
up and down from word embeddings
Natural Language Processing

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
January 16, 2018

from word vectors to paragraph
vectors

how to use word vectors

• Next we can use recurrent architectures on top of word vectors.
• E.g., LSTMs for sentiment analysis:

• Train a network of LSTMs for language modeling, then use either
the last output or averaged hidden states for sentiment.

• We will see a lot of other architectures later.

3

up and down from word embeddings

• Word embeddings are the first step of most DL models in NLP.
• But we can go both up and down from word embeddings.
• First, a sentence is not necessarily the sum of its words.
• Second, a word is not quite as atomic as the word2vec model
would like to think.

4

sentence embeddings

• How do we combine word vectors into “text chunk” vectors?
• The simplest idea is to use the sum and/or mean of word
embeddings to represent a sentence/paragraph:

• a baseline in (Le and Mikolov 2014);
• a reasonable method for short phrases in (Mikolov et al. 2013)
• shown to be effective for document summarization in (Kageback et
al. 2014).

5

sentence embeddings

• How do we combine word vectors into “text chunk” vectors?
• Distributed Memory Model of Paragraph Vectors (PV-DM) (Le and
Mikolov 2014):

• a sentence/paragraph vector is an additional vector for each
paragraph;

• acts as a “memory” to provide longer context;

5

sentence embeddings

• How do we combine word vectors into “text chunk” vectors?
• Distributed Bag of Words Model of Paragraph Vectors (PV-DBOW)
(Le and Mikolov 2014):

• the model is forced to predict words randomly sampled from a
specific paragraph;

• the paragraph vector is trained to help predict words from the
same paragraph in a small window.

5

sentence embeddings

• How do we combine word vectors into “text chunk” vectors?
• A number of convolutional architectures (Ma et al., 2015;
Kalchbrenner et al., 2014).

• (Kiros et al. 2015): skip-thought vectors capture the meanings of
a sentence by training from skip-grams constructed on
sentences.

• (Djuric et al. 2015): model large text streams with hierarchical
neural language models with a document level and a token
level.

5

sentence embeddings

• How do we combine word vectors into “text chunk” vectors?
• Recursive neural networks (Socher et al., 2012):

• a neural network composes a chunk of text with another part in a
tree;

• works its way up from word vectors to the root of a parse tree.

5

sentence embeddings

• How do we combine word vectors into “text chunk” vectors?
• Recursive neural networks (Socher et al., 2012):

• by training this in a supervised way, one can get a very effective
approach to sentiment analysis (Socher et al. 2013).

5

sentence embeddings

• How do we combine word vectors into “text chunk” vectors?
• A similar effect can be achieved with CNNs.
• Unfolding Recursive Auto-Encoder model (URAE) (Socher et al.,
2011) collapses all word embeddings into a single vector
following the parse tree and then reconstructs back the original
sentence; applied to paraphrasing and paraphrase detection.

5

deep recursive networks

• Deep recursive networks for sentiment analysis (Irsoy, Cardie,
2014).

• First idea: decouple leaves and internal nodes.
• In recursive networks, we apply the same weights throughout
the tree:

x𝑣 = 𝑓(𝑊𝐿x𝑙(𝑣) + 𝑊𝑅x𝑟(𝑣) + b).
• Now, we use different matrices for leaves (input words) and
hidden nodes:

• we can now have fewer hidden units than the word vector
dimension;

• we can use ReLU: sparse inputs and dense hidden units do not
cause a discrepancy.

6

deep recursive networks

• Second idea: add depth to get hierarchical representations:

ℎ(𝑖)
𝑣 = 𝑓(𝑊 (𝑖)

𝐿 ℎ(𝑖)
𝑙(𝑣) + 𝑊 (𝑖)

𝑅 ℎ(𝑖)
𝑟(𝑣) + 𝑉 (𝑖)ℎ(𝑖−1)

𝑣 + b(𝑖)).

• An excellent architecture for sentiment analysis... if you have the
parse trees. 6

character-level models

• Word embeddings have important shortcomings:
• vectors are independent but words are not; consider, in particular,
morphology-rich languages like Russian/Ukrainian;

• the same applies to out-of-vocabulary words: a word embedding
cannot be extended to new words;

• word embedding models may grow large; it’s just lookup, but the
whole vocabulary has to be stored in memory with fast access.

• E.g., “polydistributional” gets 48 results on Google, so you
probably have never seen it, and there’s very little training data:

• Do you have an idea what it means? Me too.
7

character-level models

• Hence, character-level representations:
• began by decomposing a word into morphemes (Luong et al. 2013;
Botha and Blunsom 2014; Soricut and Och 2015);

• but this adds errors since morphological analyzers are also
imperfect, and basically a part of the problem simply shifts to
training a morphology model;

• two natural approaches on character level: LSTMs and CNNs;
• in any case, the model is slow but we do not have to apply it to
every word, we can store embeddings of common words in a
lookup table as before and only run the model for rare words – a
nice natural tradeoff.

7

character-level models

• C2W (Ling et al. 2015) is based on bidirectional LSTMs:

7

character-level models

• The approach of Deep Structured Semantic Model (DSSM)
(Huang et al., 2013; Gao et al., 2014a; 2014b):

• sub-word embeddings: represent a word as a bag of trigrams;
• vocabulary shrinks to |𝑉 |3 (tens of thousands instead of millions),
but collisions are very rare;

• the representation is robust to misspellings (very important for
user-generated texts).

7

character-level models

• ConvNet (Zhang et al. 2015): text understanding from scratch,
from the level of symbols, based on CNNs.

• Character-level models and extensions to appear to be very
important, especially for morphology-rich languages like
Russian or Spanish.

7

fasttext

• FastText – character-based word vectors.
• Represent words as 𝑛-grams of characters:

• a word is a bag of 𝑛-grams plus the word itself:

#mo,mod,ode,del, el#, #model#

• the word vector is the sum of the vectors of its components:
𝑛-grams from 𝑛 = 3 to 𝑛 = 6;

• and then it’s just regular skip-gram on top of these words.

• Significant improvements for many tasks like word analogy.

8

fasttext

• Most important 𝑛-grams:

8

thank you!

Thank you for your attention!

9

	From word vectors to paragraph vectors

