Half-duplex communication complexity

Kenneth Hoover ${ }^{\text {a }}$
Russell Impagliazzo ${ }^{\text {a }}$
Ivan Mihajlin ${ }^{\text {a }}$
Alexander Smal ${ }^{b}$
ISAAC 2018

[^0]Communication models

Classical communication model

Introduced by Andrew Yao in 1979.

Bob

Classical communication model

Introduced by Andrew Yao in 1979.

Classical communication model

Introduced by Andrew Yao in 1979.

Alice and Bob want to compute $f(x, y)$.

Classical communication model

Introduced by Andrew Yao in 1979.

Alice and Bob want to compute $f(x, y)$.

Classical communication model

Introduced by Andrew Yao in 1979.

Alice and Bob want to compute $f(x, y)$.

Classical communication model

Introduced by Andrew Yao in 1979.

Alice and Bob want to compute $f(x, y)$.

Communication protocol

Communication complexity of f is a minimal depth of a protocol solving f, denoted $D(f)$.

Half-duplex communication model

Players talk over half-duplex channel (e.g., "wakie-talkie").

Half-duplex communication model

Players talk over half-duplex channel (e.g., "wakie-talkie").

Half-duplex communication model

Players talk over half-duplex channel (e.g., "wakie-talkie").

Alice and Bob want to compute $f(x, y)$.

Half-duplex communication model

Players talk over half-duplex channel (e.g., "wakie-talkie").

Alice and Bob want to compute $f(x, y)$.

Half-duplex communication model

Players talk over half-duplex channel (e.g., "wakie-talkie").

Alice and Bob want to compute $f(x, y)$.

Half-duplex communication model

Players talk over half-duplex channel (e.g., "wakie-talkie").

Alice and Bob want to compute $f(x, y)$.

Half-duplex communication model

Players talk over half-duplex channel (e.g., "wakie-talkie").

Alice and Bob want to compute $f(x, y)$.

Half-duplex communication model

Players talk over half-duplex channel (e.g., "wakie-talkie").

Alice and Bob want to compute $f(x, y)$.

Half-duplex communication model

Players talk over half-duplex channel (e.g., "wakie-talkie").

Alice and Bob want to compute $f(x, y)$.

Types of rounds

There are three types of rounds.

1. Normal round: one player sends, other player receives.
2. Spent round: both players send.
3. Silent round: both players receive.

Types of rounds

There are three types of rounds.

1. Normal round: one player sends, other player receives.
2. Spent round: both players send.
3. Silent round: both players receive.

We consider three variants of how silent rounds work.

- Half-duplex with silence: the players receive some special symbol (i.e., silence), neither 0 nor 1 .
- Half-duplex with zero: the players receive 0 (indistinguishable from normal round).
- Half-duplex with an adversary: the players receive bits chosen by an adversary (or some noise).

More formal

Every round each player chooses one of three actions: \{send (0), send(1), receive\}.

More formal

Every round each player chooses one of three actions: \{send(0), send(1), receive\}.

Then each player observes one of the possible events.

- In the model with silence the possible events are: $\{$ send (0), send (1), receive(0), receive(1), silence\}

More formal

Every round each player chooses one of three actions: \{send(0), send(1), receive\}.

Then each player observes one of the possible events.

- In the model with silence the possible events are: $\{$ send (0), send (1), receive (0), receive(1), silence $\}$
- In the model with zero the possible events are:
$\{$ send (0), send (1), receive(0), receive(1) \}

More formal

Every round each player chooses one of three actions: $\{$ send (0), send (1), receive\}.

Then each player observes one of the possible events.

- In the model with silence the possible events are: $\{$ send (0), send (1), receive(0), receive(1), silence\}
- In the model with zero the possible events are:
$\{$ send (0), send (1), receive(0), receive(1) \}

More formal

Every round each player chooses one of three actions: \{send(0), send(1), receive\}.

Then each player observes one of the possible events.

