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Abstract

Hromkovic̆ et al. showed how to transform a regular expression of size n into
an ε-free nondeterministic finite automaton (which defines the same language as the
expression) with O(n) states and O(n log2(n)) transitions. They also established a
lower bound Ω(n log(n)) on the number of transitions. We improve the lower bound
to Ω( n log2 n

log log n).
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1 Introduction

There are several equivalent definitions of regular languages, out of which we will consider
two classical ones. One way is to use regular expressions, the second one is to use finite
automata. It is well known that for each automaton there is a regular expression which
defines the same language as recognized by the given automaton. The converse assertion is
true, too. We are interested in the problem: how small can be an automaton corresponding to
a regular expression of size n. The size of automaton is defined as the number of transitions,
while the size of a regular expression is the number of symbols occurring in it. Computing
such automata is important, for example, for intersection or membership tests. In this paper
we consider nondeterministic finite automata without ε-transitions (ε-free NFA for short).

A well-known method for constructing ε-free NFA from regular expressions is based on
position automata (Glushkov automata). This classical construction yields NFA of quadratic
size (see [1]). A substantial improvement on this construction was achieved in [3] where a
nondeterministic version of the position automata construction was shown to yield ε-free
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NFA with O(n log2(n)) transitions. This is optimal up to a log n factor, as shown also in [3]
by proving the lower bound:

Ω(n log n). (1)

In this paper we improve the lower bound for the conversion of a regular expression of
size n into an ε-free NFA to Ω(n log2 n/ log log n). To obtain the new lower bound we use the
regular expression which has been introduced in [3] and then used by Hagenah and Muscholl
in [2], namely,

En = (a1 + ε)(a2 + ε) . . . (an + ε).

In [2] the authors introduced a special kind of graphs which we call universal graphs (the
definition is given in Section 2). Hagenah and Muscholl proved the following result ([2,
Lemma 6.1]):

The number of transitions in ε-free NFA which recognize the regular language defined by
En is greater than or equal to the number of edges in some n-universal graph.

The paper is organized as follows. In Section 2 we give the definition of universal graphs
(UG for short) and a graphical representation for them. In Section 3 we convert UG into
a special arrow structure and prove some properties of such structures. The main result
(a lower bound on the size of UG) is stated in Section 4 together with some necessary
constructions. The proof is completed in Section 5.

2 Universal graphs

For a positive integer n let Γn denote the class of directed graphs with n + 1 vertices having
the following properties:

1. the vertices are numbered by 0, 1, . . . , n;

2. the graph edges are marked by numbers 1, 2, . . . , n; let µ(e) denote the mark of the
edge e;

3. for every edge e the number of its start vertex α(e), the mark µ(e) and the number of
its end vertex ω(e) satisfy the inequalities

α(e) < µ(e) ≤ ω(e). (2)

A sequence of edges
e1, . . . , ek (3)

in a graph G from Γn is called an oriented route if

ω(e1) = α(e2), . . . , ω(ek−1) = α(ek). (4)

It follows from (2) and (4) that for every oriented route (3) the inequalities

1 ≤ m1 < . . . < mk ≤ n (5)
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hold where
m1 = µ(e1), . . . ,mk = µ(ek). (6)

A graph G from Γn is called n-universal, if for arbitrary numbers m1, . . . ,mk which satisfy
(5) there exists an oriented route (3) satisfying (6). A graph G is called universal if there
exists some n such that G is n-universal.

An example of an n-universal graph is given by the complete oriented graph Kn+1 in
which for every edge e we set µ(e) = ω(e). This graph has n(n+1)

2
edges. A different example

of 4-universal graph is presented on the picture below.
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Let λ(n) denote the minimal number of edges in a n-universal graph. First we will prove
that λ(n) = Ω(n log(n)), which was the basis for the known bound (1). Then we improve it.

We first introduce a graphical representation of universal graphs and some new defini-
tions.

Let G be a universal graph. Let us represent the vertices of the graph by points situated
on a horizontal line in the natural order. Now we draw all edges of G. By assumption all
of them go from left to right. We represent edges as oriented arcs that link corresponding
pairs of points on our line. We draw all edges above the line.

I I
I

I

Iu u u u ur r r r
0 1 2 n− 1 n

Let us introduce antivertices which will be numbered by 1, 2, . . . , n. The antivertex k
will be placed on the line between the (k − 1)-th and the k-th vertex.

Proposition 1 In our graphical representation for every edge e the antivertex µ(e) is situ-
ated under the arc representing the edge e.

