Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Provable Security for Program Obfuscation

Yury Lifshits

Mathematics & Mechanics Faculty Saint Petersburg State University

Spring 2005 - SETLab

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted

computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

1 Idea of Provable Security

Ways to Achieve Security

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation Property Hiding

2

Encrypted

Overview of Further Research

Mobile cryptography

Black-box Security

Practical Approach

Summary

1 Idea of Provable Security

Ways to Achieve Security

Outline

Basic Results

- Impossibility of obfuscation
- Property Hiding
- Encrypted computation

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summarv

1 Idea of Provable Security

Ways to Achieve Security

Basic Results

2

- Impossibility of obfuscation
- Property Hiding
- Encrypted computation

3 Overview of Further Research

- Mobile cryptography
- Black-box Security
- Practical Approach

Outline

Yury Lifshits

Perfect Security

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

What do we want to get?

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

What do we want to get?

We want to be sure that our system is safe to use.

In lecture 4 "Applications of Obfuscation" we'll discuss what kind of safety we want to get by obfuscation.

Today: what does it mean to be sure about safety?

Usual approach: to build some proof of safety.

Perfect Security

Yury Lifshits

Ways to Security

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Tractical Approac

Summary

How are we going to prove security?

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted

computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

How are we going to prove security?

Theoretic security: obfuscated program doesn't provide enough information to successful attack Example: exact reverse engineering. Solution: delete comments

Ways to Security

➡ Computational (cryptographic) security: attack required too much computation

Necessary hardness of attack: average superpolynomial complexity. Now: no problems with such proved complexity

Yury Lifshits

Ways to Security II

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

So what can we accept as enough hard problem?

Yury Lifshits

Ways to Security II

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

So what can we accept as enough hard problem?

- NP-hard problems. Disadvantage: worst case complexity
- ⇒ NP-hard problems with average complexity results. Example: SUBSET SUM
- Problems with wide-believed hardness: Examples: FACTORING, DISCRETE LOG

Yury Lifshits

Current Results

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

What are the best results to the moment?

Yury Lifshits

Current Results

Idea of Provable Security

Ways to Achieve Security

Basic Results

- Impossibility of obfuscation
- Property Hiding
- Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

What are the best results to the moment?

- Specific attacks on specific programs are computationally hard
- For some classes of programs we can hide most of internal information
- ⇒ Some program analysis is proved to be hard

Yury Lifshits

Current Results

Idea of Provable Security

Ways to Achieve Security

Basic Results

- Impossibility of obfuscation
- Property Hiding
- Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

What are the best results to the moment?

- Specific attacks on specific programs are computationally hard
- For some classes of programs we can hide most of internal information
- Some program analysis is proved to be hard
- ⇒ And obfuscation in general is impossible!

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic

Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security

Practical Approach

Summary

Slide from Lecture 1 — your turn to explain.

Ana and BAna

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Slide from Lecture 1 — your turn to explain.

We are interested in 2 types of polynomial-time analyzers:

Ana is a source-code analyzer that can read the program.

Ana(P)

Ana and BAna

⇒ BAna is a black-box analyzer that only queries the program as an oracle.

 $BAna^{P}(time(P))$

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Slide from Lecture 1 — your turn to explain.

We are interested in 2 types of polynomial-time analyzers:

Ana is a source-code analyzer that can read the program.

Ana(P)

Ana and BAna

⇒ BAna is a black-box analyzer that only queries the program as an oracle.

$$BAna^{P}(time(P))$$

Black-Box security

Ana can't get more information than BAna could

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted

computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Black-Box Security: Formal Definition

A nondeterministic algorithm *O* is a **TM obfuscator** if three following conditions hold:

 \Rightarrow (functionality) For every TM *M*, the string *O*(*M*) describes the same function as *M*.

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Black-Box Security: Formal Definition

A nondeterministic algorithm *O* is a **TM obfuscator** if three following conditions hold:

 \Rightarrow (functionality) For every TM *M*, the string *O*(*M*) describes the same function as *M*.

 \Rightarrow (polynomial slowdown) The description length and running time of O(M) are at most polynomially larger than that of M.

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Black-Box Security: Formal Definition

A nondeterministic algorithm *O* is a **TM obfuscator** if three following conditions hold:

 \Rightarrow (functionality) For every TM *M*, the string *O*(*M*) describes the same function as *M*.

 \Rightarrow (polynomial slowdown) The description length and running time of O(M) are at most polynomially larger than that of M.

