
Window Subsequence Problems

for Compressed Texts

Patrick Cégielski1, Irène Guessarian2, Yury Lifshits3

and Yuri Matiyasevich3

1Université Paris 12, cegielski@univ-paris12.fr

2LIAFA and Université Paris 6, ig@liafa.jassieu.fr

3Steklov Institute of Mathematics at St.Petersburg,
yura@logic.pdmi.ras.ru, yumat@pdmi.ras.ru

St.Petersburg
11/06/2006

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 1 / 22

Window Subsequence Matching

INPUT:

Text: C OM P U T E R S C I E N C E I N R U S S I A

Pattern: CES
Window size: 10

TASK: to find substrings of the length at most 10 in the text that
contains CES as a subsequence

OUTPUT:

C OM P U T E R S C I E N C E I N R U S S I A

Problem for this talk:

How given a COMPRESSED text to solve window subsequence
matching faster than just “unpack-and-search”?

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 2 / 22

Window Subsequence Matching

INPUT:

Text: C OM P U T E R S C I E N C E I N R U S S I A

Pattern: CES
Window size: 10

TASK: to find substrings of the length at most 10 in the text that
contains CES as a subsequence

OUTPUT:

C OM P U T E R S C I E N C E I N R U S S I A

Problem for this talk:

How given a COMPRESSED text to solve window subsequence
matching faster than just “unpack-and-search”?

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 2 / 22

Window Subsequence Matching

INPUT:

Text: C OM P U T E R S C I E N C E I N R U S S I A

Pattern: CES
Window size: 10

TASK: to find substrings of the length at most 10 in the text that
contains CES as a subsequence

OUTPUT:

C OM P U T E R S C I E N C E I N R U S S I A

Problem for this talk:

How given a COMPRESSED text to solve window subsequence
matching faster than just “unpack-and-search”?

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 2 / 22

Outline of the Talk

1 New topic in computer science: algorithms
for compressed texts

2 Our problem and our result

3 Sketch of the algorithm

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 3 / 22

Part I

What are compressed texts?

Can we do something interesting without
unpacking?

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 4 / 22

Straight-line Programs: Definition

Straight-line program (SLP) is a
Context-free grammar generating
exactly one string
Two types of productions:
Xi → a and Xi → XpXq

Example

abaababaabaab

X1 → b
X2 → a
X3 → X2X1

X4 → X3X2

X5 → X4X3

X6 → X5X4

X7 → X6X5

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 5 / 22

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 6 / 22

SLP = Compressed Text

Fact [Rytter, 2003]: given the archive of the text T compressed by
LZ78,LZW or some dictionary-based method of original length n and
the size of archive z we can in time O(z) convert it to SLP of size
O(z) generating the same text.

Fact [Rytter, 2003]: given the LZ77-compressed or
RLE-compressed text T of original length n and the size of archive z
we can in time O(z log n) convert it to SLP of the size O(z log n)
generating the same text.

Further by compressed text we mean an SLP generating it

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 7 / 22

SLP = Compressed Text

Fact [Rytter, 2003]: given the archive of the text T compressed by
LZ78,LZW or some dictionary-based method of original length n and
the size of archive z we can in time O(z) convert it to SLP of size
O(z) generating the same text.

Fact [Rytter, 2003]: given the LZ77-compressed or
RLE-compressed text T of original length n and the size of archive z
we can in time O(z log n) convert it to SLP of the size O(z log n)
generating the same text.

Further by compressed text we mean an SLP generating it

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 7 / 22

SLP = Compressed Text

Fact [Rytter, 2003]: given the archive of the text T compressed by
LZ78,LZW or some dictionary-based method of original length n and
the size of archive z we can in time O(z) convert it to SLP of size
O(z) generating the same text.

Fact [Rytter, 2003]: given the LZ77-compressed or
RLE-compressed text T of original length n and the size of archive z
we can in time O(z log n) convert it to SLP of the size O(z log n)
generating the same text.

Further by compressed text we mean an SLP generating it

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 7 / 22

Why algorithms on compressed texts?

Answer for algorithms people:

Might be faster than “unpack-and-search”

Saving storing space and transmitting costs

Many fields with highly compressible data: statistics (internet
log files), automatically generated texts, massage sequence
charts for parallel programs

Answer for complexity people:

Some problems are hard in worst case. But they might be easy
for compressible inputs

New complexity relations. Similar problems becomes different

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 8 / 22

Problems on SLP-generated texts

∃ poly algorithms: At least NP-hard:

GKPR’96 Equivalence L’06 Hamming distance
GKPR’96 Fully Compressed LL’06 Fully Compressed
Pattern Matching Subsequence Problem
GKPR’96 Regular Language Lohrey’04 Context-Free
Membership Language Membership
GKPR’96 Shortest Period LL’06 Longest Common Subsequence
L’06 Shortest Cover BKLPR’06 Two-dimensional
L’06 Fingerprint Table Compressed Pattern Matching

