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Abstract. In this paper, we consider the decidability of two problems related to
information flow in a system with respect to some property. A flow occurs ina
system if the conditional probability of the property under some partial observa-
tion differs from the a priori probability of that property. For systems modelled
as finite Markov chains we prove that the two following problems are decidable:
does a system has information flow for a given regular property? is it true that the
system has no information flow for any (sequential) property?

1 Introduction

In this paper we study the followingSecurity of Information Flowproblem:
verify that no partial observation of a system behavior does leak an information
that should be hidden.

Statement of the problem and our results.We use the framework of [15] and
its formalization from [4]. In our trace-based approach, we assume a set of ob-
servable low-level eventsL and a set of (not directly observable) high-level
eventsH. The question is whether observing a certain low-level trace can give
information about the occurrence of high-level events in a probabilistic sense,
yielding quantitative information about high-level activity. More precisely we
propose aparameterizedview of information flow. We define information flow
with respect to aproperty(a set of system traces) which is deemed important for
the system under scrutiny. This property is ourparameterof the problem. The
system has information flow with respect to the given property if there existtwo
low-level observations for which the chosen property has different probabili-
ties of occurrence. In this case, the quantitative, probabilistic knowledgeabout
the given property is sensitive to the observation which can be made, and so
there is information flow in the system with respect to this property. It is worth
mentioning that this probabilistic definition of information flow is related to
Shannon’s original definition of information, based on probabilities. In our pre-
vious paper [4] the formalization of information flow was presented for the first



time together with necessary and sufficient conditions for having no informa-
tion flow for all propertiesin a given system. Here, in order to get decidability
results we restrict ourselves to systems modelled by finite Markov chains (with
labelled edges) and to regular properties. It has a clear practical motivation. A
field of application can be for example verification of security for parallel pro-
gramming. Interleaving of actions of different threads is generally managed in
a probabilistic way, and can be modelled as a Markov chain. As for security
properties, many of them are regular.

Our first result states that it is decidable whether a system has information
flow for a given property. The key ingredient of the algorithm is a trick from
linear algebra, reformulating the notion of information flow as orthogonality of
the set of vectors corresponding to all possible observations to some checking
vector.

Our second result states that it is decidable whether a given system has no
information flowfor all properties. We consider two subcases: no information
flow for any property and no information flow for sequential properties (those
that do not consider the explicit value of low level actions).

Plan of the paper.Section 2 introduces the model under study and some related
notations and definitions. In sections 3, 4 we present our decidability results
just mentioned above. In Section 5 an example of application in the domain of
concurrent programs illustrates how the interleaving of low-level actions can
give probabilistic information on what happens at the high-level.

Related work.There is an important body of work in studying definitions re-
lated to information flow, for an overview see, e.g., [11]. We restrict the com-
paraison to the two features of our formalization: our notion of information flow
is parameterizedand it hasprobabilistic nature.

As far as we are aware of, only the paper of J. Halpern and K. O’Neill
[8] parameterizes information flow by giving a definition of secrecy in multi-
agent systems. They use a modal logic of knowledge in a state-based modelas
compared to our approach which is trace-based. Their framework generalizes
several existing approaches and can be extended to probabilistic security. Their
parametrization stems from defining formulas (knowledge) of what must be kept
secret.

The other probabilistic approaches are more restrictive. McLean [11] intro-
duces theflow modelwhich distinguishes mere correlation from actual causal
influence. Gray [6] introduces probabilisticinterferencein a context of finite
state machines and gives a more general information-theoretic framework (as
compared to [11]) including probabilistic channel capacity [7]. Sabelfeldand
Sands [14] define probabilisticnoninterferencein the context of schedulers for



multithreaded programs, based on the concept of probabilistic bisimulation.
Lowe [10] treats quantitative information flow distinguishing probabilistic as-
pects fromnondeterminism. A probabilistic process-algebraic approach is given
in [1], focused onnoninterference, generalizing the possibilistic variant and al-
lowing formal reasoning about the amount of information flow. All these works
are aimed at the definition of the models and do not deal with algorithmic prob-
lems.

Very few authors studied verification problems related to information flow.
Among probabilistic approaches we can cite [5] that uses a process algebra for-
malism to study bisimulation-based security properties. Concerning probabilis-
tic models, [13] gives a decidability result for "nondeducibility on composition"
for probabilistic timed automata, and Gray [6] gives a sufficient condition for
information flow security whichseemsdecidable.