 \Rightarrow ("virtual black box" property) For any PPT *A*, there is a PPT *S* and a negligible function α such that for all TMs *M*

$$\left| \Pr[A(O(M)) = 1] - \Pr[S^M(1^{|M|}) = 1] \right| \leq \alpha(|M|).$$

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

A 2-TM obfuscator is defined in the same way as a TM-obfuscator, except the "virtual black box" property is changed as follows

 \Rightarrow ("virtual black box" property) For any PPT *A*, there is a PPT *S* and a negligible function α such that for all TMs *M* and *N*

$$\left| \Pr[A(O(M), O(N)) = 1] - \Pr[S^{M,N}(1^{|M| + |N|}) = 1] \right| \le \alpha(\min(|M|, |N|))$$

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

A 2-TM obfuscator is defined in the same way as a TM-obfuscator, except the "virtual black box" property is changed as follows

 \Rightarrow ("virtual black box" property) For any PPT *A*, there is a PPT *S* and a negligible function α such that for all TMs *M* and *N*

$$\left| \Pr[A(O(M), O(N)) = 1] - \Pr[S^{M,N}(1^{|M| + |N|}) = 1] \right| \le \alpha(\min(|M|, |N|)).$$

What obfuscator is more powerful?

Two Programs Lemma

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security

Practical Approach

Summary

Two Programs Lemma

2-TM obfuscators do not exist.

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Two Programs Lemma

2-TM obfuscators do not exist.

$$egin{aligned} \mathcal{C}_{lpha,eta}(\mathbf{x}) &= egin{cases} eta, & \mathbf{x} = lpha \ 0, & ext{otherwise} \end{aligned} \ \mathcal{D}_{lpha,eta}(\mathbf{C}) &= egin{cases} 1, & \mathcal{C}(lpha) = eta \ 0, & ext{otherwise} \end{aligned} \ \mathcal{Z}_k(\mathbf{x}) &= \mathbf{0}^k \end{aligned}$$

Intuition: it is difficult to distinguish pairs $C_{\alpha,\beta}$, $D_{\alpha,\beta}$ from pair Z_k , $D_{\alpha,\beta}$ given only black box access to these programs.

Two Programs Lemma

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security

Practical Approach

Summary

Lemma Proof: Rough Sketch

Suppose *O* is 2-TM obfuscator. Let's check its "black box" property on pairs $C_{\alpha,\beta}$, $D_{\alpha,\beta}$ and Z_k , $D_{\alpha,\beta}$ for every α, β where A = N(M).

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of

obfuscation Property Hiding \Box

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security

Practical Approach

Summary

Lemma Proof: Rough Sketch

Suppose *O* is 2-TM obfuscator. Let's check its "black box" property on pairs $C_{\alpha,\beta}$, $D_{\alpha,\beta}$ and Z_k , $D_{\alpha,\beta}$ for every α, β where A = N(M).

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation \Box

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Lemma Proof: Rough Sketch

Suppose *O* is 2-TM obfuscator. Let's check its "black box" property on pairs $C_{\alpha,\beta}$, $D_{\alpha,\beta}$ and Z_k , $D_{\alpha,\beta}$ for every α, β where A = N(M).

$$\Pr[A(O(Z_k), O(D_{\alpha,\beta})) = 1] = 2^{-k}$$

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation \Box

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Lemma Proof: Rough Sketch

Suppose *O* is 2-TM obfuscator. Let's check its "black box" property on pairs $C_{\alpha,\beta}$, $D_{\alpha,\beta}$ and Z_k , $D_{\alpha,\beta}$ for every α, β where A = N(M).

1

$$Pr[A(O(Z_k), O(D_{\alpha,\beta})) = 1] = 2^{-k}$$

$$\Pr[S^{C_{\alpha,\beta},D_{\alpha,\beta}}=1]-\Pr[S^{Z_k,D_{\alpha,\beta}}=1]\Big|\leq 2^{-\Omega(k)}$$

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation \Box

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Lemma Proof: Rough Sketch

Suppose *O* is 2-TM obfuscator. Let's check its "black box" property on pairs $C_{\alpha,\beta}$, $D_{\alpha,\beta}$ and Z_k , $D_{\alpha,\beta}$ for every α, β where A = N(M).

