

• The hyperparameter 𝛼 controls how many senses are probable:

6

thank you!

Thank you for your attention!

7

	GloVe

