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Abstract

It is well known that zeroes of Riemann’s zeta function encode a
lot of number-theoretical information, in particular, about the distri-
bution of prime numbers via Riemann’s and von Mangoldt’s formulas
for π(x) and ψ(x). The goal of this paper is to present numerical evi-
dence for a (presumably new and not yet proved) method for revealing
all divisors of all natural numbers from the zeroes of the zeta function.

This text is essentially a written version of the talk [3] given by the
author at the Department of Mathematics of University of Leicester,
UK on June 18, 2012. This talk was based on more intensive compu-
tations made after previous author’s talk [4] on the same subject given
originally at the Mathematical Institute of the University of Oxford
on January 26, 2012. The new numerical data indicate that some of
conjectures stated in Oxford are, most likely, wrong.
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“The physicist George Darwin used to say that
every once in a while one should do a completely
crazy experiment, like blowing the trumpet to
the tulips every morning for a month. Probably
nothing will happen, but if something did hap-
pen, that would be a stupendous discovery.”

Ian Hacking [1, p.154]

Riemann’s zeta function can be defined by the following Dirichlet
series:

ζ(s) =

∞∑
n=1

n−s=
1

1s
+

1

2s
+

1

3s
+ · · ·+ 1

ns
+ . . . (1)

The series converges for s > 1 and diverges at s = 1 where it turns
into the harmonic series:
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The zeta function is named after Georg Friedrich Bernhard Rie-
mann but it was previously studied by Leonhard Euler. His interest
was initiated by the so-called Basel Problem posed by Pietro Mengoli
in 1644, who asked the following question: What is the value of the
sum

1

12
+

1

22
+

1

32
+ · · ·+

1

n2
+ . . . ? (3)

In our notation (3) is nothing else but ζ(2).
Euler at first calculated more than a dozen of decimal digits of the

sum and found that

ζ(2) = 1.64493406684822644 . . . (4)

(this wasn’t an easy exercise because the series (3) converges very
slowly but he invented what is nowadays called Euler–Maclaurin sum-
mation). Then somehow Euler knew that

π2

6
= 1.64493406684822644 . . . (5)

and made a natural conjecture that

ζ(2) =
π2

6
. (6)
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In 1735 Euler gave his first “proof” of this equality but it was not
rigorous by today’s standards. Later he returned to this problem
several times and gave a number of quite rigorous proofs.

Euler didn’t stop by merely answering the original question asked
by Mengoli, but continued his investigations and found the following
values of ζ(s) for other values of the argument:

ζ(4) =
1

90
π4, (7)

ζ(6) =
1

945
π6, (8)

ζ(8) =
1

9450
π8, (9)

ζ(10) =
691

638512875
π10, (10)

ζ(12) =
2

18243225
π12, (11)

ζ(14) =
3617

325641566250
π14. (12)

But what are the strange numerators in the values of ζ(10) and ζ(14)?
No doubts that Euler immediately recognized these numbers as

numerators of the so-called Bernoulli numbers. Named after Jacob
Bernoulli, these numbers can be defined in many ways, in particular,
from the coefficients in the Taylor expansion

x

ex − 1
=

∞∑
k=0

1

k!
Bkx

k. (13)

The values of the initial Bernoulli numbers with even indices are:

B0 = 1, B2 =
1

6
, B4 = −

1

30
, B6 =

1

42
, B8 = −

1

30
,

(14)

B10 =
5

66
, B12 = −

691

2730
, B14 =

7

6
, B16 = −

3617

510
, . . .

The values of the Bernoulli numbers with odd indices are “much sim-
pler”:

B1 = −1

2
, B3 = B5 = B7 = B9 = B11 = · · · = 0. (15)
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After substituting (14) into (6)–(12), it is easy to guess what the
other factors are:

ζ(2) =
1

6
π2 =

21B2

2!
π2,

ζ(4) =
1

90
π4 = −23B4

4!
π4,

ζ(6) =
1

945
π6 =

25B6

6!
π6,

ζ(8) =
1

9450
π8 = −27B8

8!
π8,

ζ(10) =
691

638512875
π10 =

29B10

10!
π10.

ζ(12) =
2

18243225
π12 = −211B12

12!
π12,

ζ(14) =
3617

325641566250
π14 =

213B14

14!
π14.

(16)

and Euler gave the general formula

ζ(2k) = (−1)k+1 22k−1B2k

(2k)!
π2k, k = 1, 2, . . . (17)

Euler also asked a question that might look stupid: What should
the value of ζ(0) be? His answer was:

ζ(0) = 10 + 20 + 30 + · · · = 1 + 1 + 1 + · · · = −1

2
. (18)

Euler’s argumentation, important for our futher considerations, was
based on considering the following function:

η(s) = (1− 2 · 2−s)ζ(s) (19)

= (1− 2 · 2−s)(1−s + 2−s + 3−s + 4−s + . . . ) (20)

= 1−s + 2−s + 3−s + 4−s + . . .

− 2 · 2−s − 2 · 4−s − . . . (21)

= 1−s − 2−s + 3−s − 4−s + . . . (22)

The alternating Dirichlet series (22) has an advantage over the se-
ries (1): the former converges for s > 0. For s = 0 it becomes the
series

1− 1 + 1− 1 + . . . (23)
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with partial sums alternating between 1 and 0; assuming that its
“value” is 1

2 , one obtains (18) from (19).
Continuing in this style, Euler got the values

ζ(−1) = 11 + 21 + 31 + · · · = 1 + 2 + 3 + · · · = − 1

12
, (24)

ζ(−2) = 12 + 22 + 32 + · · · = 1 + 4 + 9 + · · · = 0, (25)

ζ(−3) = 13 + 23 + 33 + · · · = 1 + 8 + 27 + · · · = 1

120
, (26)

and in general

ζ(−m) = −Bm+1

m+ 1
m = 0, 1, . . . (27)

Both (17) and (27) contain Bernoulli numbers; putting m = 2k−1
one can eliminate these numbers getting the identity

ζ(1− 2k) = (−1)k21−2kπ−2k(2k − 1)!ζ(2k), k = 1, 2, . . . (28)

Riemann began to study ζ(s) for s being a complex number. The
series (1) converges in the semiplane <(s) > 1 only, but Riemann [5]
analytically extended it to the entire complex plane except for the
point s = 1, the only (and simple) pole of the zeta function.

It turned out that values of ζ(s) for non-positive integers indicated
by Euler as (27) coincide with the values obtained via analytical con-
tinuation. In particular, according to (15),

ζ(−2) = ζ(−4) = ζ(−6) = · · · = 0, (29)

and the negative even integers are called trivial zeroes of the zeta
function. Riemann [5] proved that this function has no other real
zeroes.

