## SEQUENCE LABELING

Natural Language Processing

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
January 18, 2018

MOTIVATION

## SEQUENCE LABELING

- Given a sequence of observations, find an appropriate label/state for each observation.
- The problem is to treat the sequence as a sequence, not just independent classification:
- part-of-speech tagging

- named entity recognition



## SEQUENCE LABELING

- What kind of methods would you propose?
- Local classifiers: predict $y$ from $x$ :

$$
y \approx \mathbf{w}^{\top} f(\mathbf{x}, i)
$$

- We can have feature-rich classifiers with lots of different features, but predictions will be independent for each $\mathbf{x}_{i}$.
- Anything else?

HIDDEN MARKOV MODELS

## MARKOV CHAINS

- A Markov chain is defined by initial probability distribution $p^{0}(x)$ and transition probabilities $T\left(x^{\prime} ; x\right)$.
- $T\left(x^{\prime} ; x\right)$ is the distribution of the next element in the chain depending on the previous one; distribution on step $(t+1)$ is

$$
p^{t+1}\left(x^{\prime}\right)=\int T\left(x^{\prime} ; x\right) p^{t}(x) d x
$$

- In the discrete case, $T\left(x^{\prime} ; x\right)$ is a matrix of probabilities $p\left(x^{\prime}=i \mid x=j\right)$.


## DISCRETE MARKOV CHAINS

- We are in the discrete case.
- A Markov model is when we can observe certain functions of a Markov chain.



## DISCRETE MARKOV CHAINS

- Here $x(t)$ is the process (chain states) itself, and $y(t)$ are observables.
- The problem is to find hidden parameters of the process.



## DISCRETE MARKOV CHAINS

- Markov property: next state does not depend on the history, only on the previous state:

$$
\begin{aligned}
& p\left(x(t)=x_{j} \mid x(t-1)=x_{j_{t-1}}, \ldots, x(1)=x_{j_{1}}\right)= \\
& \\
& =p\left(x(t)=x_{j} \mid x(t-1)=x_{j_{t-1}}\right)
\end{aligned}
$$

- Moreover, these probabilities $a_{i j}=p\left(x(t)=x_{j} \mid x(t-1)=x_{i}\right)$ do not depend on $t$.
- These probabilities comprise the transition matrix $A=\left(a_{i j}\right)$, with natural properties $a_{i j} \geq 0, \sum_{j} a_{i j}=1$.
- Natural problem: what is the probability to get a certain sequence of events?
- I.e., for a sequence $Q=q_{i_{1}} \ldots q_{i_{k}}$ find

$$
p(Q \mid \text { model })=p\left(q_{i_{1}}\right) p\left(q_{i_{2}} \mid q_{i_{1}}\right) \ldots p\left(q_{i_{k}} \mid q_{i_{k-1}}\right)
$$

- Looks trivial. What's hard in the real world?


## HIDDEN MARKOV MODELS

- In the real world we do not know the model.
- And, moreover, we do not observe $x(t)$, i.e., real model states, but rather $y(t)$, i.e., observe functions of them (data).
- Example: speech recognition.


## PROBLEMS IN HIDDEN MARKOV MODELS

- First: find the probability of a sequence of observations in a given model.
- Second: find the "optimal" sequence of states in a given model and a given sequence of observations.
- Third: find the maximum likelihood model (model parameters).


## STATES AND OBSERVABLES

- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ - set of states.
- $V=\left\{v_{1}, \ldots, v_{m}\right\}-$ alphabet from which we choose observables $y$ (set of values of $y$ ).
- $q_{t}$ - state at time $t, y_{t}$ - observable at time $t$.


