
Guaranteed Slowdown, Generalized
Encryption Scheme, and Function Sharing

Yury Lifshits∗

July 10, 2005

Abstract

The goal of the paper is to construct mathematical abstractions of dif-
ferent aspects of real life software protection. We introduce three follow-
ing notions: program slowdown, generalized encryption scheme and function
sharing. These schemes allowed to discover new applications of such known
ideas as trap-door functions and self-correcting programs.

1 Introduction

Software protection is very active research area now. It involves both prac-
tical approaches and theoretical investigation. In contrast to cryptography
there is a lack of strict models for almost all aspects of program protection.
In this paper we consider three notions motivated various intuitive protection
ideas. We give a series of definitions examples and open questions around
them.

There are a lot of practical tools, but the level of protection provided
by them is unclear. In many cases we require an evidence that program is
protected. So the main problem is to construct a proof of security. As soon
as you start think about proof you immediately ask for formal model and
definition of security.

In 2001 the general formal model for program protection (namely, black-
box security) [2] was presented. However there are only few positive results

∗This work is supported by grants NSh-2203.2003.1 and INTAS-???

1

[14, 9] in this framework. An informal conclusion of this study is that threats
are different and in each case you need specific protection. Hence we ask for
new formal models describing program protection and attacks on programs.

Our new approaches are the following.
First idea is guaranteed slowdown scheme. Guaranteed slowdown is a

slow version of some algorithm which is difficult to speed up to the original
level. One application is slowdown of encryption algorithms in public key
cryptosystems. It helps against brute force attacks. In this work we introduce
two examples of slowdown transformation. We show that idea of guaranteed
slowdown is closely related to trap-door functions. The most interesting open
question is how to get a formal proof that slowdown is difficult to reverse.

Second protection method we study is generalized encryption scheme
(GES). This notion was already presented in work of Abadi et al. [1]. The
problem is the following: how to use untrusted computational resource with
information-theoretic security of your own data? Here we present one new
example of such a scheme and discuss utilization of this notion in software
protection. The main result of Abadi et al. [1] is that GES is impossible for
NP-complete problems. Still it is very perspective to find such schemes for
polynomial tasks.

Third notion is function sharing. This is a natural generalization of secret
sharing schemes. The question is how to divide a computational task among
several parties in the way such that subgroups can’t say anything about the
original task. This scheme are interesting for protecting mobile agents from
malicious hosts [6, 8] development and as a basic block for new obfuscat-
ing transformations [5]. We present here a scheme for function sharing in
the most simple model. For several additional restrictions existence of such
schemes remains an open question.

Next three sections devoted to these models. For each of them we in-
troduce some motivation, several examples, then formalization and conclude
with related work and open questions.

2 Guaranteed slowdown

Informally, guaranteed slowdown is a pair of programs P1 and P2 with three
following properties: P1 and P2 are functionally equivalent, P1 is faster than
P2, and there is some “evidence” that given only source code of P2 to con-
struct a functionally equivalent program comparable (in speed) with P1 is

2

difficult.
The task of slowdown seems quite unusual so we need to explain our

motivation. There are four points here:

A Author of some program can distribute it in the slow version in order
to protect his copyright. To prove the authorship of his code he (and
only he) can show speedup version of the program.

B We now explain how slowdown of encryption algorithm might be use-
ful against brute force attacks on public key cryptosystem. Let Bob
is sending message to Alice. Then to obtain the maximum level of se-
curity they choose the largest length of the key such that decryption
and encryption algorithms are still feasible. Consider the case when de-
cryption (using this long key) requires full resources from Alice while
Bob has some reserve of computational power during encryption. In
such circumstances instead of public key we can distribute slowdown
version of encryption algorithm. Thus Bob still can encrypt what he
want but any brute force attack that uses a lot of encryptions becomes
harder.