Also, the equality (28) obtained by Euler for integer arguments of
the zeta function can be extended to complex arguments after selecting
the proper counterpart for the factor (−1)k. Riemann [5] proved that

ζ(1− s) = cos
(πs

2

)
21−sπ−sΓ(s)ζ(s) (30)

and this identity is known as the functional equation for the zeta
function.

The cosine function can be expressed via the gamma function as

cos
(πs

2

)
=

π

Γ(− s
2 + 1

2)Γ( s2 + 1
2)
, (31)
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and for the gamma function we have the duplication formula

Γ(s) =
2s−1√
π

Γ
(s

2

)
Γ

(
s

2
+

1

2

)
. (32)

Substituting (31) and (32) into (30), we see after simple transforma-
tions that

π−
1−s
2 (−s)Γ

(
1− s

2
+ 1

)
ζ(1− s) = π−

s
2 (s− 1)Γ

(s
2

+ 1
)
ζ(s). (33)

The right hand side of (33) is nowadays usually denoted as ξ(s).
It is easy to check that the left hand side of (33) is just ξ(1− s), that
is, in terms of this function the functional equation has the following
nice form:

ξ(1− s) = ξ(s). (34)

The function ξ(s) is entire; its zeroes are exactly non-trivial (i.e., non-
real) zeroes of ζ(s).

Let us follow Riemann and make a change of the variable:

s =
1

2
+ it, t =

(
1

2
− s
)

i (35)

and define

Ξ(t) = ξ

(
1

2
+ it

)
. (36)

The functional equation (34) implies that Ξ(t) is an even function:

Ξ(t) = ξ

(
1

2
+ it

)
= ξ

(
1−

(
1

2
+ it

))
= Ξ(−t). (37)

In terms of this function Riemann stated his famous hypothesis.

The Riemann Hypothesis [5]. All zeroes of Ξ(t) are real
numbers.

Riemann established a relationship between prime numbers and
zeroes of the zeta function by giving a (somewhat complicated) ex-
pression for π(x)–the number of primes below x–via certain sums over
these zeroes. A simpler form of such relationship was given by Hans
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Carl Fridrich von Mangoldt in [6]. It gives an expression for the func-
tion ψ(x) introduced by Pafnutij L’vovich Chebyshev as

ψ(x) =

q≤x∑
q is a power
of prime p

ln(p) (38)

= ln(LCM(1, 2, ..., bxc)). (39)

This is a step function jumping by ln(p) at every prime number p and
every prime power:

0 5 10 15 20

5
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15

20

Figure 1: Chebyshev’s function ψ(x)

Theorem (von Mangoldt [6]). For any non-integer x > 1

ψ(x) = x−
∑
ξ(ρ)=0

xρ

ρ
−
∞∑
n=1

x−2n

−2n
− ln(2π). (40)
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Figure 2: Plot of x−
∑|ρ|<200

ξ(ρ)=0
xρ

ρ
−
∑∞

n=1
x−2n

−2n − ln(2π)

Traditionally, (40) is viewed as an identity between well-defined
left and right hand sides, but it can be interpreted in a different way.
Imagine that we know nothing about prime numbers, even their defi-
nition, but have at our disposal sufficiently many initial zeroes of the
zeta function. In such a case we could “discover” prime numbers just
by looking at the plot of the truncated right hand side of (40) (see
Figure 2). The prime numbers can be revealed from such a picture
either by looking at integers in the vicinity of which the function has a
big jump (they will be powers of primes) or by looking at the sizes of
jumps (they will be close to natural logarithms of primes). To reveal
more and more primes we would need to use more and more zeroes of
the zeta function.

The main novelty of the present research is the discovery of a new
(and not yet proved) way to reveal prime numbers from the zeroes of
the zeta function. It was an unexpected result of my “mathematical
blowing the trumpet”, and I have to start explaining what it was.

Assuming that all zeroes of Ξ(t) are real and simple, let them be
denoted ±γ1,±γ2, . . . , with 0 < γ1 < γ2 < . . . . Thus the non-trivial
zeroes of ζ(s) are 1

2 ± iγ1,
1
2 ± iγ2, . . .

Suppose that we have found γ1, γ2, . . . , γN−1; how could
these numbers be used for calculating an (approximate)
value of the next zero γN?

(41)

It was a rather strange idea to seek an answer to this question
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because known initial zeroes are distributed rather irregularly:

γ1 = 14.1347 . . . γ2 = 21.0220 . . . (42)

γ3 = 25.0109 . . . γ4 = 30.4249 . . . (43)

γ5 = 32.9350 . . . γ6 = 37.5861 . . . (44)

Γ1 Γ2 Γ3 Γ5 Γ6Γ7-Γ1-Γ2-Γ3-Γ5-Γ6 Γ7

Figure 3: Initial zeroes of Ξ(t)

Nevetheless, let us try to give an answer to the question (41).
A natural idea is to approximate Ξ(t) by some simpler even func-

tion also having zeroes at the points ±γ1, . . . ,±γN−1. One way to
construct such a function is to consider an interpolating determinant
with some even functions f1, f2, . . .∣∣∣∣∣∣∣

f1(γ1) . . . f1(γN−1) f1(t)
...

. . .
...

...
fN (γ1) . . . fN (γN−1) fN (t)

∣∣∣∣∣∣∣ . (45)

Clearly, it vanishes for t = ±γ1, . . . ,±γN−1 because for such values
of t the determinant contains two equal columns.

Selecting fn(t) = t2(n−1) we would obtain just an interpolating
polynomial

C

N−1∏
n=1

(t2 − γn2) (46)

having no other zeroes and hence useless for our goal.
Let us consider a modelling situation where the interpolating poly-

nomial does the job. If γ∗1 , γ
∗
2 , . . . are zeroes of the function

Ξ∗(t) =

N∑
k=1

fk(t) (47)

then the determinant∣∣∣∣∣∣∣
f1(γ

∗
1) . . . f1(γ

∗
N−1) f1(t)

...
. . .

...
...

fN (γ∗1) . . . fN (γ∗N−1) fN (t)

∣∣∣∣∣∣∣ (48)
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vanishes as soon as t is equal to any zero of Ξ∗(t) because for such a t
the rows of the determinant sum up to the zero row.

