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8th Problem
8. Problems of prime numbers.

“... to prove the correctness of an exceedingly important statement of
Riemann, viz., that the zero points of the function ζ(s) defined by the
series

ζ(s) = 1 +
1
2s

+
1
3s

+
1
4s

+ ...

all have the real part 1
2 , except the well-known negative integral real zeros.”

“... to attempt the rigorous solution of Goldbach’s problem, viz., whether
every even integer is expressible as the sum of two positive prime numbers”

“... to attack the well-known question, whether there are an infinite
number of pairs of prime numbers with the difference 2”
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10th Problem
10. Entscheidung der Lösbarkeit einer diophantischen Gleichung.
Eine diophantische Gleichung mit irgendwelchen Unbekannten und mit
ganzen rationalen Zahlkoefficienten sei vorgelegt: man soll ein Verfahren
angeben, nach welchen sich mittels einer endlichen Anzahl von Operationen
entscheiden lässt, ob die Gleichung in ganzen rationalen Zahlen lösbar ist.

10. Determination of the Solvability of a Diophantine Equation.
Given a Diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: To devise a process according
to which it can be determined by a finite number of operations whether the
equation is solvable in rational integers.
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What are Diophantine equations?
10. Determination of the Solvability of a Diophantine Equation.
Given a Diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: To devise a process according
to which it can be determined by a finite number of operations whether the
equation is solvable in rational integers.

In the present talk, a Diophantine equation is an equation of the form

P(x1, . . . , xm) = 0

where P is a polynomial with integer coefficients and the unknowns
x1, . . . , xm can assume non-negative integer values only.
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Diophantine Sets
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with rational integral numerical coefficients: To devise a process according
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equation is solvable in rational integers.

P(a1, . . . , an, x1, . . . , xm) = 0

P is a polynomial with integer coefficients, the variables of which are split
into two groups:
the parameters a1, . . . ,an and the unknowns x1, . . . ,xm.

Consider the setM such that

〈a1, . . . , an〉 ∈ M⇐⇒∃x1 . . . xm{P(a1, . . . , an, x1, . . . , xm) = 0}

Sets having such representations are called Diophantine
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Examples of Diophantine sets

The set of all squares:

a− x2 = 0.

Is the set of all non-negative in-
teger that are not full squares
Diophantine?

– EASY

The set of all composite num-
bers

a− (x1 + 2)(x2 + 2) = 0.

Is the set of all prime numbers
Diophantine?

– DIFFICULT

Te set of all positive integers
which are not powers of 2

a− (2x1 + 3)(x2 + 1) = 0.

Is the set of all powers of 2 Dio-
phantine?

– DIFFICULT
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Alfred Tarski question
Prove that the set of all prime numbers, or the set of all powers of 2, is not
Diophantine



Julia Robinson predicates
Theorem (Julia Robinson [1952]) If there exists a two-parameter
Diophantine equation

J(u, v , y1, . . . , yn) = 0

such that
(∗) in every solution u < v v ;

(∗∗) for every k there exists a solution with u > vk ,
then exponetiation is Diophantine, that is, there exists a polynomial
A(a, b, c ,w1, . . . ,wm) such that

ab = c ⇐⇒ ∃z1 . . . zm{A(a, b, c ,w1, . . . ,wm) = 0}

Relations between u and v satisfying (∗) and (∗∗) were named by Julia
Robinson relations of exponential growth; later Martin Davis named them
Julia Robinson predicates.
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Listable Sets
Given a parametric Diophantine equation

P(a1, . . . , an, x1, . . . , xm) = 0

we can effectively list all n-tuples from the Diophantine setM represented
by this equation. Namely, we need only to look over, in some order, all
(n + m)-tuples of possible values of all variables a1, . . . , an, x1, . . . xm and
check every time whether the equality holds or not. As soon as it does, we
put the tuple 〈a1, . . . , an〉 on the list of elements ofM. In this way every
tuple fromM will sooner or later appear on the list, maybe many times.

Definition A setM of n-tuples of natural numbers is called listable
(=effectively enumerable = semidecidable) if there is an algorithm which
would print in some order, possibly with repetitions, all elements of the
setM.
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Martin Davis’s Conjecture
Evident fact. Every Diophantine set is listable.

That is, if a set is not listable, then it cannot be Diophantine. Martin
Davis conjectures that this is the only obstacle for a set to be Diophantine:

Martin Davis’s Conjecture (1950’s) Every listable set is Diophantine.

Parametric Diophantine equation

Number Theory Mathematical Logic

?