- In the model with silence the possible events are: $\{$ send (0), send (1), receive (0), receive(1), silence $\}$
- In the model with zero the possible events are:
$\{$ send(1), receive(0), receive(1) \}

More formal

Every round each player chooses one of three actions: $\{$ send (0), send (1), receive\}.

Then each player observes one of the possible events.

- In the model with silence the possible events are: \{send (0), send (1), receive(0), receive(1), silence\}
- In the model with zero the possible events are:
$\{$ send(1), receive(0), receive(1)\}
- In the model with an adversary the possible events are:
$\{$ send (0), send (1), receive (0), receive (1) \}
(in silent rounds the adversary chooses which bits the players receive)

Half-duplex communication protocol

Half-duplex communication protocol consists of two trees.

Half-duplex communication protocol

Half-duplex communication protocol consists of two trees.

Half-duplex communication complexity of f with silence, with zero, with an adversary is a minimal depth of a protocol for f

- with silence, denoted $D_{s}^{h d}(f)$,
- with zero, denoted $D_{0}^{h d}(f)$,
- with an adversary, denoted $D_{a}^{h d}(f)$, respectively.

Simple observations

For every $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ the following holds.

1. $D_{s}^{h d}(f) \leq D_{0}^{h d}(f) \leq D_{a}^{h d}(f) \leq D(f)$ (follows from definitions).

Simple observations

For every $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ the following holds.

1. $D_{s}^{h d}(f) \leq D_{0}^{h d}(f) \leq D_{a}^{h d}(f) \leq D(f)$ (follows from definitions).
2. $D(f) / 2 \leq D_{0}^{\text {hd }}(f) \leq D_{a}^{h d}(f)$ (half-duplex communication without silence can be simulated by a classical protocol sending two bits per each round of the original protocol).

Simple observations

For every $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ the following holds.

1. $D_{s}^{h d}(f) \leq D_{0}^{h d}(f) \leq D_{a}^{h d}(f) \leq D(f)$ (follows from definitions).
2. $D(f) / 2 \leq D_{0}^{\text {hd }}(f) \leq D_{a}^{\text {hd }}(f)$ (half-duplex communication without silence can be simulated by a classical protocol sending two bits per each round of the original protocol).
3. $D(f) / 3 \leq D_{s}^{\text {hd }}(f)$ (half-duplex communication with silence can be simulated by a classical protocol sending three bits per each round of the original protocol).

Simple observations

For every $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ the following holds.

1. $D_{s}^{\text {hd }}(f) \leq D_{0}^{\text {hd }}(f) \leq D_{a}^{\text {hd }}(f) \leq D(f)$ (follows from definitions).
2. $D(f) / 2 \leq D_{0}^{h d}(f) \leq D_{a}^{h d}(f)$ (half-duplex communication without silence can be simulated by a classical protocol sending two bits per each round of the original protocol).
3. $D(f) / 3 \leq D_{s}^{\text {hd }}(f)$ (half-duplex communication with silence can be simulated by a classical protocol sending three bits per each round of the original protocol).

Note that multiplicative constants are important.

Functions

We study complexity of the following functions.

- Equality: $\mathrm{EQ}_{n}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$, such that $\mathrm{EQ}_{n}(x, y)=1 \Longleftrightarrow x=y$.
- Inner product: $\operatorname{IP}_{n}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$, such that $\operatorname{IP}_{n}(x, y)=\bigoplus_{i \in[n]} x_{i} y_{i}$.
- Disjointness: $\operatorname{DISJ}_{n}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$, such that $\operatorname{DISJ}_{n}(x, y)=1 \Longleftrightarrow \forall i: x_{i} \neq 1 \vee y_{i} \neq 1$.

All this functions are hard in the classical model:

- $D\left(\mathrm{EQ}_{n}\right) \geq n$,
- $D\left(\mathrm{IP}_{n}\right) \geq n$,
- $D\left(\right.$ DISJ $\left._{n}\right) \geq n$.

Methods for lower bounds

Methods

We consider three methods:

- Combinatorial rectangles.
- Round elimination.
- Internal information.