Ir r r r r r rb b b bp p p p p p p p p p p p
0 1 2 α(e) ω(e) n− 1 n1 2 µ(e) n

e
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Proof: This statement follows directly from inequalities (2) and from the definition of
numbering of antivertices. �

We define now the notion of arrow structure (AS). An AS is an oriented graph with
n + 1 vertices and n antivertices situated on a line and numbered in the same way as in the
graphical representation of the UG. We also assume that every edge starts from an antivertex
and ends in a vertex. In the sequel, the word “edge” is related only to UG while for the
edges of AS we use the word “arrow”.

We call an arrow structure perfect (PAS) if it has the following property: for every pair
of antivertices A and B there exists a vertex X situated between them such that there are
arrows from A to X and from B to X.

3 Arrow structure associated with an universal graph

We associate an arrow structure with every universal graph. To this end, we replace every
edge e from the UG by two arrows starting from the antivertex µ(e) and ending in the start
vertex α(e) and in the end vertex ω(e) of the edge, respectively. If some identical arrows
appear during the construction, we consider them as a single one, i.e. we merge them.

Proposition 2 The arrow structure generated from an UG in this way is perfect.

Proof: Consider two arbitrary antivertices A1 and A2 (w.l.o.g. A1 < A2). Apply the basic
property of UG to these numbers. We get two edges e1 and e2 marked by A1 and A2 such
that the end of the first edge coincides with the start vertex of the second one. Let X
denote this start-end vertex. Then, by the construction of the AS, there are arrows from the
antivertices A1 and A2 to the vertex X:

r r rc c
A1 X A2

e1 e2

J I IJ

I I

�

Theorem 1 In every PAS with n vertices there exist Ω(n log n) arrows.

Proof: Let f(n) denote the minimal number of arrows in a PAS with n vertices. Let us
prove the following inequality:

f(2n + 2) ≥ 2f(n) + n. (7)

Consider an arbitrary PAS F with 2n + 2 vertices. Notice that the AS (we call it F1) which
consists of the (n + 1) first vertices and of the n first antivertices (i.e. vertices with numbers
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0, . . . , n and antivertices with numbers 1, . . . , n) is perfect in its own. Indeed, it is sufficient
to apply the basic property of the initial PAS F to every pair of antivertices of F1 and we
obtain the basic property of PAS for F1. Similarly, the AS F2 which consists of the last
(n + 1) vertices and the last n antivertices (i.e. vertices with numbers n + 2, . . . , 2n + 2 and
the antivertices with numbers n + 3, . . . , 2n + 2) is perfect. We call internal every arrow
which is entirely situated inside one of arrow structures F1 or F2. We call external every
arrow which is not an internal one. By the definition of the function f , there are at least
f(n) arrows in each of the structures F1 and F2.

Moreover, one of the following alternatives must hold:

• either for every antivertex in F1 there exists an external arrow starting from it,

• or for every antivertex in F2 there exists an external arrow starting from it.

To see this, suppose the contrary, i.e. that there is some antivertex A1 in F1, from which no
external arrows start and some antivertex A2 in F2 with the same property. In this case the
basic condition of PAS would not hold for A1 and A2.

I I

G1 G2

r r r r r r rc c c c c c
A1 A20 2n + 2n n + 2

A1 A2

Therefore, either for every antivertex in F1 there is an external arrow starting from it, or
for every antivertex in F2 there is an external arrow starting from it. In any case, F contains
at least 2f(n) internal arrows and at least n external ones (since both of F1 and F2 contain
n antivertices). The inequality (7) is thus proved.

We omit the standard inference of Proposition 3 from the inequality (7). �

Corollary The minimal number of edges in UG is Ω(n log n), since we constructed two
arrows from every edge and, eventually, merged some of them. Therefore, the number of
edges in UG is at least as large as the half of number of arrows in the associated PAS.

Remark: The lower bound from Theorem 1 is optimal up to a numerical factor, namely, it
can be proved that f(n) = O(n log n).

4 Main result and auxiliary constructions

We aim to prove the following inequality which is the main result of the paper:
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Theorem 2

λ(N) ≥ c N ln2 N

ln ln N
(8)

with the constant c = 0.014.

It is sufficient to consider only the case N > 50, since for N ≤ 50 we have

λ(N) ≥ N ≥ 0.08 N ln2 N

ln ln N
.