## DISTRIBUTIONS

- $a_{i j}=p\left(q_{t+1}=x_{j} \mid q_{t}=x_{i}\right)$ - transition probability from $i$ to $j$.
- $b_{j}(k)=p\left(v_{k} \mid x_{j}\right)$ - probability to get data $v_{k}$ in state $j$.
- Initial distribution $\pi=\left\{\pi_{j}\right\}, \pi_{j}=p\left(q_{1}=x_{j}\right)$.
- We denote the data by $D=d_{1} \ldots d_{T}$ (sequence of observables, $d_{i}$ take values from $V$ ).
- We can now formalize the problem setting.
- First problem: for a given model $\lambda=(A, B, \pi)$ and sequence $D$, find $p(D \mid \lambda)$. By itself it simply shows how well the model fits this data.
- Second problem: for a given model $\lambda$ and sequence $D$ find the "optimal" sequence of states $Q=q_{1} \ldots q_{T}$. Two kinds of optimality: "bitwise" and general.
- Third problem: optimize model parameters $\lambda=(A, B, \pi)$ in order to maximize $p(D \mid \lambda)$ for a given $D$ (find the maximum likelihood model). This is the main problem, training hidden Markov models.


## FIRST PROBLEM

- Formally the first problem looks like

$$
\begin{aligned}
& p(D \mid \lambda)=\sum_{Q} p(D \mid Q, \lambda) p(D \mid \lambda)= \\
&=\sum_{q_{1}, \ldots, q_{T}} b_{q_{1}}\left(d_{1}\right) \ldots b_{q_{T}}\left(d_{T}\right) \pi_{q_{1}} a_{q_{1} q_{2}} \ldots a_{q_{T-1} q_{T}}
\end{aligned}
$$

## FIRST PROBLEM

- This is a marginalization problem.
- We use the so-called forward-backward procedure, in essence dynamical programming on a lattice.
- We will sequentially compute intermediate values of the form

$$
\alpha_{t}(i)=p\left(d_{1} \ldots d_{t}, q_{t}=x_{i} \mid \lambda\right),
$$

i.e., the required probabilities with account for current state.

## SOLVING THE FIRST PROBLEM

- Initialize $\alpha_{1}(i)=\pi_{i} b_{i}\left(d_{1}\right)$.
- Induction step:

$$
\alpha_{t+1}(j)=\left[\sum_{i=1}^{n} \alpha_{t}(i) a_{i j}\right] b_{j}\left(d_{t+1}\right)
$$

- After we get to step $T$, we can compute what we need:

$$
p(D \mid \lambda)=\sum_{i=1}^{n} \alpha_{T}(i) .
$$

- This is simply the forward pass, we did not need a backward pass here.
-What would it compute?


## BACKWARD PASS

- It would compute conditional probabilities

$$
\beta_{t}(i)=p\left(d_{t+1} \ldots d_{T} \mid q_{t}=x_{i}, \lambda\right) .
$$

- We can initialize $\beta_{T}(i)=1$ and proceed by induction:

$$
\beta_{t}(i)=\sum_{j=1}^{n} a_{i j} b_{j}\left(d_{t+1}\right) \beta_{t+1}(j) .
$$

- We'll need it later to solve the second and third problems.
- There are two versions for the second problem.
- First, solve it "bit by bit": "what is the most probable state at time $j$ ?"
- Second, solve it "in general": "what is the most probable sequence of states?".


## BITWISE SOLUTION

- Consider auxiliary variables

$$
\gamma_{t}(i)=p\left(q_{t}=x_{i} \mid D, \lambda\right) .
$$

- The problem is to find

$$
q_{t}=\arg \max _{1 \leq i \leq n} \gamma_{t}(i), \quad 1 \leq t \leq T .
$$

- How can we do it?


## BITWISE SOLUTION

- We express them via $\alpha$ and $\beta$ :

$$
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{p(D \mid \lambda)}=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{i=1}^{n} \alpha_{t}(i) \beta_{t}(i)} .
$$

- The denominator does not matter since we need arg max.


