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Abstract Obfuscation can be a simple tool for soft-
ware protection. In this paper we present a method
of machine code obfuscation, which can be applied
to most present processors. The obfuscation method
is based on a theory, which led to two useful the-
orems. The proposed algorithm of obfuscation was
implemented and tested using analytical and empir-
ical approaches. The obtained results give the first
estimation of the mazimum possible efficiency of the
obfuscation process.
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1 Introduction

Although the security through obscurity
method seems to be not very popular in current
software science ([3]), obfuscation is present al-
most everywhere. Each time someone wants to
store important data he encodes it, which in fact
is just pure obfuscation (doing this he assumes
that an intruder can access his data). It looks
somehow strange that no one obfuscates impor-
tant pieces of programs or does it in a simple
way. We foresee that protection of programs
through obfuscation will be the next step in soft-
ware security development. Obfuscated program
code can be the last defense, when all other pro-
tections fail.

Until now few people have researched the
problem of program obfuscation. Collberg,
Thomborson and Low have laid down some ba-
sic definitions and implemented a complex ob-
fuscating algorithm of JAVA programs ([4], [5]).
Chenxi Wang proposed a robust algorithm suit-
able for most high level languages ([10]). In this
paper we present a more general approach, doing
obfuscation on machine code level. This paper
is a brief overview of [11].

2 Basic definitions

The general theory of machine code obfusca-
tion is based on typical mathematic background.
We assume that a computer architecture is given
in the form of an instruction set and a context
— vector of some variables, describing possible
states of the computer. An instruction I can be
written as a simple vector function:

I(c1) =c2 for ¢ €8

where S is the set of all possible states.

Obviously in present computers instructions
change only very small part of the global con-
text. Sequences of instructions are called pro-
grams (ex. P = (I, Is,15,...,1,)). Only static
programs, which are executable in the finite time
will be analyzed. By default instructions are ex-
ecuted in a forward direction. Particular instruc-
tions may change the sequence of execution.

A program may use even the whole context of
a computer, producing huge amount of informa-
tion as the output. For an user only part of this
information is important. To provide the impor-
tant input and output information we define a
vector of context usage.

Definition 1 Vector v of usage of context ¢ is a
vector of values from set {0,1}. Vectors c and v
have the same dimension. The values of v have
the following meaning:

e 1 — the corresponding context variable holds
value important for the user

e 0 — the variable holds a value, which is not
important

We will perform typical logical operations on
the usage vectors: AND (writing vivz) and OR
(writing vy + va). We will use also the ”zero”
vector — 0.



To analyze a program P(c;) = ¢z in the pro-
posed model, one must define the usage vectors
for ¢1 and c2. Instead of writing static vector
of context variables we will write these defined
vectors of context usage: P(vy) = va, remem-
bering that every program always transforms a
context into a context. Usage information shows
us which part of the context is transformed (el-
ements of vy or v equal to 1) and which part
remains identical or unimportant (elements of
vy or vg equal to 0).

Given a program P(vi) = vg, transforming
usage of a context ¢ according to description
provided by vectors vi; and vg, one can calcu-
late usage of the context after every instruction
of P. Tt can be easily done with standard data
flow analysis algorithms ([8]).

In [11] we classified all instructions, according
to obfuscation needs, as: operations, branches
and special. In most present assembler lan-
guages this classification can be projected onto
the following groups of instructions:

e operations — arithmetic, logic, shifts and ro-
tations, copying data, operating on bits and
bitfields

e branches - wunconditional, conditional,

with/without return

e special — changing execution state (ex. RE-
SET, HALT), input/output

There are also two important groups of opera-
tions:

e reversible operations — when there is an op-
eration or program Pr such that:

I(vi)=va<=\V A Pr(v2)=wv1
Pr c1,c2€S

e irreversible operations — otherwise

In real machines there are instructions which
cannot be classified as reversible or not (it de-
pends on the current use of context).

We will use symbol || to show concatenation
of two programs. Given an a priori condition
P = P,||P, it is understood that program P was
divided in any place on two programs P; and Ps.

Definition 2 Program Pi(v1) = vi11 is equiv-
alent to program P,(va) = vaa in the context
usage: input v, output v', if:

vivi+va)=v A V/(viz+vae)=v A
( A P(v)=v" A P(v)=V)
c,c’'eS

which will be written as follows:
P1 = PQ(V) = V’

Using presented background we proposed
([11]) an alternative definition of obfuscating
transformation (in comparison to [4]).

Definition 3 Obfuscating transformation T is
such a change of program P(v) = v’ into pro-
gram T (P), that there is program P', such that
program T (P)||P' is equivalent to program P in
context usage: input v, output v'.