C It is popular to bound some functionalities in the trial versions of soft-
ware. We can apply guaranteed slowdown scheme to obtain provable
crack resistance for trial version. If we use slow version as a trial one,
then by our informal definition recovering of original speed for the pro-
gram is difficult.

D We can divide all attacks on a program in the two classes: understand-
ing (gaining knowledge) and modification. When we distribute a slow
version program a potential attack is a speedup transformation. Hence
guaranteed slowdown scheme is a partial case of modification protec-
tion. Therefore there is a hope to extend some ideas of slowdown
scheme to protection against other modification threats.

We start with two examples of slowdown.

Example 1. Consider a function f(x) = xa mod N , where N is a pro-
duction of two prime numbers as in RSA cryptosystem. We can slow down
computation of f in the following way. We keep a in secret but announce
b = a + kϕ(N) for some integer k instead. By Euler’s theorem xa ≡ xb(
mod N). To proof that g(x) = xb mod N is guaranteed slowdown for f we

3

should check to things: a) g is slower than f and b) g is difficult to speed
up. We have only informal evidence for this statements. Firstly, b > a and,
moreover, we are free to choose k as large as we want; it seems very natural
that raising to the larger power requires more computation. Secondly, up to
now there is no known polynomial algorithms to compute ϕ(N) so we be-
lieve that given b to compute lesser degree c such that for any x the equality
xc ≡ xb(mod N) holds is also hard. However, we still need rigorous proofs
here.

Example 2. Take any trap-door function fk (see [7]). Knowing the secret
key k there is a polynomial algorithm A to compute f−1

k . As a slowdown
version of A we can take the following algorithm A′:

for y=1 to 2^n do

if f_k(y)=x then return y;

Let us discuss the idea of guaranteed slowdown. The first question to
answer is how to measure the speed of algorithm. On any particular input
we can achieve even a constant time for computation. Hence for the guaran-
teed slowdown definition speed should be an integral characteristic. We use
average speed but other approaches might be reliable as well.

Another point of discussion is whether to study slowdown for functions
defined on finite or infinite domains? Below we choose first answer (hence we
can speak about circuit slowdown). But slowdown for functions on infinite
domains also might be investigated. So the average speed of finite function
is just a number. If we will speak in terms of circuits than we would use
circuit size as a measure for speed.

We now give a slightly more formal description of our model. A pair of
algorithms Af (fast), As (slow) is called a guaranteed slowdown for function
f if both algorithms compute f , Af works on time t and given only As it is
“difficult” to construct an algorithm computing f faster than t1.

How can we prove difficulty of speed up? To have a complexity bound
we should specify a computational problem. That is a family of questions
and answers. The above description is a single slowdown scheme but secu-
rity proof might exist only for family of such schemes. The way out is the
following. We specify a family of functions F . Security proof should be a
statement like: given As for some f ∈ F it is difficult to construct a (fast)
algorithm computing f .

4

The notion of guaranteed slowdown is very close to the idea of trap-door
function. The common point is that in both cases we have pair of algorithms
and knowing only the public one it is difficult to get the secret algorithm. The
difference is that we do not require dramatic difference between efficiency of
algorithms in the pair. Another point is that in trap-door function scheme
there are three algorithms (straightforward computation, obvious slow inver-
sion and secret fast inversion) while in guaranteed slowdown there are only
two.

What are further questions about guaranteed slowdown? It might be
interesting to know:

• Whether it is possible to make any level slowdown? That is whether
for any function s there is a function f that could be slowdown from t
to s(t)?

• Whether it is possible to organize multilevel slowdown? We mean here a
series of algorithms A1, . . . , Ak computing f such that Ai is slower than
Ai+1 and knowing any Ai it is difficult to get an algorithm comparable
with Ai+1.

• How to prove that speed up is difficult?

• Function that is nonzero only on one input value is called point function.
It seems quite natural that such functions have slowdown schemes. The
question is to make a full study of guaranteed slowdown schemes for
point functions.