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 9 / 22

Part II

Our Problem and Our Result

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 10 / 22

Window Subsequence Problems

Definition: w -window = substring of the length w
Definition: minimal window = substring containing the pattern, but
any substring of which does not contain the pattern

INPUT: SLP generating text T , pattern P , window size w

Computational tasks:

1 To decide whether pattern P is a subsequence of text T

2 To compute the number of minimal windows of T containing P

3 To compute the number of w -windows of T containing P

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 11 / 22

Window Subsequence Problems

Definition: w -window = substring of the length w
Definition: minimal window = substring containing the pattern, but
any substring of which does not contain the pattern

INPUT: SLP generating text T , pattern P , window size w

Computational tasks:

1 To decide whether pattern P is a subsequence of text T

2 To compute the number of minimal windows of T containing P

3 To compute the number of w -windows of T containing P

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 11 / 22

Window Subsequences: Motivation

Why do we do window subsequence matching (in compressed
texts)?

Variation of approximate pattern matching

Useful for finding access patterns in databases

Virus search in archives

Pattern discovery in bioinformatics

New step in the framework “what problems could be solved
without unpacking?”

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 12 / 22

Our Algorithm

Main result:
Given a straight-line program of size m,

a pattern of length k and an integer k

we can solve all window subsequence problems
on SLP-generated text in time O(mk2 log k)

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 13 / 22

Part III

Algorithm for Window Problems on Compressed

Texts

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 14 / 22

Our Small Plan

1 Define auxiliary data structures
2 Compute them
3 Derive answers for our tasks from these

structures

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 15 / 22

Auxiliary Arrays

Let X1, . . . , Xm be the nonterminals of SLP generating T , while
P1, . . . , Pl be all different substrings of pattern P

Left inclusions
For every Xi and every Pj let us define L(i , j) as the length of the

minimal prefix of Xi that contains Pj , in case of no such prefix exists
let L(i , j) := ∞

Right inclusions
For every Xi and every Pj let us define R(i , j) as the length of the

minimal suffix of Xi that contains Pj , in case of no such prefix exists
let R(i , j) := ∞

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 16 / 22

Auxiliary Arrays

Let X1, . . . , Xm be the nonterminals of SLP generating T , while
P1, . . . , Pl be all different substrings of pattern P

Left inclusions
For every Xi and every Pj let us define L(i , j) as the length of the

minimal prefix of Xi that contains Pj , in case of no such prefix exists
let L(i , j) := ∞

Right inclusions
For every Xi and every Pj let us define R(i , j) as the length of the

minimal suffix of Xi that contains Pj , in case of no such prefix exists
let R(i , j) := ∞

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 16 / 22

Auxiliary Arrays II

Minimal windows
M(i) = number of minimal windows containing P in Xi

Fixed windows
F (i) = number of w -windows containing P in Xi

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 17 / 22

Computing Left Inclusions

We compute L(i , j) by induction on i :

Base: if Xi → a, then L(i , j) = ∞ for all Pj 6= a,
and L(i , j) = 1 in case Pj = a

Induction step: let Xi → XpXq.
If L(p, j) 6= ∞, then L(i , j) = L(p, j). Assume L(p, j) = ∞.

If we find a decomposition Pj = PuPv with minimal
|Pv | where L(p, u) 6= ∞ and L(q, v) 6= ∞,
then we immediately get L(i , j) = |Xp|+ L(q, v)

Such a decomposition can be found by a binary search
Total complexity O(mk2 log k)
where m is the size of SLP and k is the length of the pattern

Mikhail Dvorkin: O(mk2)

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 18 / 22

Computing Left Inclusions

We compute L(i , j) by induction on i :

Base: if Xi → a, then L(i , j) = ∞ for all Pj 6= a,
and L(i , j) = 1 in case Pj = a

Induction step: let Xi → XpXq.
If L(p, j) 6= ∞, then L(i , j) = L(p, j). Assume L(p, j) = ∞.

If we find a decomposition Pj = PuPv with minimal
|Pv | where L(p, u) 6= ∞ and L(q, v) 6= ∞,
then we immediately get L(i , j) = |Xp|+ L(q, v)

Such a decomposition can be found by a binary search
Total complexity O(mk2 log k)
where m is the size of SLP and k is the length of the pattern

Mikhail Dvorkin: O(mk2)

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 18 / 22

Computing Left Inclusions

We compute L(i , j) by induction on i :

Base: if Xi → a, then L(i , j) = ∞ for all Pj 6= a,
and L(i , j) = 1 in case Pj = a

Induction step: let Xi → XpXq.
If L(p, j) 6= ∞, then L(i , j) = L(p, j). Assume L(p, j) = ∞.

If we find a decomposition Pj = PuPv with minimal
|Pv | where L(p, u) 6= ∞ and L(q, v) 6= ∞,
then we immediately get L(i , j) = |Xp|+ L(q, v)

Such a decomposition can be found by a binary search
Total complexity O(mk2 log k)
where m is the size of SLP and k is the length of the pattern

Mikhail Dvorkin: O(mk2)

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 18 / 22

Computing Left Inclusions

We compute L(i , j) by induction on i :

Base: if Xi → a, then L(i , j) = ∞ for all Pj 6= a,
and L(i , j) = 1 in case Pj = a

Induction step: let Xi → XpXq.
If L(p, j) 6= ∞, then L(i , j) = L(p, j). Assume L(p, j) = ∞.