But our case is more complicated. First, we are looking for zeroes
of a function defined by an infinite number of summands:

Ξ(t) =

∞∑
n=1

αn(t), (49)

where

αn(t) = −
π−

1
4
− it

2

(
t2 + 1

4

)
Γ
(
1
4 + it

2

)
2n

1
2
+it

. (50)

Second, the summands αn(t) aren’t even.
We will overcome the second difficulty in a quite formal way. Ac-

cording to the functional equation (30),

Ξ(t) = Ξ(−t) =
∞∑
n=1

αn(−t) (51)

so we can write

Ξ(t) =
∞∑
n=1

βn(t), (52)

where

βn(t) =
αn(t) + αn(−t)

2
(53)

= −
π−

1
4
+ it

2

(
t2 + 1

4

)
Γ
(
1
4 −

it
2

)
4n

1
2
−it

−

π−
1
4
− it

2

(
t2 + 1

4

)
Γ
(
1
4 + it

2

)
4n

1
2
+it

(54)

are surely even functions. There is a “small problem”: the series (49)
converges for =(t) < −1

2 , the series (51) converges for =(t) > 1
2 , so

the series (52) converges nowhere.
However, for each interpolating determinant we need only finitely

many even functions, so we define the main object of our study as

∆N (t) =

∣∣∣∣∣∣∣
β1(γ1) . . . β1(γN−1) β1(t)

...
. . .

...
...

βN (γ1) . . . βN (γN−1) βN (t)

∣∣∣∣∣∣∣ . (55)
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Here are some results of calculations:

∆47(138.11604)=−2.18497 . . . · 10−1216 < 0
γ47 = 138.1160420545334. . .

∆47(138.11605)=+4.68242 . . . · 10−1216 > 0

We see that a zero of ∆47(t) has 8 decimal digits coinciding with digits
of γ47. For N = 220 there are already 15 coinciding decimal digits:

∆220(427.208825084074)=−1.92776 . . . · 10−17793 < 0
γ220 = 427.20882508407458052814. . .

∆220(427.208825084075)=+9.85564 . . . · 10−17794 > 0

For N = 400 the number of common digits increases to 38:

∆400(679.74219788252821771952593891126999534)=
−2.95319 . . . · 10−52001 < 0

γ400 = 679.7421978825282177195259389112699953456135514. . .
∆400(679.74219788252821771952593891126999535)=

+1.78976 . . . · 10−52001 > 0

Moreover, ∆N (t) allows us to calculate good approximations not
only to the next not yet used zero γN but to γN+k as well for values
of k that are not too large. Here are some examples1:

∆47(139.7362)=+1.27744 . . . · 10−1216 > 0
γ48 = 139.736208952121. . .

∆47(139.7363)=−9.88309 . . . · 10−1216 < 0

∆47(141.12370)=−1.85988 . . . · 10−1217 < 0
γ49 = 141.1237074040211. . .

∆47(141.12371)=+2.40777 . . . · 10−1217 > 0

∆47(143.11184)=+8.00594 . . . · 10−1218 > 0
γ50 = 143.1118458076206. . .

∆47(143.11185)=−8.98353 . . . · 10−1218 < 0

∆220(428.127914076616)=+3.30722 . . . · 10−17792 > 0
γ221 = 428.12791407661668211030. . .

∆220(428.127914076617)=−1.28498 . . . · 10−17792 < 0

1Tables showing the number of digits common to (N + k)th zero of Ξ(t) and a zero of
∆N (t) for diverse N and k can be found in [2].
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∆220(430.3287454309386)=−1.08026 . . . · 10−17794 < 0
γ222 = 430.328745430938636669926. . .

∆220(430.3287454309387)=+1.56602 . . . · 10−17793 > 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆220(441.683199201)=−3.85957 . . . · 10−17794 < 0
γ230 = 441.68319920118902387. . .

∆220(441.683199202)=+1.39118 . . . · 10−17793 > 0

∆220(442.90454630)=+6.07254 . . . · 10−17795 > 0
γ231 = 442.9045463026094494. . .

∆220(442.90454631)=−4.92952 . . . · 10−17794 < 0

∆400(681.8949915331518891094524110813676572)=
−3.24940 . . . · 10−52001 < 0

γ401 = 681.894991533151889109452411081367657278562874. . .
∆400(681.8949915331518891094524110813676573)=

+3.00725 . . . · 10−52001 > 0

∆400(682.602735019750545487540836644871189)=
+6.60550 . . . · 10−52001 > 0

γ402 = 682.60273501975054548754083664487118909593475. . .
∆400(682.602735019750545487540836644871190)=

−4.20554 . . . · 10−52000 < 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆400(740.573807447295010515)=+6.77206 . . . · 10−52005 > 0
γ446 = 740.57380744729501051503597159. . .

∆400(740.573807447295010516)=−8.96545 . . . · 10−52006 < 0

∆400(741.75733557294167327)=−1.55647 . . . · 10−52004 < 0
γ447 = 741.7573355729416732758611620. . .

∆400(741.75733557294167328)=+2.91156 . . . · 10−52005 > 0

Determinant ∆12000(t) has zeroes having more than 2000 common
decimal digits with γ12000, γ12001, . . . , γ12010.

The great accuracy of the approximative values of the zeroes of Ξ(t)
was a first surprising outcome of the calculations. So how is it possible
that initial summands from a divergent series (52) produce so many
correct digits? I don’t have a full explanation of this phenomenon;
two heuristic “reasons” will be presented below.
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The determinant ∆N (t) is a linear combination of the first N sum-
mands from (52) with numerical coefficients equal to corresponding
signed minors of the matrix from (55):

∆N (t) =

∣∣∣∣∣∣∣
β1(γ1) . . . β1(γN−1) β1(t)

...
. . .

...
...

βN (γ1) . . . βN (γN−1) βN (t)

∣∣∣∣∣∣∣ (56)

=
N∑
n=1

δ̃N,nβn(t), (57)

where

δ̃N,n = (−1)N+n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1(γ1) . . . β1(γN−1)
...

. . .
...

βn−1(γ1) . . . βn−1(γN−1)
βn+1(γ1) . . . βn+1(γN−1)

...
. . .

...
βN (γ1) . . . βN (γN−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (58)

Since we are only interested in the zeroes of ∆N (t), we can consider
the normalized coefficients

δN,n =
δ̃N,n

δ̃N,1
, (59)

in particular, δN,1 = 1. The function

N∑
n=1

δN,nβn(t) (60)

has the same zeroes as ∆N (t).
As a first example, let us look at the normalized coefficients δ47,n:
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Figure 4: Normalized coefficients δ47,n

They lie on a smoothly decaying curve. Thus

47∑
n=1

δ47,nβn(t) =
∆47(t)

δ̃47,1
(61)

is not a sharp but a smooth truncation of the divergent series (52).
It is known that smooth truncation can accelerate convergence of a
series – compare

1

1
− 1

2
+

1

3
− · · ·+ (−1)k+1

k
(62)

oscillating with amplitude of order k−1, with

1

1
− 1

2
+

1

3
− · · ·+ (−1)k

k − 1
+

1

2

(−1)k+1

k
=

1

2
+

1

2

(
1

1
− 1

2

)
− 1

2

(
1

2
− 1

3

)
+ . . .