Combinatorial rectangles

- Every node v of a protocol corresponds to a combinatorial rectangle $R_{V}=X \times Y, X, Y \subseteq\{0,1\}^{n}$ of inputs: if $(x, y) \in R_{v}$ then the communication passes through the node v.
- A rectangle of some internal node v is equal to the union (disjoint) of rectangles in its children.
- Let μ be sub-additive measure: $\mu\left(\{0,1\}^{n} \times\{0,1\}^{n}\right) \geq \mu_{r}$, and for every leaf rectangle $R_{l}, \mu\left(R_{l}\right) \leq \mu_{\ell}$.
- Then the depth of any protocol is at least $\log _{a}\left(\mu_{r} / \mu_{\ell}\right)$, where a is the arity of the protocol trees.
- Example of μ : the minimal number of monochromatic rectangles that covers R.

Round elimination

Consider the first round of some protocol for f.

Alice \backslash Bob	send (0)	send(1)	receive
send (0)	R_{00}	R_{01}	$R_{0 r}$
send(1)	R_{10}	R_{11}	$R_{1 r}$
receive	$R_{r 0}$	$R_{r 1}$	$R_{r r}$

Rectangle R is good for f if restricting f to R makes the first round useless. Example: $R=R_{00} \cup R_{01} \cup R_{0 r}$.

Let μ be sub-additive measure: $\mu\left(\{0,1\}^{n} \times\{0,1\}^{n}\right) \geq \mu_{r}$ and for any leaf rectangle $R_{l}, \mu\left(R_{l}\right) \leq \mu_{\ell}$.

If for any rectangle R appearing in the protocol there is a good subrectangle for function $f \upharpoonright R$ of measure at least $\alpha \cdot \mu(R)$ then the depth of the protocol is at least $\log _{1 / \alpha}\left(\mu_{r} / \mu_{\ell}\right)$.

Internal information

Let \mathcal{D} be a distribution over the domain of f.
\mathcal{X} and \mathcal{Y} - the marginal distributions over inputs.
Π_{A} and Π_{B} - the marginal distributions over transcripts.

An internal information cost of protocol \mathcal{P} is

$\mathrm{IC}_{\mathcal{D}}(\mathcal{P})=I\left(\mathcal{X}: \Pi_{B} \mid \mathcal{Y}\right)+I\left(\mathcal{Y}: \Pi_{A} \mid \mathcal{X}\right)$.

Lemma

Every leaf rectangle of a protocol for IP_{n} has size at most 2^{n}.

Lemma

If for any k-round half-duplex protocol \mathcal{P} for IP_{n} with silence/zero/adversary, $\operatorname{IC}_{\mathcal{D}}^{k}(\mathcal{P}) \leq \alpha k$, then half-duplex complexity of IP_{n} with silence/zero/adversary is at least n / α.

Our results

Half-duplex with silence

Upper bounds

- For every $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$,

$$
D_{s}^{h d}(f) \leq n / \log 3+O(1) \leq n / 1.58+O(1)
$$

- $D_{s}^{h d}\left(\mathrm{EQ}_{n}\right) \leq n / \log 5+O(\log n)$.
- $D_{s}^{h d}\left(\right.$ DISJ $\left._{n}\right) \leq n / 2+O(1)$.

Lower bounds

- $D_{s}^{\text {hd }}\left(\mathrm{EQ}_{n}\right) \geq \log _{5} 2^{n}=n / \log 5$ (combinatorial rectangles).
- $D_{s}^{h d}\left(\mathrm{IP}_{n}\right) \geq n / 2$ (round elimination).
- $D_{s}^{h d}\left(\mathrm{IP}_{n}\right) \geq n / 1.67$ (internal information).

Half-duplex with zero

Upper bounds

- $D_{0}^{h d}\left(\mathrm{EQ}_{n}\right) \leq n / \log 3+O(\log n) \leq n / 1.58+O(\log n)$.