If we find a decomposition Pj = PuPv with minimal
|Pv | where L(p, u) 6= ∞ and L(q, v) 6= ∞,
then we immediately get L(i , j) = |Xp|+ L(q, v)

Such a decomposition can be found by a binary search
Total complexity O(mk2 log k)
where m is the size of SLP and k is the length of the pattern

Mikhail Dvorkin: O(mk2)

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 18 / 22

Computing Left Inclusions

We compute L(i , j) by induction on i :

Base: if Xi → a, then L(i , j) = ∞ for all Pj 6= a,
and L(i , j) = 1 in case Pj = a

Induction step: let Xi → XpXq.
If L(p, j) 6= ∞, then L(i , j) = L(p, j). Assume L(p, j) = ∞.

If we find a decomposition Pj = PuPv with minimal
|Pv | where L(p, u) 6= ∞ and L(q, v) 6= ∞,
then we immediately get L(i , j) = |Xp|+ L(q, v)

Such a decomposition can be found by a binary search
Total complexity O(mk2 log k)
where m is the size of SLP and k is the length of the pattern

Mikhail Dvorkin: O(mk2)

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 18 / 22

Computing Left Inclusions

We compute L(i , j) by induction on i :

Base: if Xi → a, then L(i , j) = ∞ for all Pj 6= a,
and L(i , j) = 1 in case Pj = a

Induction step: let Xi → XpXq.
If L(p, j) 6= ∞, then L(i , j) = L(p, j). Assume L(p, j) = ∞.

If we find a decomposition Pj = PuPv with minimal
|Pv | where L(p, u) 6= ∞ and L(q, v) 6= ∞,
then we immediately get L(i , j) = |Xp|+ L(q, v)

Such a decomposition can be found by a binary search
Total complexity O(mk2 log k)
where m is the size of SLP and k is the length of the pattern

Mikhail Dvorkin: O(mk2)

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 18 / 22

Computing Minimal Windows

We compute M(i) by induction on i and using already computed
right/left inclusions:

Base: if Xi → a, then M(i) = 0 only except
P = a, in the latter case M(i) = 1

Inductive step: Xi → XpXq.
M(i) = M(p) + M(q) + ???

Computing boundary minimal windows
� Consequently consider decompositions P = PuPv

� For every decomposition with the help of L/R inclusions info
� find the unique minimal window such that
� Pu is falling in Xp and Pv is falling Xq

� If this window is shifted, then we increment the counter

Complexity: O(mk)
Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 19 / 22

Deriving the Answer

Computational tasks:

To decide whether P is a subsequence ofT

Answer: “yes” iff M(m) 6= 0

To compute the number of w -windows of T containing P

Answer: F (m)

To compute the number of minimal windows of T containing P

Answer: M(m)

Complexity: O(mk2 log k).

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 20 / 22

Summary

Main points:

Compressed text = text generated by SLP

Given SLP we can solve window subsequence matching in time
O(mk2 log k)

Method: dynamic programming over SLP

Open Problems:

Decrease the k-depended factor in complexity

To construct O(nm) algorithms for edit distance, where n is the
length of T1 and m is the compressed size of T2

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 21 / 22

Last Slide

Yury Lifshits http://logic.pdmi.ras.ru/~yura/

Relevant papers:

Yu. Lifshits
Solving Classical String Problems on Compressed Texts

Yu. Lifshits and M. Lohrey
Querying and Embedding Compressed Texts

P. Cégielski, I. Guessarian, Yu. Lifshits and Yu. Matiyasevich
Window Subsequence Problems for Compressed Texts

L.Boasson, P. Cégielski, I. Guessarian, and Yu. Matiyasevich
Window-Accumulated Subsequence Matching Problem is Linear

P. Cégielski, I. Guessarian, and Yu. Matiyasevich
Multiple Serial Episode Matching

Thanks for attention!

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 22 / 22

Last Slide

Yury Lifshits http://logic.pdmi.ras.ru/~yura/

Relevant papers:

Yu. Lifshits
Solving Classical String Problems on Compressed Texts

Yu. Lifshits and M. Lohrey
Querying and Embedding Compressed Texts

P. Cégielski, I. Guessarian, Yu. Lifshits and Yu. Matiyasevich
Window Subsequence Problems for Compressed Texts

L.Boasson, P. Cégielski, I. Guessarian, and Yu. Matiyasevich
Window-Accumulated Subsequence Matching Problem is Linear

P. Cégielski, I. Guessarian, and Yu. Matiyasevich
Multiple Serial Episode Matching

Thanks for attention!

Cégielski, Guessarian, Lifshits, Matiyasevich ()Window Problems for Compressed Texts CSR’2006 22 / 22

	Topic Overview
	Algorithm for Window Problems on Compressed Texts