## SOLVING FOR THE SEQUENCE

- To find the most probable sequence, we will use the so-called Viterbi algorithm (that is, dynamic programming).
- Now auxiliary variables are

$$
\delta_{t}(i)=\max _{q_{1}, \ldots, q_{t-1}} p\left(q_{1} q_{2} \ldots q_{t}=x_{i}, d_{1} d_{2} \ldots d_{t} \mid \lambda\right) .
$$

- That is, $\delta_{t}(i)$ is the maximal probability to reach state $x_{i}$ on step $t$ among all paths with given observables.
- By induction:

$$
\delta_{t+1}(j)=\left[\max _{i} \delta_{t}(i) a_{i j}\right] b_{j}\left(d_{t+1}\right) .
$$

- Note that we also need to remember the arguments, not only values; $\psi_{t}(j)$ on the next slide.


## SOLVING FOR THE SEQUENCE: ALGORITHM

- Initialize $\delta_{1}(i)=\pi_{i} b_{i}\left(d_{1}\right), \psi_{1}(i)=[]$.
- Induction:

$$
\begin{gathered}
\delta_{t}(j)=\max _{1 \leq i \leq n}\left[\delta_{t-1}(i) a_{i j}\right] b_{j}\left(d_{t}\right) \\
\psi_{t}(j)=\arg \max _{1 \leq i \leq n}\left[\delta_{t-1}(i) a_{i j}\right]
\end{gathered}
$$

- When we reach step $T$, final step:

$$
p^{*}=\max _{1 \leq i \leq n} \delta_{T}(i), \quad q_{T}^{*}=\arg \max _{1 \leq i \leq n} \delta_{T}(i)
$$

- And the sequence follows: $q_{t}^{*}=\psi_{t+1}\left(q_{t+1}^{*}\right)$.


## THIRD PROBLEM

- We cannot find a global maximum of $p(D \mid \lambda)$ analytically.
- We will use local optimization.
- The Baum-Welch algorithm: a special case of EM.


## AUXILIARY VARIABLES

- Now auxiliary variables are probabilities of the event that at time $t$ we are in state $x_{i}$, and at time $t+1-$ in state $x_{j}$ :

$$
\xi_{t}(i, j)=p\left(q_{t}=x_{i}, q_{t+1}=x_{j} \mid D, \lambda\right)
$$

- Rewriting via already familiar variables:

$$
\xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(d_{t+1}\right) \beta_{t+1}(j)}{p(D \mid \lambda)}=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(d_{t+1}\right) \beta_{t+1}(j)}{\sum_{i} \sum_{j} \alpha_{t}(i) a_{i j} b_{j}\left(d_{t+1}\right) \beta_{t+1}(j)} .
$$

- Note also that $\gamma_{t}(i)=\sum_{j} \xi_{t}(i, j)$.


## IDEA

- $\sum_{t} \gamma_{t}(i)$ is the expected number of transitions from states $x_{i}$; $\sum_{t} \xi_{t}(i, j)$, from $x_{i}$ to $x_{j}$.
- On the M-step we will reestimate the probabilities:

$$
\begin{gathered}
\bar{\pi}_{i}=\text { expected frequency of } x_{i} \text { on step } 1=\gamma_{1}(i), \\
\bar{a}_{i j}=\frac{\text { no. of transitions from } x_{i} \text { to } x_{j}}{\text { no. of transitions from } x_{i}}=\frac{\sum_{t} \xi_{t}(i, j)}{\sum_{t} \gamma_{t}(i)} . \\
\bar{b}_{j}(k)=\frac{\text { no. of times in } x_{i} \text { observing } v_{k}}{\text { no. of times in } x_{i}}=\frac{\sum_{t: d_{t}=v_{k}} \gamma_{t}(i)}{\sum_{t} \gamma_{t}(i)} .
\end{gathered}
$$

- EM-algorithm: start with $\lambda=(A, B, \pi)$, compute $\bar{\lambda}=(\bar{A}, \bar{B}, \bar{\pi})$, recompute the parameters again, and so on.


## KULLBACK--LEIBLER DIVERGENCE

- Kullback-Leibler divergence is an information theoretic measure of how different two distributions are:

$$
D_{K L}\left(p_{1}, p_{2}\right)=\sum_{x} p_{1}(x) \log \frac{p_{1}(x)}{p_{2}(x)} .
$$

- It is nonnegative and equal to zero only if $p_{1} \equiv p_{2}$ (with probability 1).