(−1)k

2

(
1

k − 1
− 1

k

)
(63)

oscillating with amplitude of order k−2. Moreover, smooth truncation
can even transform a divergent series into a convergent one – compare

1− 1 + 1− · · ·+ (−1)k+1 =
1

2
+

(−1)k+1

2
(64)
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with

1− 1 + 1− · · ·+ (−1)k +
(−1)k+1

2
=

1

2
. (65)

So the smoothness of the truncation in (61) might be the first “rea-
son” why the summands of the divergence series (52) are useful for
calculation of the zeroes.

The curve on which the coefficients δ47,n lie looks like a logarithmic
curve

δ47,n ≈ 1 + λ47 log(n) (66)

with some parameter λ47, this being better seen on the plot of the
same coefficients but with logarithmic scale:

Figure 5: Normalized coefficients δ47,n with logarithmic scale

We see that the initial coefficients lie approximately on a straight line.
The pictures for N = 48, 49, 50, 51 look very similar to the picture

for N = 47 from Figure 5. Normalized coefficients δ52,n and δ53,n show
slightly different behaviour of trailing coefficients:
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Figure 6: Normalized coefficients δ52,n with logarithmic scale

Figure 7: Normalized coefficients δ53,n with logarithmic scale

At first it seems that we capture the behaviour of the normalized
coefficients, but what a surprise we see for N = 54:
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Figure 8: Normalized coefficients δ54,n with logarithmic scale

Most of the coefficients are negative and greater than 1 in absolute
value. Nevertheless, the initial coefficients do lie on a straight line and
∆54(t) gives good predictions for a few of the next zeroes γ54, γ55, . . .
I have no explanation why 54 is such a special number – cases N =
55, 56, 57 look again similar to cases N = 47, . . . , 53.

We skip2 now many similar pictures and jump to N = 130 where
we observe something radically new:

2A catalog of pictures of δN,n for many N can be found in [2]
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Figure 9: Normalized coefficients δ130,n with logarithmic scale

Now the initial coefficients lie on two parallel lines rather than on a
single line, so instead of an analog of (66) for N = 130 we should use
approximation

δ130,n ≈ 1 + µ130,2dom2(n) + λ130 log(n) (67)

where domm(k) is the characteristic function of divisibility:

domm(k) =

{
1, if m | k,
0, otherwise.

(68)

Such a splitting is more transparent for N = 169 and N = 180:
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Figure 10: Normalized coefficients δ169,n with logarithmic scale

Figure 11: Normalized coefficients δ180,n with logarithmic scale

Now we again skip many values of N and jump to N = 220:
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Figure 12: Normalized coefficients δ220,n

We see that in the approximation

δ220,n ≈ 1 + µ220,2dom2(n) + λ220 log(n) (69)

we should take µ220,2 close to −2 and λ220 close to 0. In other words,

220∑
n=1

δ220,nβn(t) =
∆220(t)

δ̃220,1
(70)

is a smooth truncation not of the divergent series (52) but of the
convergent (for real t) alternating series

∞∑
n=1

(−1)n−1βn(t) =
∞∑
n=1

(−1)n−1
αn(t) + αn(−t)

2
(71)

=
∞∑
n=1

(−1)n−1
(
t2 + 1

4

)(π− 1
4
+ it

2 Γ
(
1
4 −

it
2

)
4n

1
2
−it

+

π−
1
4
− it

2 Γ
(
1
4 + it

2

)
4n

1
2
+it

)
(72)

=
1

4

(
t2 + 1

4

)
π−

1
4
+ it

2 Γ
(
1
4 −

it
2

) ∞∑
n=1

(−1)n−1n−
1
2+it +

1

4

(
t2 + 1

4

)
π−

1
4
− it

2 Γ
(
1
4 + it

2

) ∞∑
n=1

(−1)n−1n−
1
2−it (73)
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=
1

4

(
t2 + 1

4

)
π−

1
4
+ it

2 Γ
(
1
4 −

it
2

)
η(12 + it) +

1

4

(
t2 + 1

4

)
π−

1
4
− it

2 Γ
(
1
4 + it

2

)
η(12 − it) (74)

where η(s) is defined by (22). Euler introduced this function in order
to assign a value to the zeta function outside the area of convergency
of the Dirichlet series, and that convergence gives a second “reason”
(besides the smoothness of the truncation) why ∆220 is so good for
prediction the values γ220, γ221, . . . It is very remarkable that here the
function η emerges by itself, just from our calculation of the determi-
nants (58) as if they were as clever as Euler was.

Still some natural questions remain open. The switching from
divergent (52) to convergent (71) partly “explains” why ∆220(t) is
able to “predict” the values of γ220 and further zeroes of Ξ(t) but why
does this also happen for, say, N = 47? The series (71) converges on
the critical line rather slowly, so why are the zeroes of ∆220(t) so close
to those of Ξ(t)?

For many values of N after 220 the pictures look very similar to
the case N = 220. To avoid the “non-informative” part of the plot we
can start making cuts in the abscissae:

Figure 13: Normalized coefficients δ3000,n
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However, for some sporadic values of N the pictures are different:

Figure 14: Normalized coefficients δ505,n

Figure 15: Normalized coefficients δ621,n
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Figure 16: Normalized coefficients δ810,n

In spite of such sporadic “misbehaviour” of some pictures, the
author stated in his previous talk [4] the following conjectures.

Conjecture 1.3 For every fixed odd (even) value of n the normal-
ized coefficients δN,n have, as N →∞, a limit equal to 1 (respectively,
equal to −1).

Conjecture 2.3 For every ν such that 1 ≤ ν the sequence

δbνc,1, . . . , (−1)n−1δbνnc,n, . . . (75)

has certain limiting value δ(ν).

Informally, Conjecture 2 tells us that if pictures are properly scaled,
then with the growth of N the dots will approach two (smooth?)
curves–the plots of δ(x−1) and −δ(x−1) for x ∈ (0, 1).

Conjecture 1 and 2 were stated on the base of pictures for N ≤
1200, however subsequent calculation for N ≤ 12000 suggests that
these conjectures most likely are wrong–just look at Figure 17:

3Now these conjectures are expected to be wrong–see below.
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Figure 17: Normalized coefficients δ5600,n

Pictures for many other big values of N look similar to the picture
on Figure 17. In other words, while the case N = 621 on Figure 15
was sporadic amid pictures looking like cases N = 220 and N = 3000
on Figures 12 and 13, for bigger N the picture on Figure 17 becomes
typical.

