
Oblivious RAM

Yury Lifshits

Steklov Institute of Mathematics, St.Petersburg, Russia
yura@logic.pdmi.ras.ru

Tartu University
15/03/2006

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 1 / 20

Architectual Approach to Software Protection

Computer is divided to observable and protected parts

Technologically possible: accessable memory but protected
processor

Today: making interction between processor and memory useless
for learning program

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 2 / 20

Architectual Approach to Software Protection

Computer is divided to observable and protected parts

Technologically possible: accessable memory but protected
processor

Today: making interction between processor and memory useless
for learning program

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 2 / 20

Architectual Approach to Software Protection

Computer is divided to observable and protected parts

Technologically possible: accessable memory but protected
processor

Today: making interction between processor and memory useless
for learning program

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 2 / 20

Outline

1 What Kind of Computer Are We Going To Construct?

2 Basic Solutions

3 Hierarchial Construction

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 3 / 20

Outline

1 What Kind of Computer Are We Going To Construct?

2 Basic Solutions

3 Hierarchial Construction

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 3 / 20

Outline

1 What Kind of Computer Are We Going To Construct?

2 Basic Solutions

3 Hierarchial Construction

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 3 / 20

Outline

1 What Kind of Computer Are We Going To Construct?

2 Basic Solutions

3 Hierarchial Construction

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 4 / 20

Computer Model

Two parts: Memory and Processor

Internal memory of Processor = c log |Memory|
Interaction: fetch(adress), store(adress, value)

Processor has access to random oracle

Computation starts with a program and an input in Memory

One step: fetch one cell - update value and Processor memory -
store

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 5 / 20

Computer Model

Two parts: Memory and Processor

Internal memory of Processor = c log |Memory|

Interaction: fetch(adress), store(adress, value)

Processor has access to random oracle

Computation starts with a program and an input in Memory

One step: fetch one cell - update value and Processor memory -
store

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 5 / 20

Computer Model

Two parts: Memory and Processor

Internal memory of Processor = c log |Memory|
Interaction: fetch(adress), store(adress, value)

Processor has access to random oracle

Computation starts with a program and an input in Memory

One step: fetch one cell - update value and Processor memory -
store

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 5 / 20

Computer Model

Two parts: Memory and Processor

Internal memory of Processor = c log |Memory|
Interaction: fetch(adress), store(adress, value)

Processor has access to random oracle

Computation starts with a program and an input in Memory

One step: fetch one cell - update value and Processor memory -
store

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 5 / 20

Computer Model

Two parts: Memory and Processor

Internal memory of Processor = c log |Memory|
Interaction: fetch(adress), store(adress, value)

Processor has access to random oracle

Computation starts with a program and an input in Memory

One step: fetch one cell - update value and Processor memory -
store

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 5 / 20

Computer Model

Two parts: Memory and Processor

Internal memory of Processor = c log |Memory|
Interaction: fetch(adress), store(adress, value)

Processor has access to random oracle

Computation starts with a program and an input in Memory

One step: fetch one cell - update value and Processor memory -
store

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 5 / 20

Oblivious Execution

We want to hide: order of accesses to cells of Memory

Oblivious esecution:
For all programs of size m working in time t
order of fetch/store adresses is the same

Weaker requirement:
For all programs of size m working in time t
order of fetch/store adresses has the same distribution

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 6 / 20

Oblivious Execution

We want to hide: order of accesses to cells of Memory

Oblivious esecution:
For all programs of size m working in time t
order of fetch/store adresses is the same

Weaker requirement:
For all programs of size m working in time t
order of fetch/store adresses has the same distribution

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 6 / 20

Oblivious Execution

We want to hide: order of accesses to cells of Memory

Oblivious esecution:
For all programs of size m working in time t
order of fetch/store adresses is the same

Weaker requirement:
For all programs of size m working in time t
order of fetch/store adresses has the same distribution

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 6 / 20

Outline

1 What Kind of Computer Are We Going To Construct?

2 Basic Solutions

3 Hierarchial Construction

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 7 / 20

Naive Simulation

Simulation 1:

