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Communication protocol
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Communication complexity of f is a minimal depth of a protocol

solving f , denoted D(f ).
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Half-duplex communication model

Players talk over half-duplex channel (e.g., “wakie-talkie”).
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Types of rounds

There are three types of rounds.

1. Normal round: one player sends, other player receives.

2. Spent round: both players send.

3. Silent round: both players receive.

We consider three variants of how silent rounds work.

• Half-duplex with silence: the players receive some special

symbol (i.e., silence), neither 0 nor 1.

• Half-duplex with zero: the players receive 0

(indistinguishable from normal round).

• Half-duplex with an adversary: the players receive bits

chosen by an adversary (or some noise).
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More formal

Every round each player chooses one of three actions:

{send(0), send(1), receive}.

Then each player observes one of the possible events.

• In the model with silence the possible events are:

{send(0), send(1), receive(0), receive(1), silence}
• In the model with zero the possible events are:

{send(1), receive(0), receive(1)}
• In the model with an adversary the possible events are:

{send(0), send(1), receive(0), receive(1)}
(in silent rounds the adversary chooses which bits the players

receive)
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Half-duplex communication protocol

Half-duplex communication protocol consists of two trees.
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Half-duplex communication complexity of f with silence, with zero,

with an adversary is a minimal depth of a protocol for f

• with silence, denoted Dhd
s (f ),

• with zero, denoted Dhd
0 (f ),

• with an adversary, denoted Dhd
a (f ), respectively.
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Simple observations

For every f : {0, 1}n × {0, 1}n → {0, 1} the following holds.

1. Dhd
s (f ) ≤ Dhd

0 (f ) ≤ Dhd
a (f ) ≤ D(f ) (follows from

definitions).

2. D(f )/2 ≤ Dhd
0 (f ) ≤ Dhd

a (f ) (half-duplex communication

without silence can be simulated by a classical protocol

sending two bits per each round of the original protocol).

3. D(f )/3 ≤ Dhd
s (f ) (half-duplex communication with silence

can be simulated by a classical protocol sending three bits per

each round of the original protocol).

Note that multiplicative constants are important.
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Functions

We study complexity of the following functions.

• Equality: EQn : {0, 1}n × {0, 1}n → {0, 1},
such that EQn(x , y) = 1 ⇐⇒ x = y .

• Inner product: IPn : {0, 1}n × {0, 1}n → {0, 1},
such that IPn(x , y) =

⊕
i∈[n] xiyi .

• Disjointness: DISJn : {0, 1}n × {0, 1}n → {0, 1},
such that DISJn(x , y) = 1 ⇐⇒ ∀i : xi 6= 1 ∨ yi 6= 1.

All this functions are hard in the classical model:

• D(EQn) ≥ n,

• D(IPn) ≥ n,

• D(DISJn) ≥ n.
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Methods for lower bounds



Methods

We consider three methods:

• Combinatorial rectangles.

• Round elimination.

• Internal information.

9



Combinatorial rectangles

• Every node v of a protocol corresponds to a combinatorial

rectangle Rv = X × Y , X ,Y ⊆ {0, 1}n of inputs: if

(x , y) ∈ Rv then the communication passes through the node

v .

• A rectangle of some internal node v is equal to the union

(disjoint) of rectangles in its children.

• Let µ be sub-additive measure: µ({0, 1}n × {0, 1}n) ≥ µr ,

and for every leaf rectangle Rl , µ(Rl) ≤ µ`.
• Then the depth of any protocol is at least loga(µr/µ`), where

a is the arity of the protocol trees.

• Example of µ: the minimal number of monochromatic

rectangles that covers R.
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Round elimination

Consider the first round of some protocol for f .

Alice\Bob send(0) send(1) receive

send(0) R00 R01 R0r

send(1) R10 R11 R1r

receive Rr0 Rr1 Rrr

Rectangle R is good for f if restricting f to R makes the first

round useless. Example: R = R00 ∪ R01 ∪ R0r .

