Algorithms for Nearest Neighbors

Classic Ideas, New Ideas

Yury Lifshits

Steklov Institute of Mathematics at St.Petersburg

http://logic.pdmi.ras.ru/~yura

University of Toronto, July 2007

Outline

- Problem Statement
 - Applications
 - Data Models

Outline

- Problem Statement
 - Applications
 - Data Models
- Classic Ideas
 - Search Trees
 - Random Projections
 - Look-Up Methods

Outline

- Problem Statement
 - Applications
 - Data Models
- Classic Ideas
 - Search Trees
 - Random Projections
 - Look-Up Methods
- New Ideas
 - Proving Hardness of Nearest Neighbors
 - Probabilistic Analysis for NN
 - New Data Models

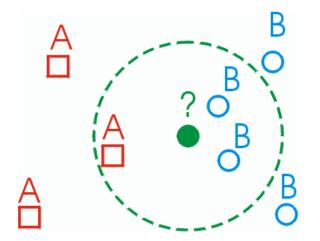
Part I Formulating the Problem

Informal Problem Statement

To preprocess a database of *n* objects so that given a query object, one can effectively determine its nearest neighbors in database

First Application (1960s)

Nearest neighbors for classification:



Applications

What applications of nearest neighbors do you know?

Applications

What applications of nearest neighbors do you know?

- Text classification
- Statistical data analysis, e.g. medicine diagnosis
- Pattern recognition: characters, faces
- Code plagiarism detection
- Coding theory
- Data compression

Applications

What applications of nearest neighbors do you know?

- Text classification
- Statistical data analysis, e.g. medicine diagnosis
- Pattern recognition: characters, faces
- Code plagiarism detection
- Coding theory
- Data compression
- Web: recommendation systems, on-line ads, personalized news aggregation, long queries in web search, near-duplicates detection

Data Model in General

Formalization for nearest neighbors consists of:

- Representation format for objects
- Similarity function

Data Model in General

Formalization for nearest neighbors consists of:

- Representation format for objects
- Similarity function

Remark 1: Usually there is original and "reduced" representation for every object

Data Model in General

Formalization for nearest neighbors consists of:

- Representation format for objects
- Similarity function

Remark 1: Usually there is original and "reduced" representation for every object

Remark 2: Accuracy of NN-based algorithms depends solely on a data model, no matter what specific exact NN algorithm we use

Data Models (1/2)

- Vector Model
 - Similarity: l^2 , scalar product, cosine

Data Models (1/2)

- Vector Model
 - Similarity: l^2 , scalar product, cosine
- String Model
 - Similarity: Hamming distance, edit distance

Data Models (1/2)

- Vector Model
 - Similarity: l^2 , scalar product, cosine
- String Model
 - Similarity: Hamming distance, edit distance
- Black-box model
 - Similarity: given by oracle
 The only knowledge is triangle inequality

Data Models (2/2)

- Set Model
 - Similarity: size of intersection

Data Models (2/2)

- Set Model
 - Similarity: size of intersection
- Small graphs
 - Similarity: structure/labels matching

Data Models (2/2)

- Set Model
 - Similarity: size of intersection
- Small graphs
 - Similarity: structure/labels matching

More data models?

Variations of the Computation Task

- Range queries: retrieve all objects within given range from query object
- Approximate nearest neighbors
- Multiple nearest neighbors (many queries)
- Nearest assignment
- All over-threshold neighbor pairs
- Nearest neighbors in dynamically changing database: moving objects, deletes/inserts, changing similarity function

Part II Classic Ideas

What is the most obvious solution for nearest neighbors?

What is the most obvious solution for nearest neighbors?

Answer:

compare query object with every object in database

What is the most obvious solution for nearest neighbors?

Answer:

compare query object with every object in database

Advantages:

No preprocessing Exact solution Works in any data model

What is the most obvious solution for nearest neighbors?

