WORD EMBEDDINGS II: GLOVE AND EXTENSIONS

Natural Language Processing

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
January 15, 2018

GLOVE

GLOVE

- GloVe - in a way, a variation of LSA.
- We are trying to approximate the cooccurrence matrix $X \in \mathbb{R}^{V \times V}$.
- Let $X_{i j}$ be how many times word i cooccurs in our corpus with word $j, X_{i}=\sum_{j} X_{i j}$. Then

$$
p_{i j}=p(j \mid i)=\frac{X_{i j}}{X_{i}}=\frac{X_{i j}}{\sum_{k} X_{i k}} .
$$

i.e., $p_{i j}$ is the probability of the fact that word j occurs in the context of word i.

- If we tried to approximate the matrix of $p_{i j}$, it would be almost exactly like LSA.

GLOVE

- But we want to approximate the matrix of ratios $\frac{p_{i j}}{p_{k j}}$.
- The values $p_{i j}=p(j \mid i)$ themselves are hard to compare.
- But $p_{i k}$ and $p_{j k}$ for the same word k do become comparable.
- Example from a 6 billion token corpus:

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
$P(k \mid$ steam $)$	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	8.5×10^{-2}	1.36	0.96

GLOVE

- We train the function

$$
F\left(\mathbf{w}_{i}, \mathbf{w}_{j} ; \tilde{\mathbf{w}}_{k}\right) \approx \frac{p_{i j}}{p_{j k}}
$$

where \mathbf{w}_{i} and \mathbf{w}_{j} are word vectors (embeddings) for words i and j in the space \mathbb{R}^{d}, and $\widetilde{\mathbf{w}}_{k}$ are context vectors that ensure that we approximate the ratio in the context of k.

- What is F going to be?
- Theoretically, it could be a very complicated function, say, a deep neural network.
- But in reality we want the relations between word vectors to be simple (king-man+woman $\approx q u e e n)$.

GLOVE

- So we train a simple function, assuming that

$$
F\left(\left(\mathbf{w}_{i}-\mathbf{w}_{j}\right)^{\top} \tilde{\mathbf{w}}_{k}\right)=\frac{F\left(\mathbf{w}_{i}^{\top} \tilde{\mathbf{w}}_{k}\right)}{F\left(\mathbf{w}_{j}^{\top} \tilde{\mathbf{w}}_{k}\right)}=\frac{p_{i j}}{p_{k j}} .
$$

This makes the model train simple relations between word vectors.

- And one more reasonable assumption: F shouldn't change when we pass from X to X^{\top} and from w to $\tilde{\mathbf{w}}$.
- To add this symmetry, we assume that F not only maps $\mathbf{w}_{i}-\mathbf{w}_{j}$ to the ratio of probabilities, but in general maps sums of arguments to products of function values:

$$
F\left(\left(\mathbf{w}_{i}-\mathbf{w}_{j}\right)^{\top} \tilde{\mathbf{w}}_{k}\right)=\frac{F\left(\mathbf{w}_{i}^{\top} \tilde{\mathbf{w}}_{k}\right)}{F\left(\mathbf{w}_{j}^{\top} \tilde{\mathbf{w}}_{k}\right)}=\frac{p_{i j}}{p_{j k}} .
$$

- What kind of a function is F then?

GLOVE

- F actually has to be an exponent:

$$
\mathbf{w}_{i}^{\top} \tilde{\mathbf{w}}_{k}=\log \left(p_{i k}\right)=\log \left(X_{i k}\right)-\log \left(X_{i}\right)
$$

- We can hide $\log \left(X_{i}\right)$ in bias terms \mathbf{b}_{i}, getting a nice symmetric model:

$$
\mathbf{w}_{i}^{\top} \tilde{\mathbf{w}}_{k}+b_{i}+\tilde{b}_{k}=\log \left(X_{i k}\right)
$$

GLOVE

- Two problems left:
- $\log \left(X_{i k}\right)$ very often diverges because $X_{i k}$ is often zero; generally, X is a very sparse matrix;
- the model treats all $X_{i k}$ the same, but for rare words the ratio is very random, and for very frequent words it's not very important.
- In GloVe, we solve these problems by training wand $\tilde{\mathbf{w}}$ via weighted sum of squares loss function.

