SEQUENCE LABELING

NATURAL LANGUAGE PROCESSING

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
January 18, 2018

MOTIVATION

SEQUENCE LABELING

- Given a sequence of observations, find an appropriate
label/state for each observation.

- The problem is to treat the sequence as a sequence, not just
independent classification:
- part-of-speech tagging

DT NN VBD DT NN

SEQUENCE LABELING

- What kind of methods would you propose?
- Local classifiers: predict y from z:

y~w'f(x,1).

- We can have feature-rich classifiers with lots of different
features, but predictions will be independent for each x;.

- Anything else?

HIDDEN MARKOV MODELS

MARKOV CHAINS

- A Markov chain is defined by initial probability distribution p°(x)
and transition probabilities T'(x’;).

- T(x';x) is the distribution of the next element in the chain
depending on the previous one; distribution on step (t + 1) is

pt(a’) = /T(x’;m)pt(m)dx.

- In the discrete case, T'(z'; x) is a matrix of probabilities
p(a’ =iz = j).

DISCRETE MARKOV CHAINS

- We are in the discrete case.

- A Markov model is when we can observe certain functions of a

Markov chain.

— | XI[[)] /=

Hat
et

DISCRETE MARKOV CHAINS

- Here x(t) is the process (chain states) itself, and y(t) are
observables.

- The problem is to find hidden parameters of the process.

o
@

— | XI[[)] /=

Hat
et

DISCRETE MARKOV CHAINS

- Markov property: next state does not depend on the history,
only on the previous state:

p(l‘(t) - mj|x(t - 1) = xjt—17“. ,l‘(l) - le) =
=p(z(t) = 25zt —1) ==z;,_).

* Moreover, these probabilities a;; = p(z(t) = z;|z(t — 1) = z,;) do
not depend on t.
* These probabilities comprise the transition matrix A = (a,;),

with natural properties a;; > 0, Zj a; =1

DIRECT PROBLEM

- Natural problem: what is the probability to get a certain
sequence of events?

- lL.e, for a sequence Q = i, -G, find

K2

p(Q|model) = p(q;)p(a;,19,) - p(a;, s, ,)-

- Looks trivial. What's hard in the real world?

HIDDEN MARKOV MODELS

+ In the real world we do not know the model.

- And, moreover, we do not observe z(t), i.e., real model states,
but rather y(t), i.e., observe functions of them (data).

- Example: speech recognition.

PROBLEMS IN HIDDEN MARKOV MODELS

- First: find the probability of a sequence of observations in a
given model.

- Second: find the “optimal” sequence of states in a given model
and a given sequence of observations.

- Third: find the maximum likelihood model (model parameters).

1

STATES AND OBSERVABLES

X ={xy,...,x,} — set of states.

V ={vy,...,v,,} — alphabet from which we choose observables
y (set of values of y).

q, — state at time ¢, y, — observable at time ¢.

DISTRIBUTIONS

* a;; = p(q41 = ;|q, = x;) — transition probability from i to j.

* b;(k) = p(vi|z;) — probability to get data v, in state j.

+ Initial distribution 7 = {7}, 7; = p(q; = ;).

- We denote the data by D = d; ... dy (sequence of observables, d;
take values from V).

PROBLEM

- We can now formalize the problem setting.

- First problem: for a given model A = (A, B, w) and sequence D,
find p(DJ|)). By itself it simply shows how well the model fits
this data.

- Second problem: for a given model A and sequence D find the
“optimal” sequence of states @ = ¢ ... gp. Two kinds of
optimality: “bitwise” and general.

- Third problem: optimize model parameters A = (A, B, 7) in
order to maximize p(D|)) for a given D (find the maximum
likelihood model). This is the main problem, training hidden
Markov models.

14

FIRST PROBLEM

- Formally the first problem looks like
p(D|X) = Zp D|Q,\p(D|X) =

= Z bql(dl) b (dT) 41 lh(b .aqT—qu.

FIRST PROBLEM

- This is @ marginalization problem.

- We use the so-called forward-backward procedure, in essence
dynamical programming on a lattice.

- We will sequentially compute intermediate values of the form
oy (i) = p(dy - dy, g = x| A),

i.e., the required probabilities with account for current state.

16

SOLVING THE FIRST PROBLEM

- Initialize oy (i) = m;b,(dy).
- Induction step:

1 [Z o (i 1 (derq)-

- After we get to step T, we can compute what we need:

p(DIN) =3 _ar(i)

- This is simply the forward pass, we did not need a backward
pass here.

- What would it compute?