Again, episodically there exceptional cases:

Figure 18: Normalized coefficients δ11428,n
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Figure 19: Normalized coefficients δ11981,n

The large maximal values δN,n for big N are, of course, due to
our normalization (59). In order to be able to see what happens on
the whole range of n we can now apply logarithmic scaling for the
ordinate:

Figure 20: Values of ln(|δ12000,n|)

The dot at n = 6892 corresponds to the place where values of
N12000,n with odd and with even indices change their signs (like it
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happens for N = 621 on Figure 15). It is remarkable that three
horizontal lines end at a mysterious parabolic looking curve. Now we
proceed to analyze the nature of these horizontal lines.

In fact, this phenomenon occurs already for much smaller values
of N but there it is less noticeable. The next two Figures show nor-
malized coefficients δ321,n at first with full range on the ordinate and
then with cuts in this axe enabling us to use different scale and show
the areas marked on the first figure in yellow in more details:

Figure 21: Normalized coefficients δ321,n

Figure 22: Normalized coefficients δ321,n
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We see that actually the plot splits into 4 parallel lines so the initial
normalized coefficients are better approximated as

δ321,n ≈ 1 + µ321,2dom2(n) + µ321,3dom3(n) + λ321 log(n) (76)

with

µ321,2 = −2− 4.98 . . . · 10−13, µ321,3 = 7.47 . . . · 10−13, (77)

λ321 = −3.33 . . . · 10−18. (78)

In other words, after the first splitting depending on n mod 2 there
is a second splitting depending on n mod 3 but with much smaller
amplitude.

If fact, in general case there is a fine structure of further splittings
depending on n mod 4, n mod 5, . . . and initial normalized coefficients
are better approximated as

δN,n ≈
∑

m µN,mdomm(n) + λN log(n). (79)

The weights µN,m become smaller and smaller and in order to vi-
sualize further splitting we should make more cuttings in the ordinate
and increase its scale. However, there is another way to see split-
tings for bigger moduli. Namely, we can consider averaged normalized
coefficients

δN,n,a =
δN,n + · · ·+ δN,n+a−1

a
. (80)

For example, for a = 2 we have:

δN,n,2 =
δN,n + δN,n+1

2
(81)

≈ 1 + µN,2
dom2(n) + dom2(n+ 1)

2
+

µN,3
dom3(n) + dom3(n+ 1)

2
+ λN

log(n(n+ 1))

2
(82)

= 1 +
µN,2

2
+

µN,3
dom3(n) + dom3(n+ 1)

2
+ λN

log(n(n+ 1))

2
. (83)

In other words, the dependence on n mod 2 disappears and we can
observe the dependence on n mod 3:
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Figure 23: Averaged normalized coefficients δ321,n,2

For N = 999 the second splitting is even smaller, namely, µ999,3 =
2.26 . . . · 10−41 but otherwise the picture is exactly the same as in
Figure 23:

Figure 24: Averaged normalized coefficients δ999,n,2

Taking the average over 6 consecutive coefficients, we eliminate
dependence both on n mod 2 and on n mod 3 and can see the splitting
depending on n mod 4 with µ999,4 = 1.75 . . . · 10−90:

Figure 25: Averaged normalized coefficients δ999,n,6

With a = 12 we can see even smaller splitting with µ999,5 =
−3.09 . . . · 10−127:
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Figure 26: Averaged normalized coefficients δ999,n,12

However, with a = 60 we cannot see the splitting for n mod 7:

Figure 27: Averaged normalized coefficients δ999,n,60

This cab axplained as follows: the value λ999 = −1.73 . . . · 10−144 is
bigger than the value µ999,7 = 9.13 . . . · 10−170 and for this reason we
see a logarithmic-like curve on Figure 27.

One way to see the splitting depending on n mod 7 is to increase
the value of N . Another possibility is to eliminate the contribution of
logarithmic summands by subtracting them:

Figure 28: Differences δ999,n,60 − λ999 log(Γ(n+ 60)− Γ(n))/60
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Table 1: Values of µN,2, µN,3, and µN,5
N µN,2 µN,3 µN,5