4.1 Some notation and constructions

We use the principle reductio ad absurdum and consider an UG G with the minimal number
of vertices such that its number of edges does not satisfy inequality (8). By the above remark
N > 50. Let G have 2n + 3 vertices (the case of even number of vertices can be considered
similarly). Let us construct again the perfect arrow structure F from our universal graph
and select the AS F1 and F2 in it by proceeding as in the proof of Theorem 1. Consider also
the graph G1 which consists of the first (n+1) vertices of graph G and of the edges between
them, and the graph G2 which consists of the last (n+1) vertices. There is one more vertex
number n + 1 between these graphs.

Proposition 3 The graphs G1 and G2 are universal.

Proof: We check the condition of universality for G1 (one can consider G2 similarly1).
Consider a sequence 1 ≤ m1 < · · · < mk ≤ n. We append to this sequence an element
mk+1 = n+1 and apply to the extended sequence the condition of universality of G. Indeed,
the first k edges of the obtained route provide the desired route for G1. In fact, the edge
with mark mk ends up in the vertex from which the edge with mark n + 1 starts, i.e. in the
vertex with number not larger than n. Therefore, these first k edges are situated entirely in
G1. �

We call internal the edges of graph G that belong either to G1 or to G2. All other edges
are called external. Internal and external arrows are defined as in the previous section.

We aim now to show that the number of external edges in G is at least c1N ln N
ln ln N

where
N + 1 = 2n + 3 is the number of vertices in G with c1 = 0.025.

Definition: Consider an external edge starting from a vertex in G1 and marked by
X ∈ [1..n]. While replacing it with two arrows, we add one left arrow which is internal for
F1 and call it short, and one external arrow which we call long.

1Strictly speaking, G2 becomes universal only after the subtraction of n+2 from all numbers of its vertices
and from the marks of its edges.
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Short and long arrows for F2 are defined similarly.

Proposition 4 If one deletes all left arrows except the short ones from F1 and all right
arrows except the short ones from F2, then either the resulting AS F ′

1 will be still perfect or
F ′

2 will be perfect.

Proof: We show the claim by contradiction. Assume that the condition of perfectness is
not verified for F ′

1 for some antivertices with numbers A and B, and for some antivertices C
and D in F ′

2 (without loss of generality A < B < C < D). Consider the route which consists
of the four edges with marks A, B, C, and D. Such a route exists, since G is universal.
But then either the edge with mark B is not internal for G1, or the edge with mark C is
not internal for G2. Again without loss of generality we assume that the first of the two
statements holds. Then the arrows constructed from the edges with marks A and B provide
the condition of perfectness for AS F1 for the antivertices A and B because the left arrow
from B is short, since the edge with mark B is external for G1. We arrive at a contradiction
with the definition of the antivertices A and B. �

In the sequel, we may and will assume that it is the AS F ′
1 that is perfect.

A short digression. We have already proved that the number of arrows in PAS is Ω(n ln n).
If the similar bound would be true for the number of arrows going only in one direction, we
could apply it to F ′

1 and would obtain the lower bound Ω(n log n) on the number of short
arrows, hence for the number of external edges in G, since each short arrow corresponds to its
own external edge. Therefore, we would obtain the equality λ(2n + 2) = 2λ(n) + Ω(n log n),
which immediately yields λ(n) = Ω(n ln2 n). Unfortunately, the desired bound on the number
of arrows going in one direction in PAS is not true.

4.2 Constructing the arrow structure H

We construct a new arrow structure H. We start from the PAS F ′
1, as defined in Proposition

4. Let us define an integer j by the formula

j =

⌈
16cN ln2 N

n ln ln N

⌉
.
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Since the total number of edges in the UG G is by assumption less than cN ln2 N
ln ln N

, the number
of antivertices of degree higher than j/2 in F ′

1 does not exceed

2cN ln2 N

(j/2) ln ln N
≤ n

4
.

We delete from F ′
1 all antivertices of degree higher than j/2. We also delete all arrows

starting from deleted antivertices. After that, we merge those vertices between which no
antivertices remain, and those arrows which duplicate each other.

The resulting AS (let us denote it H) will contain at least 3n/4 antivertices. Indeed,
there were n antivertices in F ′

1, while not more than n/4 of them were deleted. Notice also
that the degrees of all antivertices in H do not exceed j/2, since the degrees of antivertices
do not increase during the construction.

Proposition 5 The arrow structure H is perfect.

Proof: Consider two arbitrary antivertices in H. Both were antivertices in F ′
1, and there

was a vertex X between them such that there were arrows from those antivertices to X.
What could break down? The antivertices remained on their places, yet the vertex X could
merge with some other(s). But it means that we should consider as a new X the vertex
obtained by merging from the former X. Therefore, the perfectness condition of AS does
not suffer during this construction process. �

4.3 A lower bound on the number of left arrows in H

Proposition 6 If n > 24, then the number of left arrows in H is at least c1N(ln N)
ln ln N

, where
c1 = 0.025.