3 Generalized encryption schemes

In this section we investigate the following model [1]. There are two partic-
ipants, Alice and Bob. Alice has some computational task, that is function
f ∈ F and input x, Bob has nothing. Alice want to get a result f(x) faster
than just doing all computation by herself. Alice can communicate with Bob
and ask him to do some computation for her. We study only semihonest
model here that is Bob send back correct results. The main restriction is
information-theoretic security of x and f (Bob knows only that f ∈ F). In
contrast to [1] below we also consider generalized encryption scheme with
cryptographic security.

5

We present generalized encryption scheme for two functions. In these
examples f is not a secret, but x is.

Example 3. [1] Discrete logarithm. Let prime number p be fixed and g
be generator for Z∗

p . For every integer u such that (u, p) = 1 the value of
discrete logarithm function f(u) is the unique integer e ∈ [1, p− 1] for which
ge ≡ u mod p. Generalized encryption scheme for discrete log is as follows.
Alice send to Bob u′ = ugr (for random r), Bob send back discrete log e′ for
u′, and Alice get the answer e = e′− r. Value of ugr is uniformly distributed
on the set [1, p− 1], therefore Bob get no information about u. Discrete log
in usual computation is believed to be a hard problem.

Example 4. Inverse operation in a group. Here we present a schema that
could be applied for many functions. Let G be any group such that inversion
operation as at least twice harder than multiplication. Then there is a fully
encrypted computation scheme for inversion. Alice asks Bob to compute
inversion of rx, receives x−1r−1 and multiply result by r. So Alice uses two
multiplications instead of one inversion. Bob get no knowledge about x.
Multiplication group of matrices over the finite field is a natural candidate
for “inversion is twice harder than multiplication” property.

Use of auxiliary untrusted computational source arise in several practical
areas. First is market-based parallel computing. That is we “encrypt” our
hard computational tasks and (for money) ask outside computers to perform
it for us. Second relevant framework is mobile agents technology. We send
programs on others computers to make some task for us (usually depending
on that host’s inputs). Another property of mobile agents is their ability to
change the host from time to time. Third application field is development
of smart cards. Informally smart card sends some computational task to an
auxiliary computer and tries not to reveal any essential information about
computation. In all these cases we have two security aspects: to hide internal
information from outside host and to check whether it’s results are correct.
In our study we deal only with first one.

We now recall the definition of generalized encryption scheme. It is a two
party (Alice and Bob) protocol. Alice has a computational task that is x ∈ X
and f ∈ F . There are finite number of communication rounds between Alice
and Bob. In each round i Alice compute her massage ai based on her input,
all previous Bob answers and random coins and send ai to Bob. He compute
an answer based on all massages received from Alice to the moment. After

6

the last round Alice compute an f(x) based on all information she has. We
have two requirements: efficiency and security. Efficiency means that total
amount of computation performed by Alice should be less than that in the
case of straightforward computation (without Bob). There are two different
approaches two security. In the work [1] information-theoretic security is
used. This means that distribution of Alice messages should be the same for
all input values.

We now introduce cryptographic security for GES and discuss its relation
black-box security [2]. If distribution of Alice massages for different pairs
(x, f) are computational indistinguishable (see [7]), then we call GES to be
cryptographically secure. Consider any family of functions F defined on a
set of strings X. Let us fix some pseudorandom function G (again, see [7]).
Then for any string r and any seed k we call

f̃ = f(x XOR r) + Gk(x)

to be a prepared form of f .

Proposition 1. Suppose for every prepared form of every function from F
there exists an obfuscation with black-box security. Then there is a GES for
F with cryptographic security.

Proof. Our construction is straightforward. We choose randomly r and k and
send to Bob string (x XOR r) and obfuscated f̃ . Bob send back f̃(x XOR r)
and Alice subtract Gk(x XOR r) from it to obtain f(x).

