
sequence labeling
Natural Language Processing

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
January 18, 2018

motivation

sequence labeling

• Given a sequence of observations, find an appropriate
label/state for each observation.

• The problem is to treat the sequence as a sequence, not just
independent classification:

• part-of-speech tagging

• named entity recognition

• And more: speech recognition, character recognition, protein
secondary structure prediction, video processing...

3

sequence labeling

• What kind of methods would you propose?
• Local classifiers: predict 𝑦 from 𝑥:

𝑦 ≈ w⊤𝑓(x, 𝑖).

• We can have feature-rich classifiers with lots of different
features, but predictions will be independent for each x𝑖.

• Anything else?

3

hidden markov models

markov chains

• A Markov chain is defined by initial probability distribution 𝑝0(𝑥)
and transition probabilities 𝑇 (𝑥′; 𝑥).

• 𝑇 (𝑥′; 𝑥) is the distribution of the next element in the chain
depending on the previous one; distribution on step (𝑡 + 1) is

𝑝𝑡+1(𝑥′) = ∫ 𝑇 (𝑥′; 𝑥)𝑝𝑡(𝑥)𝑑𝑥.

• In the discrete case, 𝑇 (𝑥′; 𝑥) is a matrix of probabilities
𝑝(𝑥′ = 𝑖|𝑥 = 𝑗).

5

discrete markov chains

• We are in the discrete case.
• A Markov model is when we can observe certain functions of a
Markov chain.

6

discrete markov chains

• Here 𝑥(𝑡) is the process (chain states) itself, and 𝑦(𝑡) are
observables.

• The problem is to find hidden parameters of the process.

7

discrete markov chains

• Markov property: next state does not depend on the history,
only on the previous state:

𝑝(𝑥(𝑡) = 𝑥𝑗|𝑥(𝑡 − 1) = 𝑥𝑗𝑡−1
, … , 𝑥(1) = 𝑥𝑗1

) =
= 𝑝(𝑥(𝑡) = 𝑥𝑗|𝑥(𝑡 − 1) = 𝑥𝑗𝑡−1

).

• Moreover, these probabilities 𝑎𝑖𝑗 = 𝑝(𝑥(𝑡) = 𝑥𝑗|𝑥(𝑡 − 1) = 𝑥𝑖) do
not depend on 𝑡.

• These probabilities comprise the transition matrix 𝐴 = (𝑎𝑖𝑗),
with natural properties 𝑎𝑖𝑗 ≥ 0, ∑𝑗 𝑎𝑖𝑗 = 1.

8

direct problem

• Natural problem: what is the probability to get a certain
sequence of events?

• I.e., for a sequence 𝑄 = 𝑞𝑖1
… 𝑞𝑖𝑘

find

𝑝(𝑄|model) = 𝑝(𝑞𝑖1
)𝑝(𝑞𝑖2

|𝑞𝑖1
) … 𝑝(𝑞𝑖𝑘

|𝑞𝑖𝑘−1
).

• Looks trivial. What’s hard in the real world?

9

hidden markov models

• In the real world we do not know the model.
• And, moreover, we do not observe 𝑥(𝑡), i.e., real model states,
but rather 𝑦(𝑡), i.e., observe functions of them (data).

• Example: speech recognition.

10

problems in hidden markov models

• First: find the probability of a sequence of observations in a
given model.

• Second: find the “optimal” sequence of states in a given model
and a given sequence of observations.

• Third: find the maximum likelihood model (model parameters).

11

states and observables

• 𝑋 = {𝑥1, … , 𝑥𝑛} — set of states.
• 𝑉 = {𝑣1, … , 𝑣𝑚} — alphabet from which we choose observables

𝑦 (set of values of 𝑦).
• 𝑞𝑡 — state at time 𝑡, 𝑦𝑡 — observable at time 𝑡.

12

distributions

• 𝑎𝑖𝑗 = 𝑝(𝑞𝑡+1 = 𝑥𝑗|𝑞𝑡 = 𝑥𝑖) — transition probability from 𝑖 to 𝑗.
• 𝑏𝑗(𝑘) = 𝑝(𝑣𝑘|𝑥𝑗) — probability to get data 𝑣𝑘 in state 𝑗.
• Initial distribution 𝜋 = {𝜋𝑗}, 𝜋𝑗 = 𝑝(𝑞1 = 𝑥𝑗).
• We denote the data by 𝐷 = 𝑑1 … 𝑑𝑇 (sequence of observables, 𝑑𝑖
take values from 𝑉).

13

problem

• We can now formalize the problem setting.
• First problem: for a given model 𝜆 = (𝐴, 𝐵, 𝜋) and sequence 𝐷,
find 𝑝(𝐷|𝜆). By itself it simply shows how well the model fits
this data.