T(P)(v) = vy is obfusc. tr. of P(v) = v <
(Vp P'(vr) =v' A T(P)||P'=P(v) =V

Separation of the obfuscated program on two
parts: 7 (P) and P’, allows to bind reversible
operations to obfuscating transformation.

In construction of obfuscating algorithms we
used two properties of obfuscating transforma-
tions (proved in [11]).

Theorem 1 If T is an obfuscating transforma-
tion, then T (P) can contain only:

e programs equivalent to instructions from P

e reversible operations

e instructions which change only part of the
context not used in the program P

Theorem 2 For any program P divided in any
place into two programs P = Py||Ps, which are
obfuscated by two different obfuscating transfor-
mations T1(P1) and T2(P), there is a program
Px such that T(P) = Ti(P1)||Px||T2(P2) is ob-
fuscating transformation.

Using theorems 1 and 2 it is possible to create
a pure sequential algorithm of obfuscation.

3 Evaluation of obfuscating transfor-
mations

There are two methods of evaluation of obfus-
cating transformations. Analytical method ex-
tracts information from program structures be-
fore and after obfuscation. It can be used to



compare different algorithms of obfuscation, but
it cannot answer the basic question: how well
is a program protected from tampering? Only
empirical research can measure this property.

3.1 Analytical methods

In article [4] Collberg, Thomborson and Low
proposed three measures:

e potency — measure of complexity added to
obfuscated program, in most cases it de-
scribes how hard it is to understand a pro-
gram

e resilience — measures how well a given trans-
formation protects a program from an au-
tomatic deobfuscator

e cost — describes amount of resources a pro-
gram must use after obfuscation to execute

Definition 4 For a given complerity measure
E(P), potency of obfuscating transformation
T(P), II(T, P) is defined as:

n(7,P) = — 2

To calculate potency of obfuscating transfor-
mation some typical measures of program com-
plexity can be used. In case of machine code we
selected three well known measures:

1. Measure of length Ej, — describes how long
is a program and how complicated are
its instructions, according to the formula
(valid for two-address machines) for P =
(Il, IQ, 13, “eey In)

no. of arguments in I;
2

Ei(T,P) = i

=1

The formula was found after some experi-
ments and choosen to diversify measure of
length for selected programs.

2. Measure of depth Ep —is an integer number
of maximum nesting level of jumps in the
measured program.

3. Measure of flow Er — is a rational num-
ber of average number of references to lo-
cal variables per fragment of P between two
branches. Flow and depth can be calculated
by a simple recursive algorithms ([11]).

To represent potency in the form of single
number the average potency of obfuscation was
defined:

EL(T(P) |, En(T(P) , Ew(T(P))
G R R 73 (R

HA(TaP) = 3

We used the original form of resilience ([4]):
R(T, P) € {trivial, weak, strong, full}
and the original definition of cost:
C(T,P) € {free,cheap, costly, dear}

Eventually we presented results of the quality
tests of obfuscating transformations in the form
of value of average potency and description of
resilience and cost.

3.2 Empirical method

Empirical tests of obfuscating transforma-
tions were done on selected groups of persons
trying to understand a given obfuscated pro-
gram. [ selected three groups for tests: students,
software engineers and crackers. The result of
empirical test is given in form of the shortest
time required in a selected group for understand-
ing of obfuscated program.

4 Obfuscation of machine code
To create low level obfuscating transforma-

tions we classified all simple possible transfor-
mations (figure 1).

Obfuscation
Reordering Inserting
simple complex

Figure 1: Classification of obfuscating transfor-
mations as seen on the low level of programming.

This classification is a consequence of the pre-
sented theoretical background. Treating pro-
gram P as a sequence of instructions, when P



is divided on two parts P = P || P, it is possible
to apply only the following obfuscating trans-
formations: insert additional instructions, ex-
change one part of P, for an example P; with
Pc, reorder instructions of P, reorder blocks of
P. To diversify large possible group of inserting
transformations we defined simple insertion and
complex insertion. Simple one uses only infor-
mation from neighbourhood instructions, while
complex uses a larger part of program.

To construct an efficient method of insertion
we used an interesting property of machine code,
which comes from data dependencies occurring
between instructions located close to each other
in a program.

Definition 5 Let program P = (Iy, I, ..., I,,) be
n instructions long. Let v; be usage vector before
instruction 1 and vi after instruction i. Proba-
bility of dependency between instructions distant
of d instructions in the program P is defined as:

1 when vivitq #0

n—d and A
p(P,d) = @ ci = j=1,2,...,d—1
n—d v;k_}_jvi_i_d:(]

0 7n other case

Dependencies were calculated in context (reg-
isters, wvariables in local memory, global mem-
ory) using algorithm described in [11].

The property is shown on figure 2. It turns
out that the probability of data dependency is
smaller for larger distance between instructions.

0.5, P(P,d)
0.4
0.3
0.2
0.1

0
1 2 3 4 5 6 7 d

Figure 2: Probability of data dependency be-
tween two instructions as function of distance
between them.

