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FROM WORD VECTORS TO PARAGRAPH
VECTORS




HOW TO USE WORD VECTORS

- Next we can use recurrent architectures on top of word vectors.

- E.g, LSTMs for sentiment analysis:

that movie was great <\s> +
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<s> that movie was great

- Train a network of LSTMs for language modeling, then use either
the last output or averaged hidden states for sentiment.

- We will see a lot of other architectures later.



UP AND DOWN FROM WORD EMBEDDINGS

- Word embeddings are the first step of most DL models in NLP.
- But we can go both up and down from word embeddings.
- First, a sentence is not necessarily the sum of its words.

- Second, a word is not quite as atomic as the word2vec model
would like to think.



SENTENCE EMBEDDINGS

- How do we combine word vectors into “text chunk” vectors?

- The simplest idea is to use the sum and/or mean of word
embeddings to represent a sentence/paragraph:
- a baseline in (Le and Mikolov 2014);
- a reasonable method for short phrases in (Mikolov et al. 2013)
- shown to be effective for document summarization in (Kageback et
al. 2014).



SENTENCE EMBEDDINGS

- How do we combine word vectors into “text chunk” vectors?
- Distributed Memory Model of Paragraph Vectors (PV-DM) (Le and
Mikolov 2014):
- a sentence/paragraph vector is an additional vector for each
paragraph;
- acts as a “memory” to provide longer context;
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SENTENCE EMBEDDINGS

- How do we combine word vectors into “text chunk” vectors?
- Distributed Bag of Words Model of Paragraph Vectors (PV-DBOW)
(Le and Mikolov 2014):
- the model is forced to predict words randomly sampled from a
specific paragraph;
- the paragraph vector is trained to help predict words from the
same paragraph in a small window.

the group of talent assembled




SENTENCE EMBEDDINGS

- How do we combine word vectors into “text chunk” vectors?

- A number of convolutional architectures (Ma et al,, 2015;
Kalchbrenner et al.,, 2014).

- (Kiros et al. 2015): skip-thought vectors capture the meanings of
a sentence by training from skip-grams constructed on
sentences.

- (Djuric et al. 2015): model large text streams with hierarchical
neural language models with a document level and a token
level.



SENTENCE EMBEDDINGS

- How do we combine word vectors into “text chunk” vectors?
- Recursive neural networks (Socher et al., 2012):
- a neural network composes a chunk of text with another partin a
tree;
- works its way up from word vectors to the root of a parse tree.
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SENTENCE EMBEDDINGS

- How do we combine word vectors into “text chunk” vectors?
- Recursive neural networks (Socher et al,, 2012):

- by training this in a supervised way, one can get a very effective
approach to sentiment analysis (Socher et al. 2013).

Matrix-Vector Recursive Neural Network
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SENTENCE EMBEDDINGS

- How do we combine word vectors into “text chunk” vectors?
- A similar effect can be achieved with CNNs.

- Unfolding Recursive Auto-Encoder model (URAE) (Socher et al.,
2011) collapses all word embeddings into a single vector
following the parse tree and then reconstructs back the original
sentence; applied to paraphrasing and paraphrase detection.
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DEEP RECURSIVE NETWORKS

- Deep recursive networks for sentiment analysis (Irsoy, Cardie,
2014).

- First idea: decouple leaves and internal nodes.

- In recursive networks, we apply the same weights throughout
the tree:
Xy = f(WLxl(v) + WRXT(U) + b)

- Now, we use different matrices for leaves (input words) and
hidden nodes:
- we can now have fewer hidden units than the word vector
dimension;
- we can use RelLU: sparse inputs and dense hidden units do not
cause a discrepancy.



DEEP RECURSIVE NETWORKS

- Second idea: add depth to get hierarchical representations:

Y = FWERG + WRE,) + VORETY 4 p0),
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that movie cool

- An excellent architecture for sentiment analysis... if you have the
parse trees. 6



CHARACTER-LEVEL MODELS

- Word embeddings have important shortcomings:
- vectors are independent but words are not; consider, in particular,
morphology-rich languages like Russian/Ukrainian;
- the same applies to out-of-vocabulary words: a word embedding
cannot be extended to new words;
- word embedding models may grow large; it's just lookup, but the
whole vocabulary has to be stored in memory with fast access.
- E.g, “polydistributional” gets 48 results on Google, so you
probably have never seen it, and there’s very little training data:

polydistributional E Y ﬂ

Bce KapTel KapThHKK Bupeo HoeocTu Ewg v VHCTPYMEHTHI NOUCKa

Peaynstatos: npumepHo 48 (0.25 cek.)

- Do you have an idea what it means? Me too.



CHARACTER-LEVEL MODELS

- Hence, character-level representations:

- began by decomposing a word into morphemes (Luong et al. 2013;
Botha and Blunsom 2014; Soricut and Och 2015);

- but this adds errors since morphological analyzers are also
imperfect, and basically a part of the problem simply shifts to
training a morphology model;

- two natural approaches on character level: LSTMs and CNNs;

- in any case, the model is slow but we do not have to apply it to
every word, we can store embeddings of common words in a
lookup table as before and only run the model for rare words - a
nice natural tradeoff.



CHARACTER-LEVEL MODELS

- C2W (Ling et al. 2015) is based on bidirectional LSTMs:
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CHARACTER-LEVEL MODELS

- The approach of Deep Structured Semantic Model (DSSM)
(Huang et al,, 2013; Gao et al., 2014a; 2014b):
- sub-word embeddings: represent a word as a bag of trigrams;
- vocabulary shrinks to |[V|? (tens of thousands instead of millions),
but collisions are very rare;
- the representation is robust to misspellings (very important for
user-generated texts).

Example: cat — #cat# — #-c-a, c-a-t, a-t-# ———
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CHARACTER-LEVEL MODELS

- ConvNet (Zhang et al. 2015): text understanding from scratch,
from the level of symbols, based on CNNs.
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- Character-level models and extensions to appear to be very

important, especially for morphology-rich languages like
Russian or Spanish.



FASTTEXT

- FastText — character-based word vectors.
- Represent words as n-grams of characters:
- aword is a bag of n-grams plus the word itself:

#mo, mod, ode, del, el#, Hmodel#

- the word vector is the sum of the vectors of its components:
n-grams fromn = 3 ton = 6;
- and then it's just regular skip-gram on top of these words.

- Significant improvements for many tasks like word analogy.



FASTTEXT

- Most important n-grams:

word n-grams
autofahrer fahr  fahrer auto
freundeskreis kreis  kreis> <freun
DE grundwort wort  wort> grund
sprachschule schul  hschul  sprach
tageslicht licht gesl tages
anarchy chy <anar narchy
monarchy monarc chy <monar
kindness ness> ness kind
politeness polite  ness>  eness>
EN unlucky <un cky>  nlucky
lifetime life <life time
starfish fish fish> star
submarine  marine sub marin
transform trans  <trans form
finirais ais> nir fini
Fr finissent ent> finiss <finis
finissions ions> finiss sions>




THANK YOU!

Thank you for your attention!
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