1

$$Pr[A(O(Z_k), O(D_{\alpha,\beta})) = 1] = 2^{-k}$$

$$\Pr[S^{C_{\alpha,\beta},D_{\alpha,\beta}}=1]-\Pr[S^{Z_k,D_{\alpha,\beta}}=1]\Big|\leq 2^{-\Omega(k)}$$

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Lemma Proof: Rough Sketch

Suppose *O* is 2-TM obfuscator. Let's check its "black box" property on pairs $C_{\alpha,\beta}$, $D_{\alpha,\beta}$ and Z_k , $D_{\alpha,\beta}$ for every α, β where A = N(M).

$$Pr[A(O(C_{\alpha,\beta}),O(D_{\alpha,\beta}))=1] = 1$$

$$Pr[A(O(Z_k), O(D_{\alpha,\beta})) = 1] = 2^{-k}$$

$$\Pr[S^{C_{\alpha,\beta},D_{\alpha,\beta}}=1]-\Pr[S^{Z_k,D_{\alpha,\beta}}=1]\Big|\leq 2^{-\Omega(k)}$$

So we get a contradiction! But...

Р

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic

Results Impossibility of

obfuscation Property Hiding Encrypted computation \Rightarrow

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Lemma Proof: Rough Sketch

Suppose *O* is 2-TM obfuscator. Let's check its "black box" property on pairs $C_{\alpha,\beta}$, $D_{\alpha,\beta}$ and Z_k , $D_{\alpha,\beta}$ for every α, β where A = N(M).

 $Pr[A(O(C_{\alpha,\beta}), O(D_{\alpha,\beta})) = 1] = 1$

$$Pr[A(O(Z_k), O(D_{\alpha,\beta})) = 1] = 2^{-k}$$

$$\Pr[S^{C_{\alpha,\beta},D_{\alpha,\beta}}=1] - \Pr[S^{Z_k,D_{\alpha,\beta}}=1] \Big| \le 2^{-\Omega(k)}$$

So we get a contradiction! But...

There is a flaw in the proof. Do you see?

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security

Practical Approach

Summary

Impossibility Theorem

TM obfuscators do not exist.

Impossibility Theorem

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Impossibility Theorem

TM obfuscators do not exist.

$$\mathsf{F}_{lpha,eta}(b,\mathbf{x}) = \mathsf{C}_{lpha,eta} \# \mathsf{D}_{lpha,eta}$$

$$G_{lpha,eta}(b,x) = Z_k \# D_{lpha,eta}$$

Algorithm A is the following: to decompose M into two parts and evaluate the second part on the code (encoding) of the first.

Argument is similar to the Lemma's proof.

Impossibility Theorem

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Practical Approact

Summary

Slide from Lecture 1 — your turn to explain.

Property Hiding

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summarv

Slide from Lecture 1 — your turn to explain.

Instance: two families of programs Π_1 and Π_2

Adversary task: given a program $P \in \Pi_1 \cup \Pi_2$ to decide whether $P \in \Pi_1$ or $P \in \Pi_2$.

Property Hiding

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security

Practical Approach

Slide from Lecture 1 — your turn to explain.

Instance: two families of programs Π_1 and Π_2

Adversary task: given a program $P \in \Pi_1 \cup \Pi_2$ to decide whether $P \in \Pi_1$ or $P \in \Pi_2$.

Property Hiding

Desirable protection: make adversary task as difficult as well-known computationally hard problem is.

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

prog π_1^w ; var x:string, y:bit; input(x); if x = w then y:=1 else y:=0; output(y); end of prog;

Password Checking Hiding

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

prog π_1^w ; var x:string, y:bit; input(x); if x = w then y:=1 else y:=0; output(y); end of prog;

prog π_0 ; var *x*:string, *y*:bit; input(*x*); *y*:=0; output(*y*); end of prog;

Task: Make this families indistinguishable.

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

One-Way Permutation is bijection from the set of all binary strings of length k to itself which is easy to compute and difficult to inverse.

$$F: B^k \to B^k$$

Hardcore Predicate for one way permutation F is a predicate (i.e. boolean function) h such that given F(x) its difficult to predict h(x) better than just guess it.

Usual construction of hard-core predicate: choose *r* by random and take any one way permutation *F* than given a pair (F(x), r) its difficult to uncover $x \cdot r$.

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

```
Property Hiding
Encrypted
computation
```

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

```
Summary
```

prog Π var x: string, y:bit; const u, v:string, σ :bit; input(x); if ONE_WAY(x)=v then if $x \cdot u = \sigma$ then y:=1 else y:=0; else y:=0; output(y); end of prog;

Program with hidden password checking

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security

Practical Approach

Summary

Model of Encrypted Computation

Slide from Lecture 1 — your turn to explain.