Presented property can be reproduced in an
easy random way, by adding artificial dependen-
cies to randomly generated instructions. Results
of such model are shown on figure 3.

1. p(Pd)
0.8
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0.4
0.2

1 2 3 4 5 6 7 d

Figure 3: Probability of data dependecy between
two instructions of random program with added
dependencies.

It can be found from experiments that pro-
grams do not use the whole available context all
the time. According to theorem 1 we can insert
the two types of instructions: any instructions
using free part of context or reversible opera-
tions changing used part of context.

Insertion of new instruction causes obfuscated
program to grow longer. To make control of this
growth we introduced rescaling factor S:

[T(P)|
S =
|P|
where |...| returns the length of a program.

Sample methods of complex insertion are pre-
sented in [4]. Among them inserting of opaque
constructs seems to be most important, because
it is the only way to increase significantly re-
silience of obfuscating transformations. The
original definition of opaque construct can be
found in [5]. In [5] an efficient method of cre-
ating opaque constructs is described. It is based
on a high level approach (uses pointers, objects
and system calls). In [11] we described a more
general method.

Any automatic method of creating opaque
constructs is weak, because it generates frag-
ments having a similar pattern. This fragments
still cannot be deleted automatically, but can
be found easier and then removed by a human.
It looks like opaque constructs are analogous to
cryptographic keys: they should be unique and
kept secret.

There are different possible ways to merge
opaque constructs and additional inserted code
(based on context usage). Both techniques are
required to make the algorithm of obfuscation
potent and resilient.



5 Sample algorithm

In the sample algorithm three important
methods were selected in the general group of
inserting instructions:

e insertion of any operations changing free
part of context

e insertion of reversible operations changing
used part of context

e insertion of opaque constructs

Two techniques of obfuscation were choosen
for implementation: insertion and reordering of
blocks. Like in [10] we treated program as a set
of functions, while the algorithm obfuscates a
single function only.

The implemented algorithm uses the following
assumptions:

e input is a single function

e the program is obfuscated in context con-
sisting of processor’s registers and local
stack

e for the whole obfuscated context full data
flow analysis was done

e external function calls are not present

e the input program does not contain instruc-
tions using elements outside the obfuscated
context

e there are only static jumps inside the input
program

e following input parameters are given:

1. Rescaling factor S, § > 1

2. Frequency of reordering Rg — how of-
ten reordering of blocks must be ap-
plied, 0 < Rp <1

3. Logical flags for different methods of
code insertion: using free part of con-
text Iy, reversible operations Ip and
opaque constructs Ip (zero means in-
sertion disabled), In, Ip,Io € {0,1}

Table 1 shows global objects used in the algo-
rithm. The algorithm uses the following condi-
tions:

e condition of insertion: C; = (M < Ny - S)

e condition of reordering: Cg = (]1\\7,—? < Rp)

Algorithm 1 The main loop of program code
obfuscation:

1. If conditions Cr and Ct are true, do block
reordering.

Table 1: Global objects used in the algorithm of
obfuscation.

| Object | Type | Description

Lg list addresses of jumps forward
Lo list operations on current context
N integer | length of input program

Np integer | number of reordered blocks
M integer | length of output program

Ny integer | current obfuscated instruction

2. If there are jumps to the current position
on Lg, balance context for each jump, using
operations from Lo.

3. Balance context for the current instruction
(if required). It is done by reversing appro-
priate operations from Lo.

4. If current instruction is a jump backwards,
balance context to the one from destination
of the jump.

5. If current instruction is a jump forward,
add it to Lg.

6. Store current content of Lo for the future
context balancing.

7. Copy obfuscated instruction and apply
changes to its context (if required).

8. As long as Cr is true, insert new instruc-
tions.

9. If copied instruction was an unconditional
Jump, empty Lo.

It has been proved ([11]) that the proposed
algorithm satisfies conditions of the obfuscating
transformation.

6 Results and comparison

The presented algorithm was implemented on
two different processors: Intel x86 and MIPS.
For both architectures the same analytical and
empirical measurement was done, but in this pa-
per only results for Intel are shown (for MIPS
results see [11]).

We have choosen six different programs for
tests:

HASH - simple hashing

MATRIX — multiplication of matrices
INSORT - sorting by simple insertion
BUBSORT - bubble sorting

CODETEST - calculating checksum of a
program



e DECODE - decoding part of a program

Results of complexity measurement are shown in
table 2. Values E}, are normalized by division by
number of instructions in the measured program.
In the case of empirical research we have choosen

Table 2: Complexity measurement of sample
programs for Intel x86.

| Program || E; | Ep | EF |
HASH 0.88 1 3.0
MATRIX 0.87 3 4.0
INSORT 0.88 3 3.6
BUBSORT 090 | 3 | 4.7
CODETEST || 0.90 4 3.7
DECODE 0.93 1 7.3

| Average [0.90] 4 |4.3|

as reference data the average time needed for
analysis of a program by a human. A student
and a programmer needed about 15 minutes, a
cracker — about 10 minutes.