Proof:
Let m denote the number of antivertices in H. Let k =

⌊
logj+1 m

⌋
. Then there exist

integers q and r such that

m = q(j + 1)k + r, 1 ≤ q ≤ j, r < (j + 1)k.

Forget about the last r antivertices. We split the remaining antivertices of H in q groups of
“zero level”, with (j + 1)k antivertices in each group. In each of these groups we perform
the following splitting: for every 1 ≤ s ≤ k we split the antivertices of the zero level group
in (j + 1)s groups of “s-th level” with (j + 1)k−s antivertices in each group. We add to each
group for each antivertex its left neighboring vertex. We say that a left arrow is of s-th order
if its start vertex and the end vertex are situated in the same group of the (s − 1)-th level
but in different groups of the s-th level.

Let us consider a group of level s and forget for a while about the other groups. Consider
the leftmost antivertex A in it. There are at most j/2 right arrows starting from A (since by
the construction of H the degree of each antivertex does not exceed j/2). We call a group
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of level s + 1 a good one, if it is not the leftmost one (i.e. it does not contain the antivertex
A) and if there is no arrow going from A to vertices of this group. Obviously, among the
j + 1 groups of the level s + 1 we have at least j/2 good ones. By applying the definition of
PAS (recall that H is PAS) for all pairs of antivertices 〈A, B〉 (where B is an antivertex of
a good group), we obtain that for every antivertex of each good group of level s + 1 there is
at least one left arrow going from this antivertex to some vertex of another group. It follows
that in each group of order s there are at least (j/2)(j + 1)k−s−1 arrows of order s + 1.

Thus there are q groups of level 0, q(j + 1) groups of level 1 and, in general, q(j + 1)s

groups of level s. By summing up the obtained estimates over all groups and over arrows of
all orders, and using the inequality m ≥ 3n/4, we obtain that the number of left arrows in
H is at least

q((j/2)(j + 1)k−1) + (q(j + 1))((j/2)(j + 1)k−2) + · · ·+ (q(j + 1)k−1)(j/2) =

kq(j + 1)k−1(j/2) =
kj

2(j + 1)
q(j + 1)k ≥

kj

2(j + 1)

m

2
≥ kj

2(j + 1)

3n

8
=

3kjn

16(j + 1)
.

Plugging in here the estimate

k =

⌊
ln(m)

ln(j + 1)

⌋
≥

⌊
ln(3n/4)

ln(j + 1)

⌋
,

we find that the number of left arrows in H is at least

Z(n) =
3
⌊

ln(3n/4)
ln(j+1)

⌋
jn

16(j + 1)
.

It is not too difficult to show that for all n ≥ 24 it holds

Z(n) ln ln N

N ln N
≥ 0.025 .

�

5 Proof of the main theorem

Since both G1 and G2 are universal graphs, the number of internal edges in G is at least
2c n ln2 n

ln ln n
. The number of external edges in G is greater than or equal to the number of short

arrows in F . Hence, it is greater than or equal to the number of short arrows in F1. The latter
value is, in its turn, equal to the number of left arrows in F ′

1 (by the rule of its construction)
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which is greater than or equal to the number of left arrows in H. By Proposition 6, this is
at least c1N(ln N)

ln ln N
. Therefore we get for the number of edges in G the lower bound

2c n ln2 n

ln ln n
+

c1N ln N

ln ln N
≥ 2c n ln2 n + c1N ln N

ln ln N
.

On the other hand, by assumption, the number of edges in G does not exceed c N ln2 N
ln ln N

. Hence,

2c n ln2 n + c1N ln N ≤ c N ln2 N.

Using the definition N = 2(n + 1) and letting c2 = c1
c
≈ 1.78, we rewrite the obtained

inequality in the form
n

n + 1
ln2 n + c2 ln N ≤ ln2 N.

Notice that

ln2 N − c2 ln N ≤ ln2(n + 1) + (2 ln 2− c2) ln(n + 1)

≤ (ln n +
1

n
)2 + (2 ln 2− c2) ln(n + 1).

By joining these two inequalities, we obtain

(c2 − 2 ln 2) ln(n + 1) ≤ ln2 n

n + 1
+

2 ln n

n
+

1

n2
.

However, for n ≥ 24 the opposite inequality holds. Therefore, the graph G cannot serve as
counterexample to (8). �
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