400 −2 + 3.77 . . . · 10−16 −5.66 . . . · 10−16 −1.58 . . . · 10−28

800 −2− 6.04 . . . · 10−33 +9.06 . . . · 10−33 +7.17 . . . · 10−100

1200 −2 + 4.77 . . . · 10−50 −7.16 . . . · 10−50 −4.35 . . . · 10−155

1600 −2− 2.21 . . . · 10−66 +3.32 . . . · 10−66 −2.90 . . . · 10−212

2000 −2− 5.98 . . . · 10−84 +8.98 . . . · 10−84 +2.42 . . . · 10−268

2400 −2− 4.64 . . . · 10−102 +6.97 . . . · 10−102 −7.12 . . . · 10−326

2800 −2 + 1.15 . . . · 10−117 −1.73 . . . · 10−117 +4.92 . . . · 10−383

3200 −2− 3.00 . . . · 10−134 +4.50 . . . · 10−134 +2.36 . . . · 10−442

3600 −2 + 1.55 . . . · 10−151 −2.32 . . . · 10−151 −1.31 . . . · 10−498

4000 −2− 8.05 . . . · 10−168 +1.20 . . . · 10−167 −7.14 . . . · 10−557

4400 −2 + 9.65 . . . · 10−185 −1.44 . . . · 10−184 +1.96 . . . · 10−614

4800 −2− 9.40 . . . · 10−201 +1.41 . . . · 10−200 +7.29 . . . · 10−671

5200 −2− 5.63 . . . · 10−215 +8.45 . . . · 10−215 +1.00 . . . · 10−726

5600 −2− 1.39 . . . · 10−204 +2.09 . . . · 10−204 −2.54 . . . · 10−757

6000 −2 + 2.19 . . . · 10−165 −3.29 . . . · 10−165 −3.55 . . . · 10−759

6400 −2− 3.36 . . . · 10−105 +5.04 . . . · 10−105 −4.80 . . . · 10−740

6800 −2 + 4.84 . . . · 10−26 −7.26 . . . · 10−26 −8.73 . . . · 10−703

7200 −9.60 . . . · 1066 +1.44 . . . · 1067 −9.27 . . . · 10−652

7600 −6.31 . . . · 10170 +9.47 . . . · 10170 −2.25 . . . · 10−588

8000 −3.97 . . . · 10285 +5.96 . . . · 10285 +4.81 . . . · 10−516

8400 +2.02 . . . · 10408 −3.03 . . . · 10408 +8.15 . . . · 10−435

8800 +5.57 . . . · 10538 −8.36 . . . · 10538 −6.24 . . . · 10−346

9200 +2.98 . . . · 10673 −4.47 . . . · 10673 +1.31 . . . · 10−249

9600 −3.52 . . . · 10818 +5.29 . . . · 10818 −1.81 . . . · 10−149

10000 +1.34 . . . · 10966 −2.01 . . . · 10966 −6.61 . . . · 10−43

10400 +6.40 . . . · 101049 −9.60 . . . · 101049 −1− 2.36 . . . · 10−69

10800 −4.75 . . . · 101090 +7.13 . . . · 101090 −1− 1.18 . . . · 10−183

11200 +2.29 . . . · 101030 −3.44 . . . · 101030 −1 + 3.39 . . . · 10−302

11600 −4.82 . . . · 10927 +7.24 . . . · 10927 −1− 7.95 . . . · 10−424

12000 +6.21 . . . · 10828 −9.32 . . . · 10828 −1− 2.38 . . . · 10−548

Now we can return to the case N = 12000 exhibited on Figure 20.
For a long range of N coefficients µN,2 were approaching −2 and co-
efficients µN,3, µN,4,. . . were approaching 0 supporting Conjecture 1,
but then their behavior changed; see Table 1. So in Figure 20 we
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observe the same spliiting but now on a different scale: the top hori-
zontal line corresponds to n divisible by 2 or by 3, the horizontal line
at the bottom corresponds to n ≡ ±5 mod 30 and the middle line
corresponds to the remaining values of n.

Coefficients µN,n were introduced above for approximating initial
normalized coefficients δN,n. Surprisingly, these numbers turn out to
have number-theoretical significance: they “know” what divisors every
natural number has, in particular, what numbers are primes.

This “knowledge” can be revealed from the δ’s by seeking “almost
linear” relations between them. By this we mean equalities of the
form

r1δN,1 + r2δN,2 + · · ·+ rmδN,m = ε (84)

where r1, r2, . . . , rm are rational numbers with small denominators and
ε is small in comparison with |δN,1|+ |δN,2|+ · · ·+ |δN,m|.

One series of such “almost linear” relations has the form

νN,n = ε (85)

where

νN,n =

n∑
k=1

µN,k
k

. (86)

Here
µN,1 = δN,1 = 1, (87)

while for n > 1

µN,n = δN,n − µN,k(n,1) − · · · − µN,k(n,Dn) (88)

for some integers k(n, 1), . . . , k(n,Dn) such that

1 = k(n, 1) < · · · < k(n,Dn), 1 ≤ Dn < n. (89)

For n ≥ 3 partial sums

µN,n,m = δN,n − µN,k(n,1) − · · · − µN,k(n,m), (90)

being very small too, will supply another series of “almost linear”
relations between δN,n.

The numbers Dn, k(n, 1), . . . , k(n,Dn) have a clear number-theo-
retical meaning so we could give a direct definition of them now (and
shall do so later), but it is more instructive to see how their values
can be defined inductively on the basis of the values of δN,n and the
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values of µN,n and νN,n defined previously–we shall be trying to get
small values for νN,n and µN,n,m.

Case n = 1 is done by (87).
Case n = 2. According to (89), D2 = 1 and respectively, according

to (88) and (86),

µN,2 = δN,2 − µN,1, (91)

= −δN,1 + δN,2, (92)

νN,2 =
δN,1

2
+
δN,2

2
. (93)

For example, for N = 3200 this gives

µ3200,2 = −2.0000000 . . . · 100 (94)

and the following “almost linear” relation:

ν3200,2 = −1.5020306 . . . · 10−134. (95)

Case n = 3. If we wish the value of ν3200,3 = ν3200,2 + 1
3µ3200,3 to

be even smaller than (95), then the value of µ3200,3 should be close to

− 3ν3200,2 = 4.5060920 . . . · 10−134. (96)

We observe that already

µ3200,3,1 = δ3200,1 − µ3200,1 (97)

= 4.5060920 . . . · 10−134 (98)

looks to be very close to (96), indeed, they have more than 170 com-
mon decimal digits:

−3ν3200,2
µ3200,3,1

= 1− 1.8048583 . . . · 10−171. (99)

So we put D3 = 1 and get respectively

µN,3 = δN,3 − µN,1 (100)

= −δN,1 + δN,3, (101)

νN,3 =
δN,1

6
+
δN,2

2
+
δN,3

3
. (102)

For N = 3200 this gives the following “almost linear” relations:

µ3200,3 = 4.5060920 . . . · 10−134, (103)

ν3200,3 = −2.7109526 . . . · 10−305. (104)
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Case n = 4. If we wish the value of ν3200,4 = ν3200,3 + 1
4µ3200,4 to be

even smaller than (104), then the value of µ3200,4 should be close to

− 4ν3200,3 = 1.0843810 . . . · 10−304. (105)

We observe that now

µ3200,4,1 = δ3200,1 − µ3200,1 (106)

= −2.0000000 . . . · 100 (107)

is much bigger than (104). On the other hand, the value of µ3200,4,1 is
very close to the value of µ3200,2 given in (94), indeed, they have more
than 300 common decimal digits:

µ3200,2
µ3200,4,1

= 1− 5.4219052 . . . · 10−305. (108)

So we put k(4, 2) = 2 and observe that now

µ3200,4,2 = µ3200,4,1 − µ3200,2 (109)

= 1.0843810 . . . · 10−304 (110)

looks to be very close to (105), indeed, they have more than 170
common decimal digits:

−4ν3200,3
µ3200,4,1

= 1− 1.8048583 . . . · 10−171. (111)

So we put D4 = 2 and get respectively

µN,4 = δN,4 − µN,1 − µN,2 (112)

= −δN,2 + δN,4, (113)

νN,4 =
δN,1

6
+
δN,2

4
+
δN,3

3
+
δN,4

4
. (114)

For N = 3200 this gives the following “almost linear” relation:

µ3200,4 = 1.0843810 . . . · 10−304, (115)

ν3200,4 = −4.7221542 . . . · 10−443. (116)

Case n = 5. This case is similar to the case n = 3. We have

−5ν3200,4
µ3200,5,1

= 1− 6.2926086 . . . · 10−106, (117)
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so we put D5 = 1 and define respectively

µN,5 = δN,5 − µN,1 (118)

= −δN,1 + δN,5, , (119)

νN,5 = −
δN,1
30

+
δN,2

4
+
δN,3

3
+
δN,4

4
+
δN,5

5
. (120)

For N = 3200 this gives the following “almost linear” relations:

µ3200,5 = 2.3610771 . . . · 10−442, (121)

ν3200,5 = −2.9714668 . . . · 10−548. (122)

Case n = 6. We wish the value of µ3200,6 to be close to

− 6ν3200,5 = 1.7828801 . . . · 10−547. (123)

We observe that

µ3200,6,1 = δ3200,1 − µ3200,1 (124)

= −1.9999999 . . . · 100 (125)

is much bigger than (123) but is very close to the value of µ3200,2 given
in (94), indeed,