6

Description of the corresponding set
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A Mile-Stone on the Way to Davis Conjecture
DPR-theorem (Martin Davis, Hilary Putnam, Julia Robinson [1961]).
Every listable listable setM has an exponential Diophantine representation
of the form

〈a1, . . . , an〉 ∈ M⇐⇒∃x1 . . . xm

{E1(a1, . . . , an, x1, . . . , xm) = E2(a1, . . . , an, x1, . . . , xm)}

where E1(a1, . . . , an, x1, . . . , xm) and E2(a1, . . . , an, x1, . . . , xm) are
expression constructed by combining the variables and particular natural
numbers using the traditional rules of addition, multiplication and
exponentiation.

Corollary. The analogue of Hilbert’s tenth problem for exponential
Diophantine equations is undecidable.
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Missing link
After the work of Davis–Putnam–Robinson, in order to establish Davis’s
Conjecture in full generality it was sufficient to prove one of its very special
cases, namely, to show that exponetiation is Diophantine, that is to find a
particular Diophantine equation with 3 parameters such that

ab = c ⇐⇒ ∃z1 . . . zm{A(a, b, c ,w1, . . . ,wm) = 0}

And for this, thanks to 1952 work of Julia Robinson, it was sufficient to
discover a Diophantine relation of exponential growth (Julia Robinson
predicate).
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Mathematical Reviews 1962, 24A, page 574, review A3061:
Davis, Martin; Putnam, Hilary; Robinson, Julia. The decision problem for exponential
Diophantine equations. Ann. Math. (2), 74 425–436 (1961).

. . . These results are superficially related to Hilbert’s tenth
problem on (ordinary, i.e., non-exponential) Diophantine
equations. The proof of the authors’results, though very elegant,
does not use recondite facts in the theory of numbers nor in the
theory of r.e. [recursively enumerable] sets, and so it is likely that
the present result is not closely connected with Hilbert’s tenth
problem. . .

G.Kreisel
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One Step More
J. Robinson. Unsolvable Diophantine problems. Proceedings of the
American Mathematical Society, 22(2), 534–538, 1969.

Реферативный журнал Математика

Russian counterpart to
I Zentralblatt für Mathematik
I Mathematical Reviews

Theorem. If an infinite set of prime numbers is Diophantine, then Davis’s
Conjecture is true.

Theorem. If an infinite set of powers of 2 is Diophantine, then Davis’s
Conjecture is true.
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The Matiyasevich Theorem. Preliminaries
Formalized Mathematics, 25(4):315–322, 2017.
Diophantine sets. Preliminaries
Formalized Mathematics, 26(1):81–90, 2018.

Benedikt Stock, Abhik Pal, Maria Antonia Oprea, Yufei Liu, Malte Sophian
Hassler, Simon Dubischar, Prabhat Devkota, Yiping Deng, Marco David,
Bogdan Ciurezu, Jonas Bayer and Deepak Aryal
Hilbert Meets Isabelle: Formalisation of the DPRM Theorem in Isabelle
EasyChair Preprint no. 152, May 22, 2018

Dominique Larchey-Wendling and Yannick Forster
Hilbert’s Tenth Problem in Coq
4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019)
Leibniz International Proceedings in Informatics, No.27, 2019



AMS, DeKalb, Illinois, 1974
Mathematical developments
arising from Hilbert problems

Proceedings of Symposia in Pure
Mathematics, v. 28, 1976

Martin Davis, Yuri Matijasevič,
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Hilbert’s 8th Problem
8. Problems of prime numbers.

“... to prove the correctness of an exceedingly important statement of
Riemann, viz., that the zero points of the function ζ(s) defined by the
series

ζ(s) = 1 +
1
2s

+
1
3s

+
1
4s

+ ...

all have the real part 1
2 , except the well-known negative integral real zeros.”

“... to attempt the rigorous solution of Goldbach’s problem, viz., whether
every even integer is expressible as the sum of two positive prime numbers”

“... to attack the well-known question, whether there are an infinite
number of pairs of prime numbers with the difference 2”



Hilbert’s 8th Problem — Goldbach’s Conjecture
8. Problems of prime numbers.
“... to attempt the rigorous solution of Goldbach’s problem”

Conjecture (Ch. Goldbach [1742]). Every even integer greater than 2 is
the sum of two prime numbers.

The setM of counterexamples to Goldbach’s conjecture (i.e., even
numbers greater than 2 not being the sum of two primes) is listable and
hence we can construct its Diophantine representation

a ∈M ⇐⇒ ∃x1 . . . xm{G (a, x1, . . . , xm) = 0}
Thus, Goldbach’s conjecture is equivalent to the statement that the
Diophantine equation

G (x0, x1, . . . , xm) = 0

has no solution.

So, a positive solution of Hilbert’s tenth problem would allow us to know
whether Goldbach’s conjecture is true or not.
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Riemann’s zeta function
Dirichlet series:

ζ(s) =
∞∑
n=1

1
ns

s = σ + it

The series converges in the half-
plane Re(s) > 1 and defines a
function that can be analytically
extended to the entire complex
plane except for the point s = 1,
its only (and simple) pole.
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Euler identity

≡ The Fundamental Theorem of Arithmetic

Theorem (L. Euler [1737])

ζ(s) = 1−s + 2−s + · · ·+ n−s + . . .