Let µ be sub-additive measure: µ({0, 1}n × {0, 1}n) ≥ µr and for

any leaf rectangle Rl , µ(Rl) ≤ µ`.

If for any rectangle R appearing in the protocol there is a good

subrectangle for function f � R of measure at least α · µ(R) then

the depth of the protocol is at least log1/α(µr/µ`).
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Internal information

Let D be a distribution over the domain of f .

X and Y — the marginal distributions over inputs.

ΠA and ΠB — the marginal distributions over transcripts.

An internal information cost of protocol P is

ICD(P) = I (X : ΠB | Y) + I (Y : ΠA | X ).

Lemma

Every leaf rectangle of a protocol for IPn has size at most 2n.

Lemma

If for any k-round half-duplex protocol P for IPn with

silence/zero/adversary, ICk
D(P) ≤ αk , then half-duplex complexity

of IPn with silence/zero/adversary is at least n/α.
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Our results



Half-duplex with silence

Upper bounds

• For every f : {0, 1}n × {0, 1}n → {0, 1},
Dhd
s (f ) ≤ n/ log 3 + O(1) ≤ n/1.58 + O(1).

• Dhd
s (EQn) ≤ n/ log 5 + O(log n).

• Dhd
s (DISJn) ≤ n/2 + O(1).

Lower bounds

• Dhd
s (EQn) ≥ log5 2n = n/ log 5 (combinatorial rectangles).

• Dhd
s (IPn) ≥ n/2 (round elimination).

• Dhd
s (IPn) ≥ n/1.67 (internal information).
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Half-duplex with zero

Upper bounds

• Dhd
0 (EQn) ≤ n/ log 3 + O(log n) ≤ n/1.58 + O(log n).

Lower bounds

• Dhd
0 (EQn) ≥ log3 2n = n/ log 3 (combinatorial rectangles).

• Dhd
0 (IPn) ≥ n/ log 2

3−
√

5
> n/1.39 (round elimination).

• Dhd
0 (IPn) ≥ n/1.234 (internal information).
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Half-duplex with an adversary

Lower bounds

• Dhd
a (EQn) ≥ log4 2n = n/2 (combinatorial rectangles).

• Dhd
a (EQn) ≥ n/ log 2.5 (round elimination).

• Dhd
a (IPn) ≥ n/ log 7

3 (round elimination).

• Dhd
a (IPn) ≥ n (internal information).

Lower bound for KW game for parity

Let R⊕n = {(x , y , i) | ⊕n(x) = 0,⊕n(y) = 1, xi 6= yi}.

In the classical model D(R⊕n) ≥ 2 log n.

We proved that Dhd
a (R⊕n) ≥ 2 log n using internal information.
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Thanks for your attention!
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Protocol for EQn with silence

Players encode inputs in an alphabet of size five {0, 1, 2, 3, 4}.

Symbol Alice Bob

0 send(0) receive

1 send(1) receive

2 receive send(0)

3 receive send(1)

4 receive receive

Players can detect a mismatch in normal and silent rounds.

To check that there were no spent rounds, Alice sends the number

of normal rounds she was receiving in.

Bob checks whether this number is equal to the number of rounds

he was sending in.
16



Protocol for DISJn with silence

Alice and Bob process their inputs two bits per round.

Symbols Alice Bob

00 send(0) receive

01 receive send(0)

10 receive send(1)

11 receive receive

Bob tells Alice whether there was a silent round in which Bob’s

input was 11 (i.e., inputs are not disjoint).

Alice tells Bob whether she ever received 0 having 01 or 11, or

received 1 having 10 or 11.
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Lower bound for EQn with an adversary

Let µ(R) =
∣∣{(x , x) ∈ R}

∣∣, the number of diagonal elements.