Lower bounds

- $D_{0}^{\text {hd }}\left(\mathrm{EQ}_{n}\right) \geq \log _{3} 2^{n}=n / \log 3$ (combinatorial rectangles).
- $D_{0}^{h d}\left(\mathrm{IP}_{n}\right) \geq n / \log \frac{2}{3-\sqrt{5}}>n / 1.39$ (round elimination).
- $D_{0}^{\text {hd }}\left(\mathrm{IP}_{n}\right) \geq n / 1.234$ (internal information).

Half-duplex with an adversary

Lower bounds

- $D_{a}^{h d}\left(\mathrm{EQ}_{n}\right) \geq \log _{4} 2^{n}=n / 2$ (combinatorial rectangles).
- $D_{a}^{\text {hd }}\left(\mathrm{EQ}_{n}\right) \geq n / \log 2.5$ (round elimination).
- $D_{a}^{h d}\left(\mathrm{IP}_{n}\right) \geq n / \log \frac{7}{3}$ (round elimination).
- $D_{a}^{h d}\left(\mathrm{IP}_{n}\right) \geq n$ (internal information).

Half-duplex with an adversary

Lower bounds

- $D_{a}^{h d}\left(\mathrm{EQ}_{n}\right) \geq \log _{4} 2^{n}=n / 2$ (combinatorial rectangles).
- $D_{a}^{h d}\left(\mathrm{EQ}_{n}\right) \geq n / \log 2.5$ (round elimination).
- $D_{a}^{h d}\left(\mathrm{IP}_{n}\right) \geq n / \log \frac{7}{3}$ (round elimination).
- $D_{a}^{h d}\left(\mathrm{IP}_{n}\right) \geq n$ (internal information).

Lower bound for KW game for parity

Let $R_{\oplus_{n}}=\left\{(x, y, i) \mid \oplus_{n}(x)=0, \oplus_{n}(y)=1, x_{i} \neq y_{i}\right\}$.
In the classical model $D\left(R_{\oplus_{n}}\right) \geq 2 \log n$.
We proved that $D_{a}^{h d}\left(R_{\oplus_{n}}\right) \geq 2 \log n$ using internal information.

Thanks for your attention!

Protocol for EQ_{n} with silence

Players encode inputs in an alphabet of size five $\{0,1,2,3,4\}$.

Symbol	Alice	Bob
0	send (0)	receive
1	send(1)	receive
2	receive	send(0)
3	receive	send(1)
4	receive	receive

Players can detect a mismatch in normal and silent rounds.
To check that there were no spent rounds, Alice sends the number of normal rounds she was receiving in.

Bob checks whether this number is equal to the number of rounds he was sending in.

Protocol for DISJ $_{n}$ with silence

Alice and Bob process their inputs two bits per round.

Symbols	Alice	Bob
00	send (0)	receive
01	receive	send (0)
10	receive	send (1)
11	receive	receive

Bob tells Alice whether there was a silent round in which Bob's input was 11 (i.e., inputs are not disjoint).

Alice tells Bob whether she ever received 0 having 01 or 11, or received 1 having 10 or 11 .

Lower bound for EQ_{n} with an adversary

Let $\mu(R)=|\{(x, x) \in R\}|$, the number of diagonal elements.
Consider the following set of five good rectangles:
$R_{\text {spent }}=R_{00} \cup R_{01} \cup R_{10} \cup R_{11}$, and four rectangles

$$
\begin{array}{ll}
R_{\overline{1} \overline{1}}=R_{00} \cup R_{0 r} \cup R_{r 0} \cup R_{r r}, & R_{\overline{0} \overline{1}}=R_{10} \cup R_{1 r} \cup R_{r 0} \cup R_{r r}, \\
R_{\overline{1} \overline{0}}=R_{01} \cup R_{0 r} \cup R_{r 1} \cup R_{r r}, & R_{\overline{0} \overline{0}}=R_{11} \cup R_{1 r} \cup R_{r 1} \cup R_{r r},
\end{array}
$$

Note that together all these good rectangles cover the entire rectangle R of possible input twice.