2 Probabilistic Event Systems

Notations. Given a finite alphabetA, A∗ (resp.Aω) denotes the set of finite
(resp. infinite) sequences (or traces) over this alphabet. The setA∞ is the union
of A∗ andAω. The empty sequence is denotedε.
Given a sub-alphabetA′ ⊂ A and a traceλ, λ|A′ denotes the projection ofλ
onto this sub-alphabet.

Let u, v ∈ (A∗)n, u = (x1, x2, . . . , xn), v = (y1, y2, . . . , yn). We denote by
u⊗ v thesimple interleavingof u andv defined asu⊗ v = x1y1x2y2 . . . xnyn.
If U, V ⊂ (A∗)n, we denote byU ⊗V the set:U ⊗V = {u⊗v|u ∈ U, v ∈ V }.
If U, V ⊂ (A∗)ω, the definition ofU ⊗ V is extended in a standard way.

Probabilistic Event SystemsThe behaviour of a probabilistic event system is
modelled by its setTr of traces which are finite or infinite sequences of atomic
events from a setE. A particular atomic eventτ is distinguished which repre-
sents the halting of the system. For example, ifλ is a sequence of atomic events,
it is useful to distinguish between “λ has occurred but the system is still in ac-
tion”, and “λ has occurred and the system stopped”. The last case is modelled
by the eventλτ . In order to unify the presentation it is convenient to use only
infinite sequences and thus we useλτω instead ofλτ . Then, from now on,Tr

is a set of infinite sequences which either do not contain any occurrenceof τ or
of the formλτω whereλ does not contain any occurrence ofτ .

In order to deal with information flow issues, the set of atomic eventsE is
divided into two disjoint sets, the setH of high-level (i.e. secret) atomic events
and the setL of low-level (i.e.public) ones.



The set of tracesTr is equipped with a probability measureµ over theσ-
algebra generated by the cylindersαEω, such thatTr is µ-measurable. The
measureµ(X) of a measurable setX is denoted asPrµ(X), or shortlyPr(X).
Thus if we consider the infinite treeTS built from Tr with edges labelled by
atomic events, each edge of the tree is equipped with a non-zero probability.
(We assume that every prefix of a trace inTr has a non-zero probability).

As usual, we introduce the following notation for conditional probabilities:
if P andQ are two measurable events andPr(Q) 6= 0, the conditional prob-
ability Pr(P |Q) is equal toPr(P ∩ Q)/Pr(Q). Since we are interested only
in traces of the systemS we will deal only with the conditional probabilities
relative toTr . Thus, for each measurable eventX we denote byPrS(X) the
probabilityPr(X|S) (Pr(S) is supposed to be positive).

Definition 1 A probabilistic event systemis a tuple (E, H, L,Tr , µ) where
E = H ∪L, H ∩L = ∅ andH (resp.L) is the set of high-level (resp. low-level)
actions,µ is a probabilistic measure onEω andTr ⊂ Eω, the set of traces of
the system, isµ-measurable.

We assume that only low-level actions are observable on the low-level, i.e., for
a traceλ the projectionλ|L is observable by low-level users. More precisely,
every finite prefix ofλ|L is observable. Thus, from the observation ofu ∈ L∗,
the low-level user who is supposed to know the entire system can construct
thebunchBS(u) = {λ ∈ Tr | u is a prefix ofλ|L} and possibly deduce some
information on what happened or what will happen. When there is no ambiguity,
we will write B(u) instead ofBS(u).

A property is a subset ofEω. From now on we consider onlyµ-measurable
properties.

Definition 2 A systemS is without information flowfor a propertyP if for
everyu, v ∈ L∗ such thatB(u) and B(v) are non-empty,PrS(P |B(u)) =
PrS(P |B(v)).

The above definition means that, whatever the low level user observes, hedoes
not get additional information on the probability ofP to hold.

A particular case of interest is when only the presence of low level eventsis
important forP , not their value. Such a property is calledsequentialand defined
below.

Definition 3 A propertyP is sequentialif there existsP ′ ⊆ (H ∪ {l})ω such
that P = φ−1(P ′) whereφ is a morphism which is identity onH and for each
li ∈ L, φ(li) = l.