To get a security property we should combine two facts. First is that
Gk is computationally indistinguishable with truly random function. Hence
f̃ is also indistinguishable with random function. Second point is that it is
computationally hard to get any knowledge besides input-output behavior
about function obfuscated with black-box security. Thus our GES is crypto-
graphically secure.

We know [2] that black-box secure obfuscation not possible for every
function. Still obfuscation even with smaller level of security leads to a
potentially applicable generalized encryption schemes.

We now recall models that are the most relevant to generalized encryp-
tion scheme. Secure function evaluation is a common computational task for
several parties each of which knows only part of data. The security require-
ment is not to reveal more information about input data than just output

7

value. Encrypted computation [12] is a two parties (Alice and Bob) task.
Alice has a function, Bob has an input value, Alice sends her function in en-
crypted form to Bob, he performs computation on his value and returns an
(encrypted) result back. Third problem is acceleration of raising to a power
in RSA cryptosystem [3, 10], which is, in fact, a particular case of generalized
encryption scheme with cryptographic security. Besides this models there is
another relevant notion. As we see in examples, basic idea is to ask Bob
to compute the same function but with different input. The same idea was
used in self-correctors [4]. The difference in our works is that we ask that
new input reveal no information about original one.

We conclude this section with two open problems:

• For which functions there exists a generalized encryption scheme with
cryptographic security?

• For which computational tasks there is essential polynomial speed up
with theoretic-informational security?

4 Function Sharing

Function sharing is a protocol for distributed computation satisfying some
security requirements. There are three parties, say Alice, Bob, and Carl.
Let family of functions F be fixed and known to everybody. We study the
following process of computing a function f ∈ F . Alice, Bob and Carl have
predefined secret functions Af , Bf , and Cf , respectively. Input x goes to
Alice and Bob, they compute their functions on it and send results Af (x)
and Bf (x) to Carl, Carl compute his function on these results and outputs
the value of f . Thus we have the decomposition formula

f(x) ≡ Cf (Af (x), Bf (x)).

The security requirement is that knowing only two of functions Af , Bf , and
Cf it is impossible to get any knowledge about f except that f belongs to
F .

Example 5. Let FN be the class of all functions f that there exists an
algorithm Algf computing it and that length of description of Algf is less
than N . Then there is a simple function sharing scheme for FN . We already
have a good developed theory of data secret sharing. Hence our idea is to

8

treat a function as a sort of data. So we write down a description string
S of an algorithm computing f . Than we generate a random string R of
the same length. We send R to left party, SXORR to the right one. They
wouldn’t compute anything and just resend x and their part of f coding to
Third party. Third party recover S end evaluate a universal circuit (universal
Turing machine) on S and x.

In program obfuscation [5] the idea of usual secret sharing is used in the
following obfuscating transformation: boolean variable v is splitted into two
x, y such that on any point in time v = xXORy. In the same way any function
sharing scheme will lead to a procedure splitting transformation. Notion of
function sharing is applicable wherever program is decomposed into several
parts. Now two such approaches are obfuscation on interpretation level [11]
and dividing mobile agent into set of agentlets [6]. Notice that in all these
applications function sharing will be useful mostly against static attacks.

It is a natural idea to decompose a secret into several parts such that
knowing only some of them does not help to recover this secret. When
the secret is a string of bits a lot of beautiful secret sharing schemes were
constructed since the seminal paper [13] was published. Function sharing
is an extension of that idea. There is another framework, namely minimal
model for secure computation [?], close to function sharing. The common is
three parties, result should be computed by third (Carl), inputs goes only
to first two (Alice and Bob). But these models have a significant difference.
Namely, in our case input circuit is a secret and data is not while in multiparty
communication complexity circuit is public, but data is a secret.

Now we present two modifications of our main task. One additional
requirement is to ask Cf be as simple as possible. Second is to restrict the
size of output of Af and Bf . More precisely an interesting questions are:

• For which function families it is possible to construct a function sharing
scheme with Cf equal to XOR?

• For which function families it is possible to construct a function sharing
scheme with output size of Af and Bf at most constantly larger then
output size of f?