Answer:

compare query object with every object in database

Advantages:

No preprocessing Exact solution Works in any data model

Directions for improvement:

order of scanning, pruning

Preprocessing:

Build a *k*d-tree: for every internal node on level *I* we make partitioning based on the value of *I* mod *d*-th coordinate

Preprocessing:

Build a *k*d-tree: for every internal node on level *I* we make partitioning based on the value of *I* mod *d*-th coordinate

Query processing:

Go down to the leaf corresponding to the the query point and compute the distance;

Preprocessing:

Build a kd-tree: for every internal node on level I we make partitioning based on the value of I mod d-th coordinate

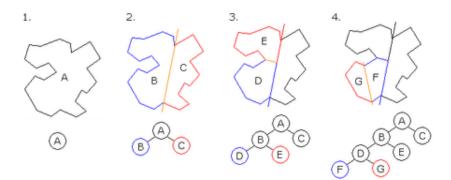
Query processing:

Go down to the leaf corresponding to the the query point and compute the distance;

(Recursively) Go one step up, check whether the distance to the second branch is larger than that to current candidate neighbor if "yes" go up, else check this second branch

BSP-Trees

Generalization: BSP-tree allows to use any hyperplanes in tree construction



VP-Trees

```
Partitioning condition: d(p,x) <? r
Inner branch: B(p,r(1+\varepsilon))
Outer branch: R^d/B(p,r(1-\delta))
```

VP-Trees

```
Partitioning condition: d(p,x) <? r
Inner branch: B(p, r(1+\varepsilon))
Outer branch: R^d/B(p, r(1-\delta))
```

Search:

```
If d(p, q) < r go to inner branch If d(p, q) > r go to outer branch
```

VP-Trees

```
Partitioning condition: d(p,x) < r
Inner branch: B(p, r(1+\varepsilon))
Outer branch: R^d/B(p, r(1-\delta))
```

Search:

```
If d(p,q) < r go to inner branch
If d(p,q) > r go to outer branch and
return minimum between obtained result
and d(p,q)
```

Kleinberg Algorithm (1/3)

Preprocessing

- ① Choose / random vectors $V = \{v_1, \dots, v_l\}$ with unit norm
- ② Precompute all scalar products between database points and vectors from V

Kleinberg Algorithm (2/3)

Random Projection Test

```
Input: points x,y and q, vectors u_1, \ldots, u_k Question: what is smaller |x - q| or |y - q|?
```

Test:

```
For all i compare (x \cdot v_i - q \cdot v_i) with (y \cdot v_i - q \cdot v_i)
Return the point which has "smaller"
on majority of vectors
```

Kleinberg Algorithm (3/3)

Query Processing

- **1** Choose a random subset Γ of V, $|\Gamma| = \log^3 n$
- ② Compute scalar products between query point q and vectors from Γ
- Make a tournament for choosing a nearest neighbor:
 - **1** Draw a binary tree of height $\log n$
 - Assign all database points to leafs
 - **3** For every internal point (say, x vs. y) make a random projection test using some vectors from Γ

Inverted Index

Data model: every object is a (weighted) set of terms from some dictionary

Preprocessing:

For very term store a list of all documents in database with nonzero weight on it

Query processing:

Retrieve all point that have at least one common term with the query documet; Perform linear scan on them

Locality-Sensitive Hashing

Desired hash family \mathcal{H} :

- If $||p-q|| \leq R$ then $\mathcal{P}r_{\mathcal{H}}[h(p) = h(q)] \geq p_1$
- If $||p-q|| \ge cR$ then $\mathcal{P}r_{\mathcal{H}}[h(p) = h(q)] \le p_2$

Locality-Sensitive Hashing

Desired hash family \mathcal{H} :

- If $||p-q|| \leq R$ then $\mathcal{P}r_{\mathcal{H}}[h(p)=h(q)] \geq p_1$
- If $||p-q|| \ge cR$ then $\mathcal{P}r_{\mathcal{H}}[h(p) = h(q)] \le p_2$

Preprocessing:

Choose at random several hash functions from ${\cal H}$ Build inverted index for hash values of object in database

Locality-Sensitive Hashing

Desired hash family \mathcal{H} :

- If $||p-q|| \leq R$ then $\mathcal{P}r_{\mathcal{H}}[h(p) = h(q)] \geq p_1$
- If $||p-q|| \ge cR$ then $\mathcal{P}_{r_{\mathcal{H}}}[h(p) = h(q)] \le p_2$

Preprocessing:

Choose at random several hash functions from ${\cal H}$ Build inverted index for hash values of object in database

Query processing:

Retrieve all object that have at least one common hash value with query object; Perform linear scan on them

Part III New Ideas

This section represents:

- Some of my own ideas
- Joint work with Benjamin Hoffmann and Dirk Nowotka (CSR'07)

Inclusions with Preprocessing (1/2)

Input

Family \mathcal{F} of subsets of U

Query task

```
Given a set f_{new} \subseteq U to decide whether \exists f \in \mathcal{F} : f_{new} \subseteq f
```

Constraints

```
Data storage after preprocessing poly(|\mathcal{F}| + |U|)
Time for query processing poly(|U|)
```

Inclusions with Preprocessing (1/2)

Input

Family \mathcal{F} of subsets of U

Query task

Given a set $f_{new} \subseteq U$ to decide whether $\exists f \in \mathcal{F} : f_{new} \subseteq f$

Constraints

Data storage after preprocessing $poly(|\mathcal{F}| + |U|)$ Time for query processing poly(|U|)

Open problem: is there an algorithm satisfying given constraints?