3 Decidability of Information Flow for a given property

We will now state some conditions under which one can decide whether a prob-
abilistic event system has information flow under some property.

The most common probabilistic systems described in a finite way are Markov
chains, and the simplest properties are regular ones, i.e. recognized bya deter-
ministic Muller automaton. We recall below the definition of Markov chains [9](with
a small change) and Muller automata [12].

Definition 4 We callMarkov chain with labelled edgesa systemA = (Σ, i, A, T )
whereS is a finite set of states,i ∈ S is the initial state,A is a finite alphabet,
T : S×A×S 7→ [0, 1] is a function such that∀s ∈ S,

∑
s′∈S,a∈A T (s, a, s′) = 1

and for each(s, a) ∈ S × A there is at most ones′ such thatT (s, a, s′) > 03.

This system is slightly different from a classical Markov chain for whichT :
S × S 7→ [0, 1]. Here there can be more than one edge between two states (if
they have different labels). In order to get decidability results we suppose that
T has its values in the setQ of rational numbers.

Let Pq be the set of paths from stateq. The setPi of infinite paths from the
initial statei is equipped with a probabilistic measureµ in a standard way. A
trace is the infinite sequence of labels of an infinite path.

Let Tr be the set of traces. The probability measureµ′ on Tr is defined as
follows: for every basic cylinderuAω, µ′(uAω ) is the mesureµ(wPq) wherew
is the path fromi labelled withu andq is the last state ofw.

Thus ifA is partitioned into two sets of high-level and low-level actions,H
andL, the Markov chain defines a probabilistic event system(A, H, L,Tr , µ′).

Definition 5 A Muller automatonis a tupleM = (Q, A, q0, ∆,F), whereQ is
the finite set of states,q0 is the initial state,∆ is the set of transitions andF is
the set of accepting subsets. An infinite wordw is accepted by the automaton if
the set of infinitely visited states along some4 path with labelw belongs toF .

It is a well known result that deterministic (complete) Muller automata have the
same expressive power as nondeterministic ones [12].

Now that we have defined the type of systems we consider, we can state the
main result.

Theorem 1 Given a systemS described by a Markov chain with labelled edges,
and a regular property on infinite tracesP given as a deterministic Muller au-
tomaton, we can decide whether the systemS has information flow for the prop-
ertyP .

3 this last condition means that the underlying automaton (without the probabilities) is deter-
ministic

4 Such a path is unique in the case of a deterministic and complete automaton.



Proof: The full proof cannot fit in the page limitation and is given in appendix A.
Our algorithm works as follows:

1. first we compute a composition of the Markov chain and Muller automaton
2. then we simplify it by the rule “H∗l → l” obtaining one step matrices,
3. next we reformulate the information flow problem in a linear algebraic form,

showing that it is equivalent to the orthogonality of a hull and a given “check
vector”,

4. and to conclude we prove that the hull mentioned above is computable.
⊓⊔

4 Decidability of General Information Flow

Definition 6 A system iswithout (sequential) information flowif it is without
information flow for every (sequential) property.

In the paper [4], such systems were characterized,i.e. necessary and sufficient
conditions were given to ensure the absence of such information flow. Wewill
show in this section that it is possible to decide whether a system is without
(sequential) information flow when the considered system is a Markov chain
with labelled edges.
The plan of this section is as follows:

– we first recall some definitions and notations necessary to state the criteria,
– then we recall the theorems from [4],
– and we conclude by proving that all these criteria are decidable for the mod-

els considered

In the following, low level actions are denoteda, b, ..., sequences of low-level
actionsu, v, ..., sequences of high-level actionsα, β, ... and tracesλ, λ′, ....

LetS = (E, H, L,Tr , µ) be a system,T be the associated probabilistic tree
andPref (Tr) denote the set of finite prefixes of traces ofTr We define:
Hn(Tr) = {(α1, ..., αn) ∈ (H∗)n | ∃ a1, ..., an ∈ L α1a1...αnan ∈ Pref (Tr)}.
Ln(Tr) = {(a1, ..., an) ∈ Ln | ∃ α1, . . . , αn ∈ H∗ α1a1...αnan ∈ Pref (Tr)}
Trn = {α1a1 . . . αnan ∈ Pref (Tr) | αi ∈ H∗, ai ∈ L}.