One of good rectangles has measure at least $2 / 5 \cdot \mu(R)$.
Hence $D_{a}^{h d}\left(E Q_{n}\right) \geq n / \log 2.5$.

Summary and open questions

	EQ_{n}	IP_{n}	DISJ_{n}
$D_{s}^{h d}$	$\geq n / \log 5$ $\leq n / \log 5+o(n)$	$\geq n / 1.67$	
$D_{0}^{h d}$	$\geq n / \log 3$ $\leq n / \log 3+o(n)$	$\geq n / 1.234$	$\leq n / 2+O(1)$
$D_{a}^{h d}$	$\geq n / \log 2.5$	$\geq n$	

Open problems

1. Prove better upper and lower bounds.
2. Is there any $\alpha<1$ such that for any function f,

$$
D_{0}^{h d}(f) \leq \alpha n+o(n) ?
$$

3. Is there any function f, such that at the same time $D(f) \geq n-o(n)$ and $D_{a}^{h d}(f) \leq \alpha n+o(n)$ for some $\alpha<1$.

Motivation and related work

The Karchmer-Wigderson game for $f:\{0,1\}^{n} \rightarrow\{0,1\}$:
Alice is given $x \in f^{-1}(0)$, Bob is given $y \in f^{-1}(1)$, and they want to find an $i \in[n]$ such that $x_{i} \neq y_{i}$.

A multiplexer (aka indexing function) is a function $M_{n}:\{0,1\}^{2^{n}} \times\{0,1\}^{n} \rightarrow\{0,1\}$, such that $M_{n}(t t, x)=t t[x]$.

Consider Karchmer-Wigderson game for M_{n} : Alice is given $\left(t t_{f}, x\right), x \in f^{-1}(0)$, Bob is given $\left(t t_{g}, y\right)$, $y \in g^{-1}(1)$.

With a promise $f=g$ the players can use some protocol for f.

Motivation and related work

The Karchmer-Wigderson game for $f:\{0,1\}^{n} \rightarrow\{0,1\}$:
Alice is given $x \in f^{-1}(0)$, Bob is given $y \in f^{-1}(1)$, and they want to find an $i \in[n]$ such that $x_{i} \neq y_{i}$.

A multiplexer (aka indexing function) is a function $M_{n}:\{0,1\}^{2^{n}} \times\{0,1\}^{n} \rightarrow\{0,1\}$, such that $M_{n}(t t, x)=t t[x]$.

Consider Karchmer-Wigderson game for M_{n} : Alice is given $\left(t t_{f}, x\right), x \in f^{-1}(0)$, Bob is given $\left(t t_{g}, y\right)$, $y \in g^{-1}(1)$.

With a promise $f=g$ the players can use some protocol for f.
What happens if the promise is broken?

Motivation and related work

The Karchmer-Wigderson game for $f:\{0,1\}^{n} \rightarrow\{0,1\}$:
Alice is given $x \in f^{-1}(0)$, Bob is given $y \in f^{-1}(1)$, and they want to find an $i \in[n]$ such that $x_{i} \neq y_{i}$.

A multiplexer (aka indexing function) is a function
$M_{n}:\{0,1\}^{2^{n}} \times\{0,1\}^{n} \rightarrow\{0,1\}$, such that $M_{n}(t t, x)=t t[x]$.
Consider Karchmer-Wigderson game for M_{n} :
Alice is given $\left(t t_{f}, x\right), x \in f^{-1}(0)$, Bob is given $\left(t t_{g}, y\right)$,
$y \in g^{-1}(1)$.
With a promise $f=g$ the players can use some protocol for f.
What happens if the promise is broken?
Similar models were studied by Impagliazzo and Williams (without "canceling" spent rounds), and by Efremenko, Kol, and Saxena (multi-party model with a noisy broadcast channel).

[^0]: ${ }^{a}$ University of California San Diego
 ${ }^{b}$ St. Petersburg Department of Steklov Institute of Mathematics of RAS