9

5 Conclusion and future work

Theoretical research in the area of software protection goes in two ways:
investigation of existed models and introduction of new ones. We present
three frameworks: guaranteed slowdown, generalized encryption scheme and
function sharing. These models allow us to connect problems of program
protection with such good investigated notions as trap-door functions (for
guaranteed slowdown) and random self-reducibility for (generalized encryp-
tion scheme).

A series of new theoretical problems naturally arise in our study. Proba-
bly the most interesting are to find a large class of functions having general-
ized encryption schemes and to construct a formal proof of irreversibility of
slowdown transformation.

To define an adequate theoretical framework for software protection is
not easy. The main difficulty is pure understanding of what are protected
programs and what are threats. One of the unanswered question in modelling
is: how to define what is known to adversary and what is a secret in a
program. In cryptography there is a Kerckhoff law saying that an algorithm
is public and a key is a secret. In practice of software protection real secrets
have different nature.

The target of modelling is to get some theoretical result and bring it back
to practice. Here we introduce several ideas with potential for applications,
e.g. RSA encryption slowdown. Still for further theoretic investigation our
formalizations should be more rigorous.

6 Acknowledgements

I thank Peter Holgerson for idea of program slowdown.

References

[1] Mart́ın Abadi, Joan Feigenbaum, and Joe Kilian. On hiding information
from an oracle. J. Comput. Syst. Sci., 39(1):21–50, 1989.

[2] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of ob-
fuscating programs. In CRYPTO ’01: Proceedings of the 21st Annual

10

International Cryptology Conference on Advances in Cryptology, pages
1–18, London, UK, 2001. Springer-Verlag.

[3] Philippe Begiun and Jean-Jacques Quisquater. Fast server-aided rsa
signatures secure against active attacks. In CRYPTO ’95: Proceedings
of the 15th Annual International Cryptology Conference on Advances in
Cryptology, pages 57–69, London, UK, 1995. Springer-Verlag.

[4] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-
testing/correcting with applications to numerical problems. J. Comput.
Syst. Sci., 47(3):549–595, 1993.

[5] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy
of obfuscating transformations. Technical Report 148, Dept. Computer
Science, University of Auckland, July 09 1997.

[6] L. D’Anna, B. Matt, A. Reisse, T. Van Vleck, S. Schwab, and P. LeBlanc.
Self-protecting mobile agents obfuscation report. Technical Report 03-
015, Network Associates Labs, June 2003.

[7] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge
University Press, New York, NY, USA, 2000.

[8] Fritz Hohl. Time limited blackbox security: Protecting mobile agents
from malicious hosts. Lecture Notes in Computer Science, 1419:92–113,
1998.

[9] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and
techniques for obfuscation. In EUROCRYPT, pages 20–39, 2004.

[10] Tsutomu Matsumoto, Koki Kato, and Hideki Imai. Speeding up secret
computations with insecure auxiliary devices. In CRYPTO ’88: Proceed-
ings of the 8th Annual International Cryptology Conference on Advances
in Cryptology, pages 497–506, London, UK, 1990. Springer-Verlag.

[11] Akito Monden, Antoine Monsifrot, and Clark Thomborson. A frame-
work for obfuscated interpretation. In CRPIT ’04: Proceedings of the
second workshop on Australasian information security, Data Mining and
Web Intelligence, and Software Internationalisation, pages 7–16, Dar-
linghurst, Australia, 2004. Australian Computer Society, Inc.

11

[12] Tomas Sander and Christian F. Tschudin. On software protection via
function hiding. In Information Hiding, pages 111–123, 1998.

[13] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
1979.

[14] Nikolay P. Varnovsky and Vladimir A. Zakharov. On the possibility
of provably secure obfuscating programs. In Ershov Memorial Confer-
ence, volume 2890 of Lecture Notes in Computer Science, pages 91–102.
Springer, 2003.

12