For the decidability proof given below, we need to introduce some technical
terms related to the probabilistic treeT .

We are interested in the set of sequences of high-level actions (including
the empty word) which can occur starting from a nodex. To make this set of
sequences more explicit we build for each such nodex a probabilistic treeTx in
the following way: we keep only the high edges reachable inT from x, and for
each nodey (includingx) accessible fromx by a high path with at least one low



edge starting fromy, we add a nodey′ and an edge(y, y′) labelled byε and with
a probability equal to the sump of the probabilities of low edges starting from
y in T . The treeTx is a probabilistic tree which has the following meaning: the
probability of a path inTx starting fromx labelled byα (without ε labels) is
exactly the probability that the sequence of high-level actionsα occurs fromx;
the probability of a path inTx starting fromx labelled byα and ending in a leaf
is the probability that fromx the sequence of actionsα followed by a low-level
action occurs.

A tuple (x, x′, y, y′) of nodes of the treeT is H, L-compatibleif there ex-
ist (α1, ..., αn), (β1, ..., βn) ∈ Hn(Tr), and(a1, ..., an), (b1, ..., bn) ∈ Ln(Tr)
such that the paths from the root tox, x′, y, y′ are labelled respectively by
α1a1...αnan, α1b1...αnbn, β1a1...βnan andβ1b1...βnbn.

Letp1, ..., pn, q1, ..., qn be the probabilities of edges labelled bya1, ..., an on
the path from the root tox (resp.y). Letp′1, ..., p

′
n, q′1, ..., q

′
n be the probabilities

of edges labelled byb1, ..., bn on the path from the root tox′ (resp.y′).
An H, L-compatible tuple(x, x′, y, y′) is perfectif for every i = 1, ..., n we

havepi/qi = p′i/q′i.

Let us now rephrase theorems from [4].

Theorem 2 A probabilistic system such thatTr 6⊂ Hω is

1. without information flow iff its projection onL is reduced to a single trace.
2. without sequential information flow iff

(1) ∀n > 0 Trn = Hn(Tr) ⊗ Ln(Tr).
(2a) EveryH, L-compatible tuple(x, x′, y, y′) of the treeT is perfect and
(2b) the probabilistic treesTx (resp.Ty) andTx′ (resp.Ty′) are isomorphic.
(3) For everyn > 0 (Ln(Tr) 6= ∅ → PrS(Tr ∩ (H∗L)n−1Hω) = 0).

We can now state our decidability result:

Theorem 3 It is possible to decide whether a system has (sequential) informa-
tion flow or not.

Proof: Due to the page limitation, the full proof of this theorem is given in
appendix B. Here are the main ideas.

First for non sequential information flow the criterion is clearly decidable.
For point (1) of sequential information flow we compute the Muller automata
corresponding to∪n∈NTrn and∪n∈N(Hn(Tr)⊗Ln(Tr)). Checking the equal-
ity of the two languages is decidable.
For point (2) we compute an automaton whose states are the quadruples ofH, L-
compatible states (states corresponding to someH, L-compatible nodes) and
verify on the fly that the ratio on probabilities are preserved, and that the corre-
sponding probabilistic trees are isomorphic.



For point (3) we compute ergodic sets containing only high-level actions and,
if one exists, reason on the number of low-level actions necessary to reach this
ergodic set. ⊓⊔

Here is an example of system without sequential information flow. In par-
ticular the ratio of probabilities of eventsl1 and l2 from state 2 to state 4 and
from state 3 to state 5 is the same.

1

2 3

4 5

h, 3/4 h′, 1/4

l1, 1/4 l2, 1/2 l1, 1/3 l2, 2/3

h, 1/3

h, 1/4

h′, 1/2

l, 2/3 l, 1/2

Fig. 1.A Markov chain without sequential information flow.

5 An example of application

Let us consider the problem of information flow for concurrent programs. The
question is whether observing some values for its low variables we can conclude
anything about high ones.

Consider the following multi-threaded programO inspired by [16]:
• Threadα: • Threadβ:

h0 := h1; h0 := h2;
l0 := 1; l1 := 1;

The low variables arel0, l1 initially equal to zero,h0, h1, h2 are high vari-
ables. The content ofh1 andh2 are different. Suppose that the two threads are
scheduled probabilistically, with equal probabilities at each step for each thread
to be run. The corresponding Markov chain is given in figure 1.