GLOVE

- Thus, the objective function for GloVe will be

$$
J=\sum_{i, j=1}^{V} f\left(X_{i j}\right)\left(\mathbf{w}_{i}^{\top} \tilde{\mathbf{w}}_{j}+b_{i}+\tilde{b}_{j}-\log X_{i j}\right)^{2},
$$

where f is a nondecreasing function with $f(0)=0$ that doesn't grow too fast, e.g.,

$$
f(x)= \begin{cases}\left(\frac{x}{x_{\max }}\right)^{\alpha}, & \text { if } x<x_{\max } \\ 1 & \text { otherwise }\end{cases}
$$

- Demo: nearest neighbors, geometric relations.

EXTENSIONS

- Some modifications of word embeddings add external information.
- (Levy et al., 2014): use dependency parsing for local context.

- The RC-NET model (Xu et al. 2014) extends skip-grams with relations (semantic and syntactic) and categorical knowledge (sets of synonyms, domain knowledge etc.).

- We would like to add relations from Freebase or similar knowledge bases - how?
- The basic word2vec model gets a regularizer for every relation that tries to bring it closer to a linear relation between the vectors, so that, e.g.,

$$
\mathbf{w}_{\text {Hinton }}-\mathbf{w}_{\text {Wimbledon }} \approx r_{\text {born at }} \approx \mathbf{w}_{\text {Euler }}-\mathbf{w}_{\text {Basel }}
$$

WORD SENSE DISAMBIGUATION

- Another important problem with both word vectors and char-level models: homonyms.
- How do we distinguish different senses of the same word?
- the model usually just chooses one meaning;
- e.g., let's check nearest neighbors for words like converse, jaguar, and other homonyms.
- We have to add latent variables for different meaning and infer them from context.

WORD SENSE DISAMBIGUATION

- To train the meanings with latent variables - Bayesian inference with stochastic variational inference (Bartunov et al., 2015).
- Problem: we don't know in advance how many senses a word has.
- Basic idea - set a prior distribution that allows for any number of senses, just with decreasing probabilities.
- Stick-breaking priors on the senses z_{w} :
$p(z=k \mid w, \beta)=\beta_{w k} \prod_{r=1}^{k-1}\left(1-\beta_{w r}\right), \quad p\left(\beta_{w k} \mid \alpha\right)=\operatorname{Beta}\left(\beta_{w k} \mid 1, \alpha\right)$.

WORD SENSE DISAMBIGUATION

- The total likelihood is now

$$
\begin{aligned}
& p(C, Z, \beta \mid W, \alpha, \theta)= \\
& \quad=\prod_{w=1}^{V} \prod_{k=1}^{\infty} p\left(\beta_{w k} \mid \alpha\right) \prod_{i=1}^{N} p\left(z_{i} \mid w_{i}, \beta\right) \prod_{j=1}^{N} p\left(c_{i j} \mid z_{i}, w_{i}, \theta\right)
\end{aligned}
$$

- And we are optimizing

$$
p(C \mid W, \alpha, \theta)=\int \sum_{Z} p(C, Z, \beta \mid W, \alpha, \theta) \mathrm{d} \beta .
$$

- Hard but possible to optimize - stochastic variational inference.

WORD SENSE DISAMBIGUATION

- Nice results:

ALPHA	"LIGHT" nearest neighbours			$p(z)$
Skip-gram	1.00	far-red, emitting	"CORE" nearest neighbours	
	1.00	far-red, illumination	1.00	cores, component, i7
			0.40	corium, cores, sub-critical
0.075	0.28	armoured, amx-13, kilcrease	0.60	basic, i7, standards-based
	0.72	bright, sunlight, luminous	0.34	competencies, curriculum
	0.09	tvärbanan, hudson-bergen	0.36	nucleus, backbone
	0.17	dark, bright, green	0.21	reactor, hydrogen-rich
	0.09	4th, dragoons, 2nd	0.13	intel, processors
0.1	0.26	radiation, ultraviolet	0.27	curricular, competencies
	0.28	darkness, shining, shadows	0.15	downtown, cores, center
	0.11	self-propelled, armored	0.24	nucleus, rag-tag, roster

- The hyperparameter α controls how many senses are probable:

Thank you for your attention!