=
∏

p is prime

1
1− p−s

Proof.

∏
p is prime

1
1− p−s

=
∏

p is prime

(
1 + p−s + p−2s + p−3s + . . .

)
= 1−s + 2−s + 3−s + · · ·+ n−s + . . .
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Distribution of Prime Numbers

π(x) = the number of primes not exceeding x

C. F. Gauss conjectured that

π(x) ≈ Li(x) =

∫ x

2

1
ln(t)

dt ≈ x

ln(x)

Theorem (B. Riemann [1859].)

π(x) = Li(x)− 1
2
Li(x

1
2 ) +

∑
ζ(ρ)=0

Li(xρ) + smaller terms

Theorem (J. Hadamard, Ch. de la Vallee Poussin, [1896, independently])

π(x)

x/ ln(x)
→x→∞ 1

π(x)

Li(x)
→x→∞ 1
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Riemann’s Hypothesis

Euler: 0 = ζ(−2) = · · · = ζ(−2m) = . . .

Theorem (Riemann [1859]). All non-real ze-
ros of ζ(s) lie in the critical strip 0 ≤ Re(s) ≤ 1.

Riemann’s Hypothesis (RH). All non-real ze-
ros of ζ(s) lie on the critical line Re(s) = 1

2 .

Equivalent formulation of RH.

π(x)− Li(x) = O(x
1
2 log(x))
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Gödel arithmetization

Equivalent formulation of RH:

π(x)− Li(x) = O(x
1
2 log(x)) Li(x) =

∫ x

2

1
ln(t)

dt

K.Gödel: There exists an arithmetical formula equivalent to Riemann’s
Hypothesis
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Given what we know today, where in this hierarchy can we find a
formula equivalent to RH?
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3. Number-theoretic theorems

By a number-theoretic theorem we shall mean a theorem of the form
“θ(x) vanishes for infinitely many natural numbers x”, where θ(x) is a
primitive recursive function.

... Without going so far as this, I should assert that theorems of this kind
have an importance which makes it worth while to give them special
consideration.

Theorem. RH∈ Π0
2 = {∀x1 . . . xm∃y1 . . . ynφ|φ ∈ Σ0
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“... The applications of this observation depend, of course, on finding
interesting propositions that can be formulated in the form above.”

“... B(n) is primitive recursive by the construction above, and
RH ↔ (n)B(n).”

Theorem. RH∈ Π0
1 = {∀x1 . . . xmφ|φ ∈ Σ0

0}.

“...Turing had previously observed [31] that there is a primitive recursive
B(n,m) such that RH ↔ (n)(Em)R(n,m) (in his argument he uses some
special properties of the zeta function, while the argument above is quite
general).”
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Vol.1, p.241: “A subset T ⊂ N is computable if there
is an algorithm to determine in a finite number of steps
whether or not an arbitrary given natural number is a
member of T [44]. From the theory of algorithms it
follows that RH is decidable, i.e. its truth or negation
are able to be proved.”
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0}

Corollaries of DPRM theorem. For every formula φ(a1, . . . , ak) from Π0
1

we can effectively construct a polynomial P(a1, . . . , an, x1, . . . , xk) with
integer coefficients such that

φ(a1, . . . , am) ⇐⇒ ∀x1 . . . xmP(a1, . . . , an, x1, . . . , xm) 6= 0;

in particular, we can construct a specific polynomial R(x1, . . . , xm) with
integer coefficients such that

RH ⇐⇒ ∀x1 . . . xmR(x1, . . . , xm) 6= 0
⇐⇒ ¬∃x1 . . . xmR(x1, . . . , xm) = 0
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Criterium of H.N. Shapiro
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Criterium of L. Schoenfeld

Theorem (L. Schoenfeld, [1976])

RH⇔ ∀n
(
n ≥ 74⇒ |ψ(n)− n| < 1

8π
√
n ln(n)2

)



Criterium of L. Schoenfeld

Theorem (L. Schoenfeld, [1976])

RH⇔ ∀n
(
n ≥ 74⇒ |ψ(n)− n| < 1

8π
√
n ln(n)2

)



More detailed presentations
Aran Nayebi
On the Riemann hypothesis and Hilbert’s tenth problem
February 2012, Unpublished Manuscript,
http://web.stanford.edu/~anayebi/projects/RH_Diophantine.pdf.