Each state contains the current state of threads (i.e. the set of instructions
still to execute). Fori = 1, 2, the labelhi means that the instructionh1 := hi is
executed, and the labelli corresponds to the execution ofli := 1. The actions of
threadα (resp.β) correspond to the left (resp. right) edges.

For example state 5 corresponds to (α : l0 := 1; β : l1 := 1;) and state 6
corresponds to (α : h0 := h1; l0 := 1;).

Suppose we are interested in the value ofh0 at the end of the program,
more precisely in the propertyP : h0 = h1 after the execution ofO. We can
representP as the language(L ∪ H∪ ⊥)∗h1(L∪ ⊥)∗ ⊥ω. Indeed this regular
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h1 h2

l0 h2 h1 l1

h2 l0 l1 h1

l1 l0

⊥

⊥

⊥ ⊥

⊥

⊥

Fig. 2.The Markov chain associated to the program (each edge has a probability1/2).

expression says that the last update ofh0 is h0 := h1. Notice that this property
is sequential.

Clearly the probability ofP is 1/2. But if we observe the low level, we have
Pr(P | l0) = 1/4. Thus the program has information flow for propertyP . In
this particular case it means that, seeing the order in which low level variables
are assigned, the low level user can gain (probabilistic) information on the order
in which high level variables are assigned.

6 Conclusion and further work

This paper presents two decidability results for information flow when the sys-
tem is a Markov chain with labelled edges and properties are regular. Firstwe
show that it is decidable whether a system has information flow for a specific
regular property. Then we consider the decidability of absence of information
flow for a class of properties and prove that the criteria given in [4] to ensure that
the system has no information flow for two classes of properties, are decidable.

As it was noticed in the introduction, very few papers are devoted to al-
gorithmic questions related to information flow. To our knowledge, our results
are the first decidability ones for a probabilistic and parameterized model. This
opens a way to quantitative evaluation of information flow.

Interesting open questions include: (1) computing quantitative estimations
of information flow, (2) generalizing our algorithms to more expressive for-
malisms of system/property descriptions and (3) implementing and experimen-
tal testing of our algorithms in some applied domain.
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A Proof of Theorem 1

To prove the result, we state the problem in terms of matrices. We want the
probabilityPrS(P |B(u)) to be a constant (not dependant onu). In other words
we want to exhibit some constantc such thatPr(P∩B(u))

Pr(B(u)) = c for everyu, which
is equivalent to:

Pr(P ∩ B(u)) = c × Pr(B(u)). (1)

The systemS is described as a Markov chain with labelled edgesA = (Σ, s0, A, T )
andP is described as a deterministic Muller automatonM = (Q, A, q0, ∆,F).
W.l.o.g., we can assume thatM is complete. We build a Markov chain with
labelled edgesA′ which is the synchronized productA×M = (Σ′, s′0, A, T ′)
defined by:

– S′ = S × Q,
– s′0 = (s0, q0),
– the set of actions is the same:A,
– T ′ is defined asT ′((s, q), a, (s1, q1)) = p if T (s, a, s1) = p and(q, a, q1) is

a transition in∆,

For a subsetR of S × Q, we denote its projection onQ by Π2(R).
LetF ′ = {R ⊂ S × Q| Π2(R) ∈ F}.
In order to computePr(P∩B(u)) for a fixed wordu = l1l2...ln, we decom-

pose each tracew ∈ P ∩ B(u) asw = w1w2 wherew1 ∈ H∗l1H
∗l2...H

∗ln.
Thus we can write:

P ∩ B(u) =
⋃

(s,q)∈S×Q

B(u)(s,q)P(s,q) (2)

whereB(u)(s,q) is the set of wordsw1 ∈ H∗l1H
∗l2...H

∗ln which have a run
in A′ from s′0 to (s, q), andP(s,q) is the set of wordsw2 which have a run inA′

with a projectionΠ2 of its set of infinitely repeated states belonging toF ′.
Let Ml be the matrix which contains in rows′ ∈ S′ and columnt′ ∈ S′ the

probability to reacht′ from s′ reading a word inH∗l. The setH∗l being regular,
this matrix is computable [2]. We defineMu = Ml1 × ... × Mln which gives
the probability inA′ from each state to reach any other state after a sequence of
actions inH∗l1H

∗l2...H
∗ln.