BACKWARD PASS

- It would compute conditional probabilities
Be(i) = p(deiy - drla, = 35).
- We can initialize (i) = 1 and proceed by induction:
Bi(i) = Zaijbj(dt+1)ﬂt+l(j>'

J=1

- We'll need it later to solve the second and third problems.

TWO VERSIONS OF THE SECOND PROBLEM

- There are two versions for the second problem.

- First, solve it “bit by bit": “what is the most probable state at
time 57"

- Second, solve it “in general”: “what is the most probable
sequence of states?”.

19

BITWISE SOLUTION

- Consider auxiliary variables
V(i) = p(q, = ;| D, A).
- The problem is to find
q =argmax,_,_ v(1), 1<t<T.

- How can we do it?

20

BITWISE SOLUTION

- We express them via « and §:

~,(i) = o (1) B, () _ (1) By (i) .
! p(D|A) Z:?:l () B, (7)

- The denominator does not matter since we need arg max.

21

SOLVING FOR THE SEQUENCE

- To find the most probable sequence, we will use the so-called
Viterbi algorithm (that is, dynamic programming).

- Now auxiliary variables are

0,(7) = RS 1D (¢1G9 - qp = x5, dydy ... dy|N)

22

SOLVING FOR THE SEQUENCE

- Thatis, 6,(7) is the maximal probability to reach state x, on step
t among all paths with given observables.

- By induction:

Op41(J) = {IH?X 5t(i>aij:| bj(dyyq)-

- Note that we also need to remember the arguments, not only
values; ¢,(j) on the next slide.

23

SOLVING FOR THE SEQUENCE: ALGORITHM

- Initialize 8, (i) = m;b;(dy), ¥, (i) = [].
- Induction:
6,(j) = 112%32 [5#1(0%3‘] bj<dt)7

Yy (j) = arg max, .., [6t—1(i)a1j] 3

- When we reach step T, final step:
p* = max dp(7), qp = argmax, _,_ 6p(i).

1<i<n

- And the sequence follows: ¢; = ¥, (g5} 1)-

24

THIRD PROBLEM

- We cannot find a global maximum of p(D|\) analytically.
- We will use local optimization.

- The Baum-Welch algorithm: a special case of EM.

25

AUXILIARY VARIABLES

- Now auxiliary variables are probabilities of the event that at
time ¢ we are in state x,, and at time ¢ + 1 — in state T

§:(1,9) = p(@ = ;5 @1 = 74D, N).

- Rewriting via already familiar variables

5 (Z]) ()amb](t+1)5t+1(j> ()amb](t+1)5t+1(j)
n p(DIA) X2, on()agd(dyyr) By (5)

- Note also that v, (i) = Z &4,).

26

IDEA

* 22, 7%(@) is the expected number of transitions from states z;;
32, &,), from @ to x.
- On the M-step we will reestimate the probabilities:

7, = expected frequency of ; on step 1 = v, (7),

no. of transitions from z; to z; >, (i,)
%5 = "Tno. of transitions from z; >, @)

b(k) = no. of times in z; observing v, Zt:dt:vk 7:(4)
A no. of times in z, X, @)

- EM-algorithm: start with A = (4, B,), compute X = (4, B, 7),
recompute the parameters again, and so on.

27

KULLBACK--LEIBLER DIVERGENCE

- Kullback-Leibler divergence is an information theoretic measure
of how different two distributions are:

Py (@)

pa(z)

D1, (p1,P3) Zpl) log 2

- It is nonnegative and equal to zero only if p; = p, (with
probability 1).

28

IN APPLICATION TO HMM

- We define

p(Q, D|))

p(Q, DI\
p(D[A)

S p(DIN) -

pz(Q) =

- Then p; and p, are distributions, and the Kullback-Leibler
divergence is

pQ.DIY) | p(Q.DINPDI) _
0 Puc) = 2750 %8 Q. DVIPDI)

p(D|\) Zp (@ D), p(Q, DIA)
p(DIN) (D) 2 p(Q,DIN)’

= 1og

29

AUXILIARY FUNCTION

- We introduce the auxiliary function

QA N) Zp QID,) log p(Q|D, X').

- Then the inequality implies that

QAN — QAN _ . p(DIY)
O R R

- Thatis, if Q(A\, \) > Q(A,) then p(DJX') > p(D|N).
- That is, if we maximize Q(A, \") w.rt. X', we will be moving in the
right direction.