## IN APPLICATION TO HMM

- We define

$$
p_{1}(Q)=\frac{p(Q, D \mid \lambda)}{p(D \mid \lambda)}, \quad p_{2}(Q)=\frac{p\left(Q, D \mid \lambda^{\prime}\right)}{p\left(D \mid \lambda^{\prime}\right)} .
$$

- Then $p_{1}$ and $p_{2}$ are distributions, and the Kullback-Leibler divergence is

$$
\begin{aligned}
0 \leq D_{L K}\left(\lambda, \lambda^{\prime}\right) & =\sum_{Q} \frac{p(Q, D \mid \lambda)}{p(D \mid \lambda)} \log \frac{p(Q, D \mid \lambda) p\left(D \mid \lambda^{\prime}\right)}{p\left(Q, D \mid \lambda^{\prime}\right) p(D \mid \lambda)}= \\
& =\log \frac{p\left(D \mid \lambda^{\prime}\right)}{p(D \mid \lambda)}+\sum_{Q} \frac{p(Q, D \mid \lambda)}{p(D \mid \lambda)} \log \frac{p(Q, D \mid \lambda)}{p\left(Q, D \mid \lambda^{\prime}\right)} .
\end{aligned}
$$

## AUXILIARY FUNCTION

- We introduce the auxiliary function

$$
Q\left(\lambda, \lambda^{\prime}\right)=\sum_{Q} p(Q \mid D, \lambda) \log p\left(Q \mid D, \lambda^{\prime}\right)
$$

- Then the inequality implies that

$$
\frac{Q\left(\lambda, \lambda^{\prime}\right)-Q(\lambda, \lambda)}{p(D \mid \lambda)} \leq \log \frac{p\left(D \mid \lambda^{\prime}\right)}{p(D \mid \lambda)}
$$

- That is, if $Q\left(\lambda, \lambda^{\prime}\right)>Q(\lambda, \lambda)$ then $p\left(D \mid \lambda^{\prime}\right)>p(D \mid \lambda)$.
- That is, if we maximize $Q\left(\lambda, \lambda^{\prime}\right)$ w.r.t. $\lambda^{\prime}$, we will be moving in the right direction.
- We need to maximize $Q\left(\lambda, \lambda^{\prime}\right)$. We rewrite

$$
\begin{aligned}
& Q\left(\lambda, \lambda^{\prime}\right)=\sum_{Q} p(Q \mid D, \lambda) \log p\left(Q \mid D, \lambda^{\prime}\right)= \\
& \quad=\sum_{Q} p(Q \mid D, \lambda) \log \pi_{q_{1}} \prod_{t} a_{q_{t-1} q_{t}} b_{q_{t}}\left(d_{t}\right)= \\
& =\sum_{Q} p(Q \mid D, \lambda) \log \pi_{q_{1}}+\sum_{Q} p(Q \mid D, \lambda) \sum_{t} \log a_{q_{t-1} q_{t}} b_{q_{t}}\left(d_{t}\right)
\end{aligned}
$$

- The latter expression is easy to differentiate w.r.t. $a_{i j}, b_{i}(k)$, and $\pi_{i}$, add the corresponding Lagrange multipliers, and solve.
- We'll get exactly the Baum-Welch algorithm (check it!).

LINEAR FACTORIZED MODELS

## LINEAR FACTORIZED MODELS

- Local classifiers: predict $y$ from $\mathbf{x}$ :

$$
\hat{y}=\mathbf{w}^{\top} f(\mathbf{x}, i) .
$$

- We can have feature-rich classifiers with lots of different features, but predictions will be independent for each $\mathbf{x}_{i}$.
- HMM - maximize with Viterbi:

$$
\pi_{y_{1}} b_{y_{1}}\left(\mathbf{x}_{1}\right) \prod_{i=1}^{n} a_{y_{i-1}, y_{i}} b_{y_{i}}\left(\mathbf{x}_{i}\right)
$$

- E.g., in POS tagging we train POS $\rightarrow$ POS transition probabilities and word emission probabilities.
- But it's hard to add lots of features here.