Let us recall what are the ergodic sets of a Markov chain. From the theory of
Markov chains, it is known that the ergodic sets play a crucial role. Consider the
underlying graph of the Markov chain. An ergodic set is a strongly connected
component of the graph from which one cannot go out. The probability to reach
an ergodic set from a given state is equal to 1 [9].



Let J be the vector which contains in the rowt′ the probability fromt′

to reach an ergodic set which belongs toF ′. The vectorJ is rational and is
computable from a result of [3]. From (2) we have:

Pr(P ∩ B(u)) = tI0 × Mu × J. (3)

HereI0 is the column vector corresponding to the initial distribution (probability
1 for s′0, 0 for every other state).

The equality (1) can be formulated in terms of matrices as:
tI0 × Mu × J = c × tI0 × Mu × I. (4)

Herec is a constant (a rational value) andI is the vector with all components
equal to 1. A factorisation of the previous formula gives:

tI0 × Mu × (J − cI) = 0 (5)

and we need to prove that for every low level wordu.
First the constantc can be easily obtained: foru = ε, we gettI0×(J−cI) =

0. The constantc has to be equal to the coefficient ofJ corresponding tos′0.
To every wordu = l0l1....ln ∈ L∗ is associated the matrixMu = Ml0 ×

... × Mln . Let us denote bytVu the producttI0 × Mu.
For every such wordu we get aVu. We callW the linear hull of theseVu.

We then prove the following claim:
Claim The system has no information flow for the propertyP if and only if the
linear hull W is orthogonal to the vectorVcheck = J − cI.

Since the hull contains all the vectorsVu then if W is orthogonal toVcheck

we are sure that equation (5) is satisfied for everyu ∈ L∗ and that the system has
no information flow. Conversely, if the system has no information flow, equation
(5) is satisfied for everyu ∈ L∗ and consequently for every linear combination
of suchVu’s, i.e. for every vector inW .

To prove the theorem, we only need to show that the hullW is computable.
Let {l1, ..., lk} be the letters of the finite alphabetL. Let W1 be the hull gener-
ated by the set of vectors{I0 = Vε, Vl1 , ..., Vlk}. From this set we only keep a
subset{V1, ..., Vm1

} which is a basis ofW1. Consider the productstVjMli , we
get a set ofm1 × k vectorstV ′

j . If the hull W2 of theV s andV ′s has the same
dimension asW1 then we are done. If not, we take some of the newV ′

j to com-
plete our basis:{V1, ..., Vm1

, ..., Vm2
}. We repeat this operation as long as we

add new vectors to our basis. As soon as we getWi+1 = Wi for somei, it means
that tWi is stable under application of any of the matricesMl1 , ..., Mlk and we
have obtainedW . Since the dimension ofW cannot be greater than the number
of states in the system, the spaceW is computable (we iterate our process at
most |S′| times). This concludes our proof of the decidability of information
flow for a given property (Theorem 1).



B Proof of Theorem 3

Proof: Whereas it is obvious to prove that the criterion for the absence of infor-
mation flow is decidable, we will now give a sketch of the proof of decidability
for for the absence of sequential information flow.

We consider the underlying graph of the Markov chainA representing the
system.

Property (1) is decidable:
Let us consider the underlying automaton of the Markov chainA. First we

build an automatonA′ from A by adding a stateqf and, for every transition
(q, l, q′) (with l ∈ L), a new transition(q, l, qf ). The language recognized by
this automatonA′ with qf as a final state is exactly

⋃
n>0 Trn.

We then construct a finite automatonB which recognizes
⋃

n>0 Hn(Tr) ⊗
Ln(Tr) as follows. LetAL be a deterministic finite automaton which recog-
nizes

⋃
n>0 Ln (computable fromA by abstracting away the high level actions

and considering all states terminal) and letQ1 be its set of states. The set of
states ofB is Q×Q1 ∪ {qF }, its initial state is the pair of initial states inQ and
Q1 and its final state isqF . Transitions ofB are:

– ((q, q1), h, (q′, q1)) if there is a transition(q, h, q′) in A andh ∈ H
– ((q, q1), l, (q

′, q′1)) if there is a transition(q, l′, q′) in A and a transition
(q1, l, q

′
1) in A1 with l, l′ ∈ L,

– ((q, q1), l, qF ) if there is a transition(q, l′, q′) in A and a transition(q1, l, q
′
1)

in A1 with l, l′ ∈ L.