µ3200,2
µ3200,6,1

= 1− 2.2530460 . . . · 10−134. (126)

So we put k(6, 2) = 2 and now observe that

µ3200,6,2 = µ3200,6,1 − µ3200,2 (127)

= 4.5060920 . . . · 10−134 (128)

is very close to the value of µ3200,3 given in (103), indeed,

µ3200,3
µ3200,6,2

= 1− 3.9565994 . . . · 10−414. (129)

So we put k(6, 3) = 3 and now observe that

µ3200,6,3 = µ3200,6,2 − µ3200,3 (130)

= 1.7828801 . . . · 10−547 (131)

is very close to the desired (123), indeed,

−6ν3200,5
µ3200,6,3

= 1− 2.0064209 . . . · 10−82. (132)
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So we put D6 = 3 and define respectively

µN,6 = δN,6 − µN,1 − µN,2 − µN,3 (133)

= δN,1 − δN,2 − δN,3 + δN,6, (134)

νN,6 =
2δN,1

15
+
δN,2
12

+
δN,3

6
+
δN,4

4
+
δN,5

5

+
δN,6

6
. (135)

For N = 3200 this gives the following “almost linear” relation:

µ3200,6 = 1.7828801 . . . · 10−547, (136)

ν3200,6 = 5.9620134 . . . · 10−630. (137)

Case n = 7. This case is similar to the cases n = 3 and n = 5. We
have

−7ν3200,6
µ3200,7,1

= 1− 1.5520609 . . . · 10−62, (138)

so we put D7 = 1 and define respectively

µN,7 = δN,7 − µN,1 (139)

= −δN,1 + δN,7, (140)

νN,7 = −
δN,1
105

+
δN,2
12

+
δN,3

6
+
δN,4

4
+
δN,5

5

+
δN,6

6
+
δN,7

7
. (141)

For N = 3200 this gives the following “almost linear” relations:

µ3200,7 = −4.1734094 . . . · 10−629, (142)

ν3200,7 = −9.2534079 . . . · 10−692. (143)

Case n = 8. This case is similar to the case n = 6. We wish the
value of µ3200,8 to be close to

− 8ν3200,7 = 7.4027263 . . . · 10−691. (144)

We observe that

µ3200,8,1 = δ3200,1 − µ3200,1 (145)

= −2.0000000 . . . · 100 (146)
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is much bigger than (144) but is very close to the value of µ3200,2 given
in (94), indeed,

µ3200,2
µ3200,8,1

= 1− 5.4219052 . . . · 10−305. (147)

So we put k(8, 2) = 2 and now observe that

µ3200,8,2 = µ3200,8,1 − µ3200,2 (148)

= 1.0843810 . . . · 10−304 (149)

is very close to the value of µ3200,4 given in (115), indeed,

µ3200,4
µ3200,8,2

= 1− 6.8266836 . . . · 10−387. (150)

So we put k(8, 3) = 3 and now observe that

µ3200,8,3 = µ3200,8,2 − µ3200,4 (151)

= 7.4027263 . . . · 10−691 (152)

is very close to the the desired (144), indeed,

−8ν3200,7
µ3200,8,3

= 1− 3.1514980 . . . · 10−47. (153)

So we put D8 = 3 and define respectively

µN,8 = δN,8 − µN,1 − µN,2 − µN,4 (154)

= −δN,4 + δN,8, (155)

νN,8 = −
δN,1
105

+
δN,2
12

+
δN,3

6
+
δN,4

8
+
δN,5

5

+
δN,6

6
+
δN,7

7
+
δN,8

8
. (156)

For N = 3200 this gives the following “almost linear” relation:

µ3200,8 = 7.4027263 . . . · 10−691, (157)

ν3200,8 = −2.9162097 . . . · 10−738. (158)

Case n = 9. If we wish the value of ν3200,9 = ν3200,8 + 1
9µ3200,9 to

be even smaller than (158), the value of µ3200,9 should be close to

− 9ν3200,8 = 2.6245887 . . . · 10−737. (159)
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We observe that

µ3200,9,1 = δ3200,1 − µ3200,1 (160)

= 4.5060920 . . . · 10−134 (161)

is much bigger than (158). On the other hand, the value of µ3200,9,1
is very close to the value of µ3200,3 given in (103), indeed:

µ3200,3
µ3200,9,1

= 1− 5.6391692 . . . · 10−604. (162)

So we put k(9, 2) = 3 and examine now

µ3200,9,2 = µ3200,9,1 − µ3200,3 (163)

= 2.5410615 . . . · 10−737. (164)

On the one hand, this value isn’t sufficiently close to (159), on the
other hand, it isn’t close to any of µ3200,2, . . . , µ3200,8 either so we
cannot proceed as before any longer.

In order to be able to continue, we need to increase the value of N .
Here are the values of µ4800,2, . . . , µ4800,8 and ν4800,2, . . . , ν4800,8:

Table 2: N = 4800

n µ4800,n ν4800,n

2 −2.0000000 . . . · 100 −4.7021571 . . . · 10−201

3 1.4106471 . . . · 10−200 2.5665830 . . . · 10−460

4 −1.0266332 . . . · 10−459 −1.4584552 . . . · 10−671

5 7.2922764 . . . · 10−671 −1.3366569 . . . · 10−836

6 8.0199419 . . . · 10−836 9.4934119 . . . · 10−966

7 −6.6453883 . . . · 10−965 −1.0614379 . . . · 10−1067

8 8.4915037 . . . · 10−1067 6.3881904 . . . · 10−1149

We see that these numbers are much smaller than the corresponding
numbers for N = 3200. What is more important, now

−9ν4800,8
µ4800,9,2

= 1− 2.9558657 . . . · 10−65. (165)
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So we put D9 = 2 and get respectively

µN,9 = δN,9 − µN,1 − µN,3 (166)

= −δN,3 + δN,9, (167)

νN,9 = −
δN,1
105

+
δN,2
12

+
δN,3
18

+
δN,4

8
+
δN,5

5

+
δN,6

6
+
δN,7

7
+
δN,8

8
+
δN,9

9
. (168)

For N = 4800 this gives the following “almost linear” relation:

µ4800,9 = −5.7493714 . . . · 10−1148, (169)

ν4800,9 = 1.8882633 . . . · 10−1213. (170)

Case n = 10. This case is similar to the cases n = 6 and 8. We
wish the value of µ3200,10 to be close to

− 10ν3200,9 = 9.2807969 . . . · 10−739. (171)

We observe that

µ3200,10,1 = δ3200,1 − µ3200,1 (172)

= −2.0000000 . . . · 100 (173)

is much bigger than (171) but is very close to the value of µ3200,2 given
in (94), indeed,