30

FUNCTION ¢

- We need to maximize Q(X, \"). We rewrite
QA N) =Y p(QID,\)logp(Q|D, \') =
Q

= ZP(Q‘D’ A)logm,, Haqt—lqtbqt (de) =
Q t
= p(@QID, N logm, + Y p(QID,\) logay,, b, (dy)-
Q Q t

- The latter expression is easy to differentiate w.rt. a,;, b;(k), and

m,;, add the corresponding Lagrange multipliers, and solve.
- We'll get exactly the Baum-Welch algorithm (check it!).

31

LINEAR FACTORIZED MODELS

LINEAR FACTORIZED MODELS

- Local classifiers: predict y from x:

?’J\ = WTf(X, Z)

- We can have feature-rich classifiers with lots of different
features, but predictions will be independent for each x;.

+ HMM — maximize with Viterbi:

Ty, by, (%1) H Ay, by, (%)
3=l
- E.g, in POS tagging we train POS—POS transition probabilities

and word emission probabilities.

- But it's hard to add lots of features here.

33

LINEAR FACTORIZED MODELS

- Linear factorized models:

n
y = arg myaxz;WTf(x,i,yH, Y;)-

=

- We can find labels y, with Viterbi algorithm such that the total

sum is maximal.
- Training - structured perceptron: for several epochs,
- for each training set sequence (x,y):
- compute z = arg max, w ' f(x,z) (with Viterbi)

- ifz # y update
we=w+n(f(x,y) - f(x,2)).

- Usually averaged structured perceptron (return average weights
over the training).

33

MAXIMAL ENTROPY MARKOV MODELS

- How can we add more features to HMMs?
« MEMM: invert the arrows in the HMM

+ The likelihood is [T, p(y; | v, _1.%,).
- We can now use any kind of features for x,.

MAXIMAL ENTROPY MARKOV MODELS

- But there is a “label bias” problem:

corpus:
Harvey Ford
(person 9 times, location 1 time)

Harvey Park M i
(location 9 times, person 1 time)

Myrtle Ford

(person 9 times, location 1 time) other ¥
Myrtle Park

(location 9 times, person 1 time)
A \
N

second token a good indicator
of person vs. location

b-person > e-person

brloch e &l0OCN

34

MAXIMAL ENTROPY MARKOV MODELS

- The second token has no choice now, even though it is

important:

Conditional probabilities:

p(b-person | other, w = Harvey) = 0.5
p(b-locn | other, w = Harvey) = 0.5
p(b-person | other, w = Myrtle) = 0.5
p(b-locn | other, w = Myrtle) =0.5
ple-person | b-person, w = Ford) = 1
ple-person | b-person, w = Park) = 1
p(e-locn | b-locn, w=Ford) = 1
ple-locn | b-locn, w = Park) = 1

I

b-person e-person
-
v /
other "/>
N \
® |
blocn ——p €0

34

CONDITIONAL RANDOM FIELDS

CONDITIONAL RANDOM FIELDS

- Hence, CRF:
HMM MEMM CRF
Y, Y; Y Y., Y; Y Yy Y, Y
Xiz1 Xi Xit1 Xi-1 Xi Xit1 X1 X Xit1

- Undirected graphical model, joint distribution

T
p(y, %) = % | 2R
t=1

36

CONDITIONAL RANDOM FIELDS

- And the inference problem is

K
| |T Ezkzl ekfk(ymyt,flvxt)
=il

X) =)
p(y %) > HT) e rer OnFr (Ul _1%,)
y t=

- This is called linear-chain CRF. In this form:

N S RGN

SEQUENCE GENERAL

Naive Bayes HMMs GRAPHS Generative directed models

cu@m co@m cu@m

Logistic Regression Linear-chain CRFs GRAPHS General CRFs

36

CONDITIONAL RANDOM FIELDS

- But we can also let local features depend on more than that. In
an HMM, the transition depends only on the hidden state:

v)=

36

CONDITIONAL RANDOM FIELDS

- In a CRF, we can allow it to depend on the current observations:

—) =

36

CONDITIONAL RANDOM FIELDS

- Or simply on all observations:

36

CONDITIONAL RANDOM FIELDS

- To train CRFs, we need to do approximate inference in

undirected graphical models (the marginals Z(x) are hard to
compute).

- But wait, where is the deep learning?..
- You can do the same things with RNNs.

- But even better...

36

CONDITIONAL RANDOM FIELDS

- Put a CRF on top of features extracted by LSTMs:

Token
Embedding \.

Bi-LSTM [
Char
Bi-LSTM

CRF

- Current state of the art in NER, for example.

36

THANK YOU!

Thank you for your attention!

37

	Motivation
	Hidden Markov models
	Linear factorized models
	Conditional random fields