It is easy to prove that the language recognized byB is
⋃

n>0 Hn(Tr) ⊗
Ln(Tr). On the other hand we can decide whetherB andA′ recognize the same
language which is equivalent to property (1).

Property (2) is decidable:
A H, L-compatible tuple is defined by four words in someTrn:
α1l1...αnln, β1l1...βnln, ; α1l

′
1...αnl′n, β1l

′
1...β

′
nl′n.

Consider the four paths inA from the initial state with these four labels, and
let

qi
li
7−→
pi q′i, ri

li
7−→
p′i

r′i, qi
1

l′
i

7−→
pi

1

q′i1 , ri
1

l′
i

7−→
p′i
1

r′i1 the four transitions with labelli
andl′i respectively.

We have to verify thatpi/p′i = pi
1/p′i1 for i = 1, .., n, for everyn > 0.

It is easy to compute the set of tuples(qi, ri, qi
1, r

i
1). Indeed, we build the

finite automatonC whose set of states isQ4 ∪ Q̄4 whereQ̄ is a copy of Q.
Transitions are:

– (q, r, q1, r1) −→ (q̄′, r̄′, q̄′1, r̄
′
1) if there existsα, β ∈ H∗ such that

q
α

7−→ q′, r
β

7−→ r′, q1
α

7−→ q′1, r1
β

7−→ r′1,



– (q̄, r̄, q̄1, r̄1) −→ (q′, r′, q′1, r
′
1) if

q
l

7−→ q′, r
l

7−→ r′, q1
l′

7−→ q′1, r1
l′

7−→ r′1 in A.

The initial state is(q0, q0, q0, q0) whereq0 is the initial state ofA, and we
keep only the reachable states from the initial state. Let us observe that the
transitions are computable. Indeed, for each(q, q′), (q1, q

′
1) let R andR1 be the

regular sets of words inH∗ which are labels of paths fromq to q′ and fromq1

to q′1 respectively. On can compute whetherR ∩ R1 6= ∅ and it is what we need
to build the transitions ofC.

Property (2a) is satisfied iff for every transition(q̄, r̄, q̄1, r̄1) −→ (q′, r′, q′1, r
′
1)

in C we havep/p′ = p1/p′1 for each(l, l′) such that:

q
l

7−→
p

q′, r
l

7−→
p′

r′, q1
l′

7−→
p1

q′1, r1

l′
7−→
p′
1

r′1 in A.

In order to prove property (2b) we have to build for each stateq in the
Markov chainA a new Markov chainAq in the following way: we keep only the
high edges reachable inA from q, and for each states (includingq) accessible
from q by a high path with at least one low edge starting froms, we add a state
s′, an edge(s, s′) labelled byε and with a probability equal to the sump of
the probabilities of low edges starting froms in A, and a loop ins′ labelled by
ε and with a probability 1. Clearly, property (2b) is satisfied iff for every state
(q, r, q1, r1) in the automatonC described above, reachable from the initial state
by a path of positive length, the Markov chainsA∐ andA∐∞

taking as initial
state respectivelyq andq1 are isomorphic.

Property (3) can be decided looking for the ergodic sets containing only
transitions labelled with events fromH. If there is none then for eachn > 0,
PrS(Tr ∩ (H∗L)nHω) = 0 and (3) is satisfied. If there is at least one such
ergodic set, we take a path leading to one of these sets, and calln the number
of low level events in this path. Then either almost all paths have exactlyn low
level events, and in that casePrS(Tr ∩ (H∗L)nHω) = 1 and (3) is satisfied or
there is:

– either a path leading to one such ergodic set withp < n low level events
in this path. In this last case we have(Lp+1(Tr) 6= ∅ and PrS(Tr ∩
(H∗L)pHω) 6= 0,

– or a path with strictly more thann low level events in which case(Ln+1(Tr) 6=
∅ andPrS(Tr ∩ (H∗L)nHω) 6= 0.

In both cases (3) is violated.
We have thus proved that all four criteria are decidable, which concludes the
proof.