µ3200,2
µ3200,10,1

= 1− 1.1805385 . . . · 10−442. (174)

So we put k(10, 2) = 2 and now observe that

µ3200,10,2 = µ3200,10,1 − µ3200,2 (175)

= 2.3610771 . . . · 10−442 (176)

is very close to the value of µ3200,5 given in (121), indeed,

µ3200,5
µ3200,10,2

= 1− 1.1642551 . . . · 10−330. (177)

So we put k(10, 3) = 3 and now see that

µ3200,10,3 = µ3200,10,2 − µ3200,5 (178)

= −2.7488961 . . . · 10−772 (179)
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is much smaller than the desired (171). In order to be able to continue,
we again need to increase the value of N . We have

−10ν4800,9
µ4800,10,3

= 1− 2.8194018 . . . · 10−36, (180)

so we put D10 = 3 and define respectively

µN,10 = δN,10 − µN,1 − µN,2 − µN,5 (181)

= δN,1 − δN,2 − δN,5 + δN,10, (182)

νN,10 =
19δN,1

210
−
δN,2
60

+
δN,3
18

+
δN,4

8
+
δN,5
10

+
δN,6

6
+
δN,7

7
+
δN,8

8
+
δN,9

9
+
δN,10

10
. (183)

For N = 4800 this gives the following “almost linear” relation:

µ4800,10 = −1.8882633 . . . · 10−1212, (184)

ν4800,10 = −5.3237731 . . . · 10−1249. (185)

Case n = 11. This case is similar to the cases n = 3, 5, and 7 but
requires even larger N than it was in the cases n = 9 and 10. We
have:

−11ν8000,10
µ8000,11,1

= 1− 9.1921885 . . . · 10−82. (186)

So we put D11 = 1 and define respectively

µN,11 = δN,11 − µN,1 (187)

= −δN,1 + δN,11, (188)

νN,11 = −
δN,1
2310

−
δN,2
60

+
δN,3
18

+
δN,4

8
+
δN,5
10

+
δN,6

6
+
δN,7

7
+
δN,8

8
+
δN,9

9
+
δN,10

10

+
δN,11

11
. (189)

For N = 8000 this gives the following “almost linear” relations:

µ8000,11 = 3.7096353 . . . · 10−1588, (190)

ν8000,11 = −3.0999697 . . . · 10−1670. (191)

Case n = 12. This case is similar to the cases n = 6, 8 and 10 but
is twice as long. We wish the value of µ3200,12 to be close to

− 12ν3200,11 = 1.0704335 . . . · 10−738. (192)
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We observe that

µ3200,12,1 = δ3200,1 − µ3200,1 (193)

= −1.9999999 . . . · 100 (194)

is very close to the value of µ3200,2, namely,

µ3200,2
µ3200,12,1

= 1− 2.2530460 . . . · 10−134. (195)

So we put k(12, 2) = 2 and now observe that

µ3200,12,2 = µ3200,12,1 − µ3200,2 (196)

= 4.5060920 . . . · 10−134 (197)

is very close to the value of µ3200,3, namely,

µ3200,3
µ3200,12,2

= 1− 2.6163259 . . . · 10−439. (198)

So we put k(12, 3) = 3 and now observe that

µ3200,12,3 = µ3200,12,2 − µ3200,3 (199)

= 1.0843810 . . . · 10−304 (200)

is very close to the value of µ3200,4, namely,

µ3200,4
µ3200,12,3

= 1− 7.9483409 . . . · 10−651. (201)

So we put k(12, 4) = 4 and now observe that

µ3200,12,4 = µ3200,12,3 − µ3200,4 (202)

= 1.7828801 . . . · 10−547 (203)

is very close to the value of µ3200,6, namely,

µ3200,6
µ3200,12,4

= 1− 1.3949963 . . . · 10−267. (204)

So we put k(12, 5) = 6 and now see that

µ3200,12,5 = µ3200,12,4 − µ3200,6 (205)

= −2.4871113 . . . · 10−814 (206)
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is much smaller than (192). We need once again increase N . We have

−12ν8000,11
µ8000,12,5

= 1− 1.7308919 . . . · 10−68, (207)

so we put D12 = 5 and define respectively

µN,12 = δN,12 − µN,1 − µN,2 − µN,3 − µN,4 − µN,6 (208)

= δN,2 − δN,4 − δN,6 + δN,12, (209)

νN,12 = −
δN,1
2310

+
δN,2
15

+
δN,3
18

+
δN,4
24

+
δN,5
10

+
δN,6
12

+
δN,7

7
+
δN,8

8
+
δN,9

9
+
δN,10

10

+
δN,11

11
+
δN,12

12
. (210)

For N = 8000 this gives the following “almost linear” relations:

µ8000,12 = 3.7199637 . . . · 10−1669, (211)

ν8000,12 = 5.3657127 . . . · 10−1738. (212)

From (87), (91), (100), (112), (118), (133), (139), (154), (166),
(181), (187), and (208) we can guess the general pattern: Dn is 1 less
than the number of divisors of n, and k(n, 1), . . . , k(n,Dn) are all the
divisors except n itself. Isn’t striking that we came to these values
just by comparing certain linear combinations of the numbers δN,n?

Respectively, by the Möbius inversion formula, (92), (101), (113),
(119), (134), (140), (155), (167), (182), (188), and (209) are just spe-
cial cases of

µN,n =
∑
k|n

µ
(n
k

)
δN,k (213)

where µ(m) is the Möbius function.
In its turn, (87), (93), (102), (114), (120), (135), (141), (156),

(168), (183), (189), and (210) are particular cases of

νN,n =

n∑
k=1

1

k

n/k∑
m=1

µ(m)

m

 δN,k. (214)

We saw three “typical” behaviors of the normalized coefficients δN,n:

• “logarithmic” for “small” N like on Figure 5,
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• “parallel” for “medium” N like on Figures 12,

• “normally distributed” for larger N like on Figure 17.

But is N = 12000 big enough to allow us make predictions about
asymptotic behavior of the δ′s? Cannot the pictures change once (or
even many times) again? Table 1 suggests that this might happen.
The values of µN,2 = δN,2 − 1 were at first approaching −2, then
began to grow up rapidly in absolute value, then began to decrease,
and it remains unclear what will be the limiting value of µN,2 (and
respectively of δN,2) if such a limit exists at all. The values of µN,5 =
δN,5 − 1 were at first approaching 0, then began to approach −1, so
will −1 be the limiting value of µN,5 or for bigger N the values of
µN,5 might began to grow up in absolute value as µN,2 did? It would
be very interesting to continue calculations for N > 12000 but this
exceeds the computational resources I have at my disposal at present,
international cooperation seems to be necessary.
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