As the analytical measure of quality of an ob-
fuscating transformation the average value of po-
tency Il is calculated. In the basic test we
used all implemented techniques of code inser-
tion: instructions using free elements of context,
reversible operations on used elements of con-
text and opaque constructs. In addition we set
the following parameters of obfuscation: rescal-
ing of program — 10, frequency of block reorder-
ing — 0.2. After obfuscation (table 3), programs
became more homogeneous. This can be seen
from smaller distortions of values Er and Ef.
Average potency of obfuscated programs grew
only half of rescaling value. The resilience of ob-

Table 3: Complexity measures of obfuscated test

prograis.
| Program || EL | ED | EF || Hg |
HASH 84 | 11 | 3.1 || 6.19
MATRIX 83|21 | 3.9 | 4.84
INSORT 81 | 14 | 42 | 4.01

BUBSORT 82 | 18 | 3.5 | 4.29
CODETEST || 8.4 | 28 | 3.4 || 4.75
DECODE 85|19 | 3.2 | 8.53

[8.3] 32 | 3.7 | 4.89 |

| Average

fuscated programs hardly depends on the use of
opaque constructs. The cost of proposed algo-
rithm can be classified as cheap.

Empirical tests were done only on program
DECODE. In the first attempt the program was

obfuscated with the use of block reordering and
inserting of instructions using free elements of
context only. The rescaling value was set to 5.
After obfuscation time needed for analysis be-
came significantly longer (table 4), but for most
crackers guessing the correct meaning of the pro-
gram was quite an easy task.

Table 4: Results of empirical quality tests of sim-
ple obfuscating transformation.

People Best time
Group [number] | of answer [h]
students 46 —
engineers 9 3
crackers 7

In the second attempt the full coverage of the
proposed algorithm was used. Simple opaque
constructs were used (based on arithmetic and
logic operations). Rescaling value was set to 5.
The obfuscated program turned out to be more
resilient to human analysis (table 5). Crackers
who managed to find the correct answer used the
brute force method, reading disassembled listing
and writing comments.

Table 5: Results of empirical quality tests of full
obfuscating transformation.

People Best time
Group [number] | of answer [h]
students 14 —
engineers 7 —
crackers 5 2

For programs rescaled with higher ratio brute
force method could lead to very long time of
analysis. Experienced crackers proposed a differ-
ent solution of how to unobfuscate a long pro-
gram. The general form of such an algorithm
looks like this:

e build full data flow graph (local usage of
context)

e optimize data flow graph — reduces simple
reversible operations and instructions using
free elements of context

e scan control flow graph in the search for
opaque constructs — half-automatic step,
because in some cases the cracker must
make the decision if a part is an opaque con-
struct or not



Presented results obtained in the empirical re-
search are a first attempt and cannot be refer-
enced to any work. Until now only analytical
measurement was taken into account ([4]) or the
only measured value was cost ([10]).

In comparison with other known algorithms
of obfuscation the proposed approach looks very
promising (table 6). Its low complexity comes
from easiness of semantic analysis of machine
languages and quite simple implementation of
data flow analysis. Other areas of comparison
have the following meanings:

e portability — how easy is to transfer an im-
plemented algorithm from one machine to
another

e flexibility — how easy is to use an imple-
mented algorithm in different development
environment or programming language

e scalability — how much an obfuscation pro-
cess can be controlled by user

Algorithm described in [4] is not portable, be-
cause it was designed especially for use with the
Java Virtual Machine. Algorithm from [10] uses
very specific opaque constructs making it not
very scalable.

Table 6: Comparison of three algorithms of code
obfuscation.

Chenxi | Wréble
Property Collberg | Wang wski
[4] [10] [11]
Complexity high medium low
Portability no yes yes
Flexibility medium | medium high
Scalability good poor good

7 Summary

The proposed method of program code ob-
fuscation is very general — it does not depend
on specific properties of any computer architec-
ture. To convert an implemented algorithm for a
new machine, it is only required to handle spe-
cific properties of its architecture (like special
instructions). Low complexity of the proposed
algorithm makes it an efficient tool for software
watermarking ([6], [7]) and computer viruses.

It can be seen that efficient obfuscation is also
possible with a low-level approach. Using the re-
sults from empirical research, we estimated the

length of a well protected obfuscated short pro-
gram (including opaque constructs and entan-
gled code ”covering” them). This information
cannot be found using only analytical approach,
like in [5] or [10]. The result is: 1,400,000 to
70,000, 000 instructions.
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