Consider the following set of five good rectangles:

Rspent = R00 ∪ R01 ∪ R10 ∪ R11, and four rectangles

R1̄1̄ = R00 ∪ R0r ∪ Rr0 ∪ Rrr , R0̄1̄ = R10 ∪ R1r ∪ Rr0 ∪ Rrr ,

R1̄0̄ = R01 ∪ R0r ∪ Rr1 ∪ Rrr , R0̄0̄ = R11 ∪ R1r ∪ Rr1 ∪ Rrr ,

Note that together all these good rectangles cover the entire

rectangle R of possible input twice.

One of good rectangles has measure at least 2/5 · µ(R).

Hence Dhd
a (EQn) ≥ n/ log 2.5.
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Summary and open questions

EQn IPn DISJn

Dhd
s

≥ n/ log 5 ≥ n/1.67

≤ n/ log 5 + o(n) ≤ n/2 + O(1)

Dhd
0

≥ n/ log 3 ≥ n/1.234

≤ n/ log 3 + o(n)

Dhd
a ≥ n/ log 2.5 ≥ n

Open problems

1. Prove better upper and lower bounds.

2. Is there any α < 1 such that for any function f ,

Dhd
0 (f ) ≤ αn + o(n)?

3. Is there any function f , such that at the same time

D(f ) ≥ n − o(n) and Dhd
a (f ) ≤ αn + o(n) for some α < 1.
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Motivation and related work

The Karchmer-Wigderson game for f : {0, 1}n → {0, 1}:
Alice is given x ∈ f −1(0), Bob is given y ∈ f −1(1), and they want

to find an i ∈ [n] such that xi 6= yi .

A multiplexer (aka indexing function) is a function

Mn : {0, 1}2n × {0, 1}n → {0, 1}, such that Mn(tt, x) = tt[x ].

Consider Karchmer-Wigderson game for Mn:

Alice is given (ttf , x), x ∈ f −1(0), Bob is given (ttg , y),

y ∈ g−1(1).

With a promise f = g the players can use some protocol for f .

What happens if the promise is broken?

Similar models were studied by Impagliazzo and Williams (without

“canceling” spent rounds), and by Efremenko, Kol, and Saxena

(multi-party model with a noisy broadcast channel).

20



Motivation and related work

The Karchmer-Wigderson game for f : {0, 1}n → {0, 1}:
Alice is given x ∈ f −1(0), Bob is given y ∈ f −1(1), and they want

to find an i ∈ [n] such that xi 6= yi .

A multiplexer (aka indexing function) is a function

Mn : {0, 1}2n × {0, 1}n → {0, 1}, such that Mn(tt, x) = tt[x ].

Consider Karchmer-Wigderson game for Mn:

Alice is given (ttf , x), x ∈ f −1(0), Bob is given (ttg , y),

y ∈ g−1(1).

With a promise f = g the players can use some protocol for f .

What happens if the promise is broken?

Similar models were studied by Impagliazzo and Williams (without

“canceling” spent rounds), and by Efremenko, Kol, and Saxena

(multi-party model with a noisy broadcast channel).

20



Motivation and related work

The Karchmer-Wigderson game for f : {0, 1}n → {0, 1}:
Alice is given x ∈ f −1(0), Bob is given y ∈ f −1(1), and they want

to find an i ∈ [n] such that xi 6= yi .

A multiplexer (aka indexing function) is a function

Mn : {0, 1}2n × {0, 1}n → {0, 1}, such that Mn(tt, x) = tt[x ].

Consider Karchmer-Wigderson game for Mn:

Alice is given (ttf , x), x ∈ f −1(0), Bob is given (ttg , y),

y ∈ g−1(1).

With a promise f = g the players can use some protocol for f .

What happens if the promise is broken?

Similar models were studied by Impagliazzo and Williams (without

“canceling” spent rounds), and by Efremenko, Kol, and Saxena

(multi-party model with a noisy broadcast channel). 20


	Communication models
	Methods for lower bounds
	Our results