• Second problem: for a given model 𝜆 and sequence 𝐷 find the
“optimal” sequence of states 𝑄 = 𝑞1 … 𝑞𝑇 . Two kinds of
optimality: “bitwise” and general.

• Third problem: optimize model parameters 𝜆 = (𝐴, 𝐵, 𝜋) in
order to maximize 𝑝(𝐷|𝜆) for a given 𝐷 (find the maximum
likelihood model). This is the main problem, training hidden
Markov models.

14

first problem

• Formally the first problem looks like

𝑝(𝐷|𝜆) = ∑
𝑄

𝑝(𝐷|𝑄, 𝜆)𝑝(𝐷|𝜆) =

= ∑
𝑞1,…,𝑞𝑇

𝑏𝑞1
(𝑑1) … 𝑏𝑞𝑇

(𝑑𝑇)𝜋𝑞1
𝑎𝑞1𝑞2

… 𝑎𝑞𝑇−1𝑞𝑇
.

15

first problem

• This is a marginalization problem.
• We use the so-called forward–backward procedure, in essence
dynamical programming on a lattice.

• We will sequentially compute intermediate values of the form

𝛼𝑡(𝑖) = 𝑝(𝑑1 … 𝑑𝑡, 𝑞𝑡 = 𝑥𝑖|𝜆),

i.e., the required probabilities with account for current state.

16

solving the first problem

• Initialize 𝛼1(𝑖) = 𝜋𝑖𝑏𝑖(𝑑1).
• Induction step:

𝛼𝑡+1(𝑗) = [
𝑛

∑
𝑖=1

𝛼𝑡(𝑖)𝑎𝑖𝑗] 𝑏𝑗(𝑑𝑡+1).

• After we get to step 𝑇 , we can compute what we need:

𝑝(𝐷|𝜆) =
𝑛

∑
𝑖=1

𝛼𝑇 (𝑖).

• This is simply the forward pass, we did not need a backward
pass here.

• What would it compute?

17

backward pass

• It would compute conditional probabilities
𝛽𝑡(𝑖) = 𝑝(𝑑𝑡+1 … 𝑑𝑇 |𝑞𝑡 = 𝑥𝑖, 𝜆).

• We can initialize 𝛽𝑇 (𝑖) = 1 and proceed by induction:

𝛽𝑡(𝑖) =
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝑏𝑗(𝑑𝑡+1)𝛽𝑡+1(𝑗).

• We’ll need it later to solve the second and third problems.

18

two versions of the second problem

• There are two versions for the second problem.
• First, solve it “bit by bit”: “what is the most probable state at
time 𝑗?”

• Second, solve it “in general”: “what is the most probable
sequence of states?”.

19

bitwise solution

• Consider auxiliary variables

𝛾𝑡(𝑖) = 𝑝(𝑞𝑡 = 𝑥𝑖|𝐷, 𝜆).

• The problem is to find

𝑞𝑡 = arg max1≤𝑖≤𝑛𝛾𝑡(𝑖), 1 ≤ 𝑡 ≤ 𝑇 .

• How can we do it?

20

bitwise solution

• We express them via 𝛼 and 𝛽:

𝛾𝑡(𝑖) = 𝛼𝑡(𝑖)𝛽𝑡(𝑖)
𝑝(𝐷|𝜆) = 𝛼𝑡(𝑖)𝛽𝑡(𝑖)

∑𝑛
𝑖=1 𝛼𝑡(𝑖)𝛽𝑡(𝑖)

.

• The denominator does not matter since we need arg max.

21

solving for the sequence

• To find the most probable sequence, we will use the so-called
Viterbi algorithm (that is, dynamic programming).

• Now auxiliary variables are

𝛿𝑡(𝑖) = max
𝑞1,…,𝑞𝑡−1

𝑝 (𝑞1𝑞2 … 𝑞𝑡 = 𝑥𝑖, 𝑑1𝑑2 … 𝑑𝑡|𝜆) .

22

solving for the sequence

• That is, 𝛿𝑡(𝑖) is the maximal probability to reach state 𝑥𝑖 on step
𝑡 among all paths with given observables.

• By induction:

𝛿𝑡+1(𝑗) = [max
𝑖

𝛿𝑡(𝑖)𝑎𝑖𝑗] 𝑏𝑗(𝑑𝑡+1).

• Note that we also need to remember the arguments, not only
values; 𝜓𝑡(𝑗) on the next slide.

23

solving for the sequence: algorithm

• Initialize 𝛿1(𝑖) = 𝜋𝑖𝑏𝑖(𝑑1), 𝜓1(𝑖) = [].
• Induction:

𝛿𝑡(𝑗) = max
1≤𝑖≤𝑛

[𝛿𝑡−1(𝑖)𝑎𝑖𝑗] 𝑏𝑗(𝑑𝑡),

𝜓𝑡(𝑗) = arg max1≤𝑖≤𝑛 [𝛿𝑡−1(𝑖)𝑎𝑖𝑗] .