1 We store encrypted pairs (adress,value) in memory cells

2 For every fetch/store we scan through all memory

Wrong adress ⇒ just reencrypt and store
Right adress ⇒ do the job ⇒ encrypt and store the result

Cost of simulation: tm time, m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 8 / 20

Naive Simulation

Simulation 1:

1 We store encrypted pairs (adress,value) in memory cells
2 For every fetch/store we scan through all memory

Wrong adress ⇒ just reencrypt and store
Right adress ⇒ do the job ⇒ encrypt and store the result

Cost of simulation: tm time, m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 8 / 20

Naive Simulation

Simulation 1:

1 We store encrypted pairs (adress,value) in memory cells
2 For every fetch/store we scan through all memory

Wrong adress ⇒ just reencrypt and store

Right adress ⇒ do the job ⇒ encrypt and store the result

Cost of simulation: tm time, m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 8 / 20

Naive Simulation

Simulation 1:

1 We store encrypted pairs (adress,value) in memory cells
2 For every fetch/store we scan through all memory

Wrong adress ⇒ just reencrypt and store
Right adress ⇒ do the job ⇒ encrypt and store the result

Cost of simulation: tm time, m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 8 / 20

Naive Simulation

Simulation 1:

1 We store encrypted pairs (adress,value) in memory cells
2 For every fetch/store we scan through all memory

Wrong adress ⇒ just reencrypt and store
Right adress ⇒ do the job ⇒ encrypt and store the result

Cost of simulation: tm time, m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 8 / 20

Naive Simulation

Simulation 1:

1 We store encrypted pairs (adress,value) in memory cells
2 For every fetch/store we scan through all memory

Wrong adress ⇒ just reencrypt and store
Right adress ⇒ do the job ⇒ encrypt and store the result

Cost of simulation: tm time, m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 8 / 20

Square Root Solution (1)

We need to protect:
Order of accesses
Number of accesses

Memory = Main Part (m +
√

m) | Shelter
√

m

Idea:
Divide computation in epochs of

√
m steps each

On each original step make one fetch to the Main Part
and scan through all the Shelter

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 9 / 20

Square Root Solution (1)

We need to protect:
Order of accesses
Number of accesses

Memory = Main Part (m +
√

m) | Shelter
√

m

Idea:
Divide computation in epochs of

√
m steps each

On each original step make one fetch to the Main Part
and scan through all the Shelter

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 9 / 20

Square Root Solution (1)

We need to protect:
Order of accesses
Number of accesses

Memory = Main Part (m +
√

m) | Shelter
√

m

Idea:
Divide computation in epochs of

√
m steps each

On each original step make one fetch to the Main Part
and scan through all the Shelter

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 9 / 20

Square Root Solution (2)

Simulation 2:

1 Store input in the Main Part

2 Add
√

m dummy cells to the Main part
3 For every epoch of

√
m steps

Permute all cells in the Main Part (using permutation π from
random oracle)
For each process(i) scan through the shelter. If i-th element is
not founded, fetch it from π(i), otherwise fetch next dummy cell
Update (obliviously) the Main Part using the Shelter values

Cost of simulation: t
√

m time, m + 2
√

m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 10 / 20

Square Root Solution (2)

Simulation 2:

1 Store input in the Main Part

2 Add
√

m dummy cells to the Main part

3 For every epoch of
√

m steps

Permute all cells in the Main Part (using permutation π from
random oracle)
For each process(i) scan through the shelter. If i-th element is
not founded, fetch it from π(i), otherwise fetch next dummy cell
Update (obliviously) the Main Part using the Shelter values

Cost of simulation: t
√

m time, m + 2
√

m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 10 / 20

Square Root Solution (2)

Simulation 2:

1 Store input in the Main Part

2 Add
√

m dummy cells to the Main part
3 For every epoch of

√
m steps

Permute all cells in the Main Part (using permutation π from
random oracle)
For each process(i) scan through the shelter. If i-th element is
not founded, fetch it from π(i), otherwise fetch next dummy cell
Update (obliviously) the Main Part using the Shelter values

Cost of simulation: t
√

m time, m + 2
√

m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 10 / 20

Square Root Solution (2)

Simulation 2:

1 Store input in the Main Part

2 Add
√

m dummy cells to the Main part
3 For every epoch of

√
m steps

Permute all cells in the Main Part (using permutation π from
random oracle)

For each process(i) scan through the shelter. If i-th element is
not founded, fetch it from π(i), otherwise fetch next dummy cell
Update (obliviously) the Main Part using the Shelter values

Cost of simulation: t
√

m time, m + 2
√

m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 10 / 20

Square Root Solution (2)

Simulation 2:

1 Store input in the Main Part

2 Add
√

m dummy cells to the Main part
3 For every epoch of

√
m steps

Permute all cells in the Main Part (using permutation π from
random oracle)
For each process(i) scan through the shelter. If i-th element is
not founded, fetch it from π(i), otherwise fetch next dummy cell

Update (obliviously) the Main Part using the Shelter values

Cost of simulation: t
√

m time, m + 2
√

m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 10 / 20

Square Root Solution (2)

Simulation 2:

1 Store input in the Main Part

2 Add
√

m dummy cells to the Main part
3 For every epoch of

√
m steps

Permute all cells in the Main Part (using permutation π from
random oracle)
For each process(i) scan through the shelter. If i-th element is
not founded, fetch it from π(i), otherwise fetch next dummy cell
Update (obliviously) the Main Part using the Shelter values

Cost of simulation: t
√

m time, m + 2
√

m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 10 / 20

Square Root Solution (2)

Simulation 2:

1 Store input in the Main Part

2 Add
√

m dummy cells to the Main part
3 For every epoch of

√
m steps

Permute all cells in the Main Part (using permutation π from
random oracle)
For each process(i) scan through the shelter. If i-th element is
not founded, fetch it from π(i), otherwise fetch next dummy cell
Update (obliviously) the Main Part using the Shelter values

Cost of simulation: t
√

m time, m + 2
√

m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 10 / 20

Square Root Solution (2)

Simulation 2:

1 Store input in the Main Part

2 Add
√

m dummy cells to the Main part
3 For every epoch of

√
m steps

Permute all cells in the Main Part (using permutation π from
random oracle)
For each process(i) scan through the shelter. If i-th element is
not founded, fetch it from π(i), otherwise fetch next dummy cell
Update (obliviously) the Main Part using the Shelter values

Cost of simulation: t
√

m time, m + 2
√

m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 10 / 20

Buffer Solution (1): Oblivious Hash Table

Memory of initial program: (a1, v1), . . . , (am, vm)

Take a hash function h : [1..m] → [1..m]

Prepare m × log m table

Put (ai , vi) to random free cell in h(ai)-th column

Home problem 4: Prove that the chance of overflow
is less than 1/m

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 11 / 20

Buffer Solution (2): Simulation

Restricted problem: assume that every cell accessed only once

Simulation 3:

1 Construct (obliviously) a hash table
2 For every step fetch(i) of initial program

Scan through h(i) column
Update the target cell

Cost of simulation: t log m time, m log m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 12 / 20

Buffer Solution (2): Simulation

Restricted problem: assume that every cell accessed only once

Simulation 3:

1 Construct (obliviously) a hash table

2 For every step fetch(i) of initial program

Scan through h(i) column
Update the target cell

Cost of simulation: t log m time, m log m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 12 / 20

Buffer Solution (2): Simulation

Restricted problem: assume that every cell accessed only once

Simulation 3:

1 Construct (obliviously) a hash table
2 For every step fetch(i) of initial program

Scan through h(i) column
Update the target cell

Cost of simulation: t log m time, m log m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 12 / 20

Buffer Solution (2): Simulation

Restricted problem: assume that every cell accessed only once

Simulation 3:

1 Construct (obliviously) a hash table
2 For every step fetch(i) of initial program

Scan through h(i) column

Update the target cell

Cost of simulation: t log m time, m log m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 12 / 20

Buffer Solution (2): Simulation

Restricted problem: assume that every cell accessed only once

Simulation 3:

1 Construct (obliviously) a hash table
2 For every step fetch(i) of initial program

Scan through h(i) column
Update the target cell

Cost of simulation: t log m time, m log m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 12 / 20