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

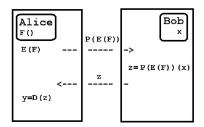
Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research


Mobile cryptography Black-box Security

Practical Approach

Summary

Model of Encrypted Computation

Slide from Lecture 1 — your turn to explain.

Basic task: keep F unknown to Bob.

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security

Practical Approach

Homomorphic Encryption

General idea: to design an encoding such that it is possible to evaluate various operations over encrypted messages (and getting encrypted results) without decrypting them.

In particular encoding is called

- ⇒ Additively homomorphic if it is possible to compute E(x + y) from E(x) and E(y)
- $\Rightarrow Multiplicatively homomorphic if it is possible to compute <math>E(xy)$ from E(x) and E(y)
- \Rightarrow Mixed multiplicatively homomorphic if it is possible to compute E(xy) from E(x) and y.

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Fact: there exists additively homomorphic encryption schemes over the rings $\mathbb{Z}/N\mathbb{Z}$.

Corollary: there exists additively & mixed multiplicatively homomorphic encryption schemes over the rings $\mathbb{Z}/N\mathbb{Z}$.

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Fact: there exists additively homomorphic encryption schemes over the rings $\mathbb{Z}/N\mathbb{Z}$.

Corollary: there exists additively & mixed multiplicatively homomorphic encryption schemes over the rings $\mathbb{Z}/N\mathbb{Z}$.

Proof: Mixed multiplication could be done by polynomial number of additions.

Yurv Lifshits

Idea of **Provable** Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summarv

Let *P* be polynomial over $\mathbb{Z}/N\mathbb{Z}$ ring.

$$\mathsf{P} = \sum \mathsf{a}_{i_1 \ldots i_s} X_1^{i_1} \ldots X_s^{i_s}$$

Then we can encrypt P by just sending encrypted coefficients (using MM-A homomorphic encryption). Bob is able to compute E(P(X)) and return it back to Alice.

What we reveal to Bob? Only set of nonzero coefficients of Ρ.

Yury Lifshits

Mobile cryptography results

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security

Practical Approach

Summary

What are further results for encrypted computation?

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security

Practical Approach

Summary

What are further results for encrypted computation?

- \Rightarrow Other presentations of function.
 - **[Loreiro, Molva]** function as a matrix.
 - [Sander, Tschudin] another basic hard problem: decomposition of rational functions.

Yury Lifshits

More Black-Box Security

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security

Practical Approach

Summary

What are other functions obfuscated with black-box security?

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security

Practical Approach

Summary

More Black-Box Security

What are other functions obfuscated with black-box security?

⇒ [LPS 2004] – interactive access control system.

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

What are other functions obfuscated with black-box security?

⇒ [LPS 2004] – interactive access control system.

⇒ Next results I expect from you!

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Quality of obfuscating transformations

What is hard to get from programs after obfuscating transformations?

Yury Lifshits

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

Quality of obfuscating transformations

What is hard to get from programs after obfuscating transformations?

- ⇒ Alias analysis is NP-hard!
- Average hardness is proved only for several fixed analysis algorithms

Yury Lifshits

Summary

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding

Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

⇒ We can prove property extracting to be hard in some cases.

Yury Lifshits

Summary

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

```
Overview of
Further
Research
```

Mobile cryptography Black-box Security Practical Approach

Summary

- ⇒ We can prove property extracting to be hard in some cases.
- ⇒ We can use cryptographic constructions to hide some internal constants.

Yury Lifshits

Summary

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

- ⇒ We can prove property extracting to be hard in some cases.
- ⇒ We can use cryptographic constructions to hide some internal constants.
- ⇒ Obfuscation in general is impossible.

Yury Lifshits

Summary

Idea of Provable Security

Ways to Achieve Security

Basic Results

Impossibility of obfuscation

Property Hiding Encrypted computation

Overview of Further Research

Mobile cryptography Black-box Security Practical Approach

Summary

- ⇒ We can prove property extracting to be hard in some cases.
- ⇒ We can use cryptographic constructions to hide some internal constants.
- ⇒ Obfuscation in general is impossible.

Question Time!

Yury Lifshits

Back Up Slides

Not covered by the talk

Not covered by the talk

⇒ Black box security with relations to zero-knowledge