• When we reach step 𝑇 , final step:

𝑝∗ = max
1≤𝑖≤𝑛

𝛿𝑇 (𝑖), 𝑞∗
𝑇 = arg max1≤𝑖≤𝑛𝛿𝑇 (𝑖).

• And the sequence follows: 𝑞∗
𝑡 = 𝜓𝑡+1(𝑞∗

𝑡+1).

24

third problem

• We cannot find a global maximum of 𝑝(𝐷|𝜆) analytically.
• We will use local optimization.
• The Baum–Welch algorithm: a special case of EM.

25

auxiliary variables

• Now auxiliary variables are probabilities of the event that at
time 𝑡 we are in state 𝑥𝑖, and at time 𝑡 + 1 — in state 𝑥𝑗:

𝜉𝑡(𝑖, 𝑗) = 𝑝(𝑞𝑡 = 𝑥𝑖, 𝑞𝑡+1 = 𝑥𝑗|𝐷, 𝜆).

• Rewriting via already familiar variables:

𝜉𝑡(𝑖, 𝑗) = 𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑑𝑡+1)𝛽𝑡+1(𝑗)
𝑝(𝐷|𝜆) = 𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑑𝑡+1)𝛽𝑡+1(𝑗)

∑𝑖 ∑𝑗 𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑑𝑡+1)𝛽𝑡+1(𝑗) .

• Note also that 𝛾𝑡(𝑖) = ∑𝑗 𝜉𝑡(𝑖, 𝑗).

26

idea

• ∑𝑡 𝛾𝑡(𝑖) is the expected number of transitions from states 𝑥𝑖;
∑𝑡 𝜉𝑡(𝑖, 𝑗), from 𝑥𝑖 to 𝑥𝑗.

• On the M-step we will reestimate the probabilities:

̄𝜋𝑖 = expected frequency of 𝑥𝑖 on step 1 = 𝛾1(𝑖),

̄𝑎𝑖𝑗 = no. of transitions from 𝑥𝑖 to 𝑥𝑗
no. of transitions from 𝑥𝑖

=
∑𝑡 𝜉𝑡(𝑖, 𝑗)
∑𝑡 𝛾𝑡(𝑖)

.

�̄�𝑗(𝑘) = no. of times in 𝑥𝑖 observing 𝑣𝑘
no. of times in 𝑥𝑖

=
∑𝑡∶𝑑𝑡=𝑣𝑘

𝛾𝑡(𝑖)
∑𝑡 𝛾𝑡(𝑖)

.

• EM-algorithm: start with 𝜆 = (𝐴, 𝐵, 𝜋), compute �̄� = (̄𝐴, �̄�, ̄𝜋),
recompute the parameters again, and so on.

27

kullback--leibler divergence

• Kullback–Leibler divergence is an information theoretic measure
of how different two distributions are:

𝐷𝐾𝐿(𝑝1, 𝑝2) = ∑
𝑥

𝑝1(𝑥) log 𝑝1(𝑥)
𝑝2(𝑥) .

• It is nonnegative and equal to zero only if 𝑝1 ≡ 𝑝2 (with
probability 1).

28

in application to hmm

• We define

𝑝1(𝑄) = 𝑝(𝑄, 𝐷|𝜆)
𝑝(𝐷|𝜆) , 𝑝2(𝑄) = 𝑝(𝑄, 𝐷|𝜆′)

𝑝(𝐷|𝜆′) .

• Then 𝑝1 and 𝑝2 are distributions, and the Kullback–Leibler
divergence is

0 ≤ 𝐷𝐿𝐾(𝜆, 𝜆′) = ∑
𝑄

𝑝(𝑄, 𝐷|𝜆)
𝑝(𝐷|𝜆) log 𝑝(𝑄, 𝐷|𝜆)𝑝(𝐷|𝜆′)

𝑝(𝑄, 𝐷|𝜆′)𝑝(𝐷|𝜆) =

= log 𝑝(𝐷|𝜆′)
𝑝(𝐷|𝜆) + ∑

𝑄

𝑝(𝑄, 𝐷|𝜆)
𝑝(𝐷|𝜆) log 𝑝(𝑄, 𝐷|𝜆)

𝑝(𝑄, 𝐷|𝜆′) .

29

auxiliary function

• We introduce the auxiliary function

𝑄(𝜆, 𝜆′) = ∑
𝑄

𝑝(𝑄|𝐷, 𝜆) log 𝑝(𝑄|𝐷, 𝜆′).

• Then the inequality implies that

𝑄(𝜆, 𝜆′) − 𝑄(𝜆, 𝜆)
𝑝(𝐷|𝜆) ≤ log 𝑝(𝐷|𝜆′)

𝑝(𝐷|𝜆) .