Buffer Solution (2): Simulation

Restricted problem: assume that every cell accessed only once

Simulation 3:

1 Construct (obliviously) a hash table
2 For every step fetch(i) of initial program

Scan through h(i) column
Update the target cell

Cost of simulation: t log m time, m log m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 12 / 20

Buffer Solution (2): Simulation

Restricted problem: assume that every cell accessed only once

Simulation 3:

1 Construct (obliviously) a hash table
2 For every step fetch(i) of initial program

Scan through h(i) column
Update the target cell

Cost of simulation: t log m time, m log m memory

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 12 / 20

Outline

1 What Kind of Computer Are We Going To Construct?

2 Basic Solutions

3 Hierarchial Construction

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 13 / 20

Data Structure

k-Buffer = table 2k × k

Hierarchial Buffer Structure = 1-buffer,. . . ,log t-buffer

Initial position: input in last buffer, all others are empty

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 14 / 20

Hierarchial Simulation

Simulation of processing cell i :

1 Scan through 1-buffer

2 For every j scan through h(i , j)-th column in j-buffer

3 Put the updated value to the first buffer

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 15 / 20

Hierarchial Simulation

Simulation of processing cell i :

1 Scan through 1-buffer

2 For every j scan through h(i , j)-th column in j-buffer

3 Put the updated value to the first buffer

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 15 / 20

Hierarchial Simulation

Simulation of processing cell i :

1 Scan through 1-buffer

2 For every j scan through h(i , j)-th column in j-buffer

3 Put the updated value to the first buffer

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 15 / 20

Periodic Rehashing

Refreshing the data structure:

1 Every 2j−1 steps unify j-th and j − 1-th buffers

2 Delete doubles

3 Using new hash function put all data to j − th level

Invariant: For every moment of time for every l buffers from 1 to l all
together contain at most 2l−1 elements

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 16 / 20

Periodic Rehashing

Refreshing the data structure:

1 Every 2j−1 steps unify j-th and j − 1-th buffers

2 Delete doubles

3 Using new hash function put all data to j − th level

Invariant: For every moment of time for every l buffers from 1 to l all
together contain at most 2l−1 elements

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 16 / 20

Discussion

Comments on final solution:

Cost: O(t · (log t)3) time, O(m · (log m)2) memory

Omitted details: realization of oblivious hashing and random
oracle

Tamper-proofing extension

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 17 / 20

Discussion

Comments on final solution:

Cost: O(t · (log t)3) time, O(m · (log m)2) memory

Omitted details: realization of oblivious hashing and random
oracle

Tamper-proofing extension

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 17 / 20

Discussion

Comments on final solution:

Cost: O(t · (log t)3) time, O(m · (log m)2) memory

Omitted details: realization of oblivious hashing and random
oracle

Tamper-proofing extension

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 17 / 20

Home Problem 4

Prove that the chance of overflow in hash table construction is less
than 1/m

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 18 / 20

Summary

Main points:

Theoretical model for hardware-based code protection: open
memory/protected CPU

Central problem: simulation of any program with any input by
the same access pattern

Current result: O(t · (log t)3) time, O(m · (log m)2) memory
simulation

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 19 / 20

Summary

Main points:

Theoretical model for hardware-based code protection: open
memory/protected CPU

Central problem: simulation of any program with any input by
the same access pattern

Current result: O(t · (log t)3) time, O(m · (log m)2) memory
simulation

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 19 / 20

Summary

Main points:

Theoretical model for hardware-based code protection: open
memory/protected CPU

Central problem: simulation of any program with any input by
the same access pattern

Current result: O(t · (log t)3) time, O(m · (log m)2) memory
simulation

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 19 / 20

Reading List

O. Goldreich, R.Ostrovsky
Software protection and simulation on oblivious RAM, 1996.
http://www.wisdom.weizmann.ac.il/~oded/PS/soft.ps.

Thanks for attention. Questions?

Yury Lifshits (Steklov Inst. of Math) Oblivious RAM Tartu’06 20 / 20

http://www.wisdom.weizmann.ac.il/~oded/PS/soft.ps

	What Kind of Computer Are We Going To Construct?
	Basic Solutions
	Hierarchial Construction
	Summary