J. M. Hernandez Caceres
The Riemann hypothesis and Diophantine equations, 2018.
Master’s Thesis Mathematics, Mathematical Institute, University of Bonn

http://web.stanford.edu/~anayebi/projects/RH_Diophantine.pdf


Yet another Π0
1 formulation of Riemann’s Hypothesis. I

J.-L. Nicolas
Petites valeurs de la fonction d’Euler
J. Number Theory, vol. 17, pp 375–388, 1983

Theorem.
RH⇔ ∀n

(
eγ ln(ln(Nn)) <

Nn

φ(Nn)

)
,

where e = 2.71828 . . . , Nn is the product of n first prime numbers, φ(m) is
Euler’s totient function (=the number of primes that are smaller than m
and relatively prime to it), γ = 0.577215 . . . is Euler constant:

γ =
∞∑
k=1

(
1
k
− ln

(
1 +

1
k

))



Yet another Π0
1 formulation of Riemann’s Hypothesis. II

G. Robin
Grandes valeurs de la fonction somme des diviseurs et hypothèse de
Riemann
J. Math. Pures Appl. (9) vol. 63, pp 187–213, 1984

Theorem.

RH⇔ ∀n (n ≥ 5040⇒ σ(n) < eγn ln(ln(n))) ,

where σ(n) is the sum of all divisors of n, γ = 0.577215 . . . is Euler
constant:

γ =
∞∑
k=1

(
1
k
− ln

(
1 +

1
k

))



Yet another Π0
1 formulation of Riemann’s Hypothesis. III

J. C. Lagarias
An elementary problem equivalent to the Riemann hypothesis
Am. Math. Mon. vol. 109, no. 6, pp 534–543, 2002

Theorem.
RH⇔ ∀n

(
σ(n) < Hn + eHn ln(Hn)

)
,

where σ(n) is the sum of all divisors of n, and Hn = 1 + 1/2 + · · ·+ 1/n
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Yet another Π0
1 formulation of Riemann’s Hypothesis. IV

Theorem (Matiyasevich [2018]). Consider the following system of
conditions:

2` ≤ n < 2`+1, 2m ≤ q < 2m+1,

s =
Bn+1 (B(n+1)n − n − 1

)
+ n

(Bn+1 − 1)2 , t =
(2m − 1)

(
Bn2 − 1

)
Bn − 1

,

(
t

r

)
≡ 1 (mod 2), rs − u ≡ Bn2−n (Bn − 1)

B − 1
q (mod Bn2

),

u = rem
(
rs,Bn2−n), p = rem(r ,Bn + 1), mp < nq − 15`2q

√
n,

where B denotes 2`+m+1.

(A) If Riemann’s Hypothesis is true, then the above system of conditions
has no solution in positive integers `,m, n, p, q, r , s, t, u.
(B) If Riemann’s Hypothesis is not true, then the above system has
infinitely many such solutions.



Yet another Π0
1 formulation of Riemann’s Hypothesis. IV

Theorem (Matiyasevich [2018]). Consider the following system of
conditions:

2` ≤ n < 2`+1, 2m ≤ q < 2m+1,

s =
Bn+1 (B(n+1)n − n − 1

)
+ n

(Bn+1 − 1)2 , t =
(2m − 1)

(
Bn2 − 1

)
Bn − 1

,

(
t

r

)
≡ 1 (mod 2), rs − u ≡ Bn2−n (Bn − 1)

B − 1
q (mod Bn2

),

u = rem
(
rs,Bn2−n), p = rem(r ,Bn + 1), mp < nq − 15`2q

√
n,

where B denotes 2`+m+1.
(A) If Riemann’s Hypothesis is true, then the above system of conditions
has no solution in positive integers `,m, n, p, q, r , s, t, u.

(B) If Riemann’s Hypothesis is not true, then the above system has
infinitely many such solutions.



Yet another Π0
1 formulation of Riemann’s Hypothesis. IV

Theorem (Matiyasevich [2018]). Consider the following system of
conditions:

2` ≤ n < 2`+1, 2m ≤ q < 2m+1,

s =
Bn+1 (B(n+1)n − n − 1

)
+ n

(Bn+1 − 1)2 , t =
(2m − 1)

(
Bn2 − 1

)
Bn − 1

,

(
t

r

)
≡ 1 (mod 2), rs − u ≡ Bn2−n (Bn − 1)

B − 1
q (mod Bn2

),

u = rem
(
rs,Bn2−n), p = rem(r ,Bn + 1), mp < nq − 15`2q

√
n,

where B denotes 2`+m+1.
(A) If Riemann’s Hypothesis is true, then the above system of conditions
has no solution in positive integers `,m, n, p, q, r , s, t, u.
(B) If Riemann’s Hypothesis is not true, then the above system has
infinitely many such solutions.



Yet another Π0
1 formulation of Riemann’s Hypothesis. V

A. A. Norkin
A Diophantine equation the unsolvability of which is equivalent to the
Riemann Hypothesis
Bachelor thesis, Moscow, 2019

The equation has 193 unknowns
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