• That is, if 𝑄(𝜆, 𝜆′) > 𝑄(𝜆, 𝜆) then 𝑝(𝐷|𝜆′) > 𝑝(𝐷|𝜆).
• That is, if we maximize 𝑄(𝜆, 𝜆′) w.r.t. 𝜆′, we will be moving in the
right direction.

30

function 𝑞

• We need to maximize 𝑄(𝜆, 𝜆′). We rewrite

𝑄(𝜆, 𝜆′) = ∑
𝑄

𝑝(𝑄|𝐷, 𝜆) log 𝑝(𝑄|𝐷, 𝜆′) =

= ∑
𝑄

𝑝(𝑄|𝐷, 𝜆) log 𝜋𝑞1
∏

𝑡
𝑎𝑞𝑡−1𝑞𝑡

𝑏𝑞𝑡
(𝑑𝑡) =

= ∑
𝑄

𝑝(𝑄|𝐷, 𝜆) log 𝜋𝑞1
+ ∑

𝑄
𝑝(𝑄|𝐷, 𝜆) ∑

𝑡
log 𝑎𝑞𝑡−1𝑞𝑡

𝑏𝑞𝑡
(𝑑𝑡).

• The latter expression is easy to differentiate w.r.t. 𝑎𝑖𝑗, 𝑏𝑖(𝑘), and
𝜋𝑖, add the corresponding Lagrange multipliers, and solve.

• We’ll get exactly the Baum–Welch algorithm (check it!).

31

linear factorized models

linear factorized models

• Local classifiers: predict 𝑦 from x:

̂𝑦 = w⊤𝑓(x, 𝑖).

• We can have feature-rich classifiers with lots of different
features, but predictions will be independent for each x𝑖.

• HMM – maximize with Viterbi:

𝜋𝑦1
𝑏𝑦1

(x1)
𝑛

∏
𝑖=1

𝑎𝑦𝑖−1,𝑦𝑖
𝑏𝑦𝑖

(x𝑖).

• E.g., in POS tagging we train POS→POS transition probabilities
and word emission probabilities.

• But it’s hard to add lots of features here.

33

linear factorized models

• Linear factorized models:

̂𝑦 = arg max
y

𝑛
∑
𝑖=1

w⊤𝑓(x, 𝑖, 𝑦𝑖−1, 𝑦𝑖).

• We can find labels 𝑦𝑖 with Viterbi algorithm such that the total
sum is maximal.

• Training – structured perceptron: for several epochs,
• for each training set sequence (x, y):

• compute z = arg maxz w⊤𝑓(x, z) (with Viterbi)
• if z ≠ y update

w ∶= w + 𝜂 (𝑓(x, y) − 𝑓(x, z)) .

• Usually averaged structured perceptron (return average weights
over the training).

33

maximal entropy markov models

• How can we add more features to HMMs?
• MEMM: invert the arrows in the HMM

• The likelihood is ∏𝑇
𝑡=1 𝑝(𝑦𝑡 ∣ 𝑦𝑡−1, x𝑡).

• We can now use any kind of features for x𝑡.

34

maximal entropy markov models

• But there is a “label bias” problem:

34

maximal entropy markov models

• The second token has no choice now, even though it is
important:

34

conditional random fields

conditional random fields

• Hence, CRF:

• Undirected graphical model, joint distribution

𝑝(y, x) = 1
𝑍

𝑇
∏
𝑡=1

𝑒∑𝐾
𝑘=1 𝜃𝑘𝑓𝑘(𝑦𝑡,𝑦𝑡−1,x𝑡).

36

conditional random fields

• And the inference problem is

𝑝(y ∣ x) =
∏𝑇

𝑡=1 𝑒∑𝐾
𝑘=1 𝜃𝑘𝑓𝑘(𝑦𝑡,𝑦𝑡−1,x𝑡)

∑y′ ∏𝑇
𝑡=1 𝑒∑𝐾

𝑘=1 𝜃𝑘𝑓𝑘(𝑦′
𝑡,𝑦′

𝑡−1,x𝑡)
.

• This is called linear-chain CRF. In this form:

36

conditional random fields

• But we can also let local features depend on more than that. In
an HMM, the transition depends only on the hidden state:

36

conditional random fields

• In a CRF, we can allow it to depend on the current observations:

36

conditional random fields

• Or simply on all observations:

36

conditional random fields

• To train CRFs, we need to do approximate inference in
undirected graphical models (the marginals 𝑍(x) are hard to
compute).

• But wait, where is the deep learning?..
• You can do the same things with RNNs.
• But even better...

36

conditional random fields

• Put a CRF on top of features extracted by LSTMs:

• Current state of the art in NER, for example.

36

thank you!

Thank you for your attention!

37

	Motivation
	Hidden Markov models
	Linear factorized models
	Conditional random fields