## LINEAR FACTORIZED MODELS

- Linear factorized models:

$$
\hat{y}=\arg \max _{\mathbf{y}} \sum_{i=1}^{n} \mathbf{w}^{\top} f\left(\mathbf{x}, i, y_{i-1}, y_{i}\right)
$$

- We can find labels $y_{i}$ with Viterbi algorithm such that the total sum is maximal.
- Training - structured perceptron: for several epochs,
- for each training set sequence ( $\mathbf{x}, \mathrm{y}$ ):
- compute $\mathbf{z}=\arg \max _{\mathbf{z}} \mathbf{w}^{\top} f(\mathbf{x}, \mathbf{z})$ (with Viterbi)
- if $\mathbf{z} \neq \mathbf{y}$ update

$$
\mathbf{w}:=\mathbf{w}+\eta(f(\mathbf{x}, \mathbf{y})-f(\mathbf{x}, \mathbf{z})) .
$$

- Usually averaged structured perceptron (return average weights over the training).


## MAXIMAL ENTROPY MARKOV MODELS

- How can we add more features to HMMs?
- MEMM: invert the arrows in the HMM

- The likelihood is $\prod_{t=1}^{T} p\left(y_{t} \mid y_{t-1}, \mathbf{x}_{t}\right)$.
- We can now use any kind of features for $\mathbf{x}_{t}$.


## MAXIMAL ENTROPY MARKOV MODELS

- But there is a "label bias" problem:
corpus:
Harvey Ford
(person 9 times, location 1 time)
Harvey Park
(location 9 times, person 1 time) Myrtle Ford
(person 9 times, location 1 time) Myrtle Park
(location 9 times, person 1 time)
second token a good indicator
of person vs. location



## MAXIMAL ENTROPY MARKOV MODELS

- The second token has no choice now, even though it is important:



## CONDITIONAL RANDOM FIELDS

## CONDITIONAL RANDOM FIELDS

- Hence, CRF:


## HMM



## MEMM



## CRF



- Undirected graphical model, joint distribution

$$
p(\mathbf{y}, \mathbf{x})=\frac{1}{Z} \prod_{t=1}^{T} e^{\sum_{k=1}^{K} \theta_{k} f_{k}\left(y_{t}, y_{t-1}, \mathbf{x}_{t}\right)}
$$

## CONDITIONAL RANDOM FIELDS

- And the inference problem is

$$
p(\mathbf{y} \mid \mathbf{x})=\frac{\prod_{t=1}^{T} e^{\sum_{k=1}^{K} \theta_{k} f_{k}\left(y_{t}, y_{t-1}, \mathbf{x}_{t}\right)}}{\sum_{\mathbf{y}^{\prime}} \prod_{t=1}^{T} e^{\sum_{k=1}^{K} \theta_{k} f_{k}\left(y_{t}^{\prime}, y_{t-1}^{\prime}, \mathbf{x}_{t}\right)}}
$$

- This is called linear-chain CRF. In this form:



## CONDITIONAL RANDOM FIELDS

- But we can also let local features depend on more than that. In an HMM, the transition depends only on the hidden state:



## CONDITIONAL RANDOM FIELDS

- In a CRF, we can allow it to depend on the current observations:



## CONDITIONAL RANDOM FIELDS

- Or simply on all observations:



## CONDITIONAL RANDOM FIELDS

- To train CRFs, we need to do approximate inference in undirected graphical models (the marginals $Z(\mathbf{x})$ are hard to compute).
- But wait, where is the deep learning?..
- You can do the same things with RNNs.
- But even better...


## CONDITIONAL RANDOM FIELDS

- Put a CRF on top of features extracted by LSTMs:

- Current state of the art in NER, for example.

Thank you for your attention!