Inclusions with Preprocessing (2/2)

Reformulation in SAT style:

Input

Formula \mathcal{F} in DNF with n variables

Query task

Given an assignment x to evaluate $\mathcal{F}(x)$

Constraints

Data storage after preprocessing $poly(|\mathcal{F}|)$ Time for query processing poly(n)

Inclusions with Preprocessing (2/2)

Reformulation in SAT style:

Input

Formula \mathcal{F} in DNF with n variables

Query task

Given an assignment x to evaluate $\mathcal{F}(x)$

Constraints

Data storage after preprocessing $poly(|\mathcal{F}|)$ Time for query processing poly(n)

Open problem: is there an algorithm satisfying given constraints?

"NP Analogue" for Search Problems

Every problem in **SEARCH** class is characterized by poly-time computable Turing Machine *M*:

Input

Strings
$$x_1, \ldots, x_n$$
, $|x_i| = m$

Query task

Given string y of length m to answer whether $\exists i : M(x_i, y) = yes$

Tractable problems in SEARCH

Input

Strings
$$x_1, \ldots, x_n$$
, $|x_i| = m$

Query task

Given string y of length m to answer whether $\exists i : M(x_i, y) = yes$

Tractable problems in SEARCH

Input

Strings
$$x_1, \ldots, x_n$$
, $|x_i| = m$

Query task

Given string y of length m to answer whether $\exists i : M(x_i, y) = yes$

Tractable solution

Preprocessing in poly(m, n) space

Query processing in poly(m, log n) time with RAM access to preprocessed database

Tractable problems in SEARCH

Input

Strings
$$x_1, \ldots, x_n$$
, $|x_i| = m$

Query task

Given string y of length m to answer whether $\exists i : M(x_i, y) = yes$

Tractable solution

Preprocessing in poly(m, n) space

Query processing in poly(m, log n) time with RAM access to preprocessed database

Inclusions is in SEARCH. Is it tractable?

Complete problems in SEARCH (1/2)

Program Search problem:

Input

Turing machines $P_1 \dots, P_n$

Query task

Given string y of length m to answer whether $\exists i : P_i(y) = yes$ after at most m steps

Complete problems in SEARCH (1/2)

Program Search problem:

Input

Turing machines $P_1 \dots, P_n$

Query task

Given string y of length m to answer whether $\exists i : P_i(y) = yes$ after at most m steps

Open problem: is Program Search tractable?

Complete problems in SEARCH (2/2)

Parallel Run problem:

Input

$$x_1 \ldots, x_n$$

Query task

Given poly-time computable P to answer whether $\exists i : P(x_i) = yes$

Complete problems in SEARCH (2/2)

Parallel Run problem:

Input

$$x_1 \ldots, x_n$$

Query task

Given poly-time computable P to answer whether $\exists i : P(x_i) = yes$

Open problem: is Parallel Run tractable?

Probabilistic Analysis in a Nutshell

• We define a probability distribution over databases

Probabilistic Analysis in a Nutshell

- We define a probability distribution over databases
- We define probability distribution over query objects

Probabilistic Analysis in a Nutshell

- We define a probability distribution over databases
- We define probability distribution over query objects
- We construct a solution that is efficient/accurate with high probability over "random" input/query

Zipf Model

- Terms t_1, \ldots, t_m
- To generate a document we take every t_i with probability $\frac{1}{i}$
- Database is *n* independently chosen documents
- Query document has exactly one term in every interval $[e^i, e^{i+1}]$
- Similarity between documents is defined as the number of common terms

Magic Level Theorem

Magic Level
$$q = \sqrt{2 \log_e n}$$

Theorem

- With very high probability there exists a document in database having $\mathbf{q} \varepsilon$ top terms of query document
- **2** With very small probability there exists a document in database having any $q + \varepsilon$ overlap with query document

Sparse Vector Model

Database: points in R^d , every point has at most $k \ll d$ nonzero coordinates

Similarity: scalar product

Sparse Vector Model

Database: points in R^d , every point has at most $k \ll d$ nonzero coordinates

Similarity: scalar product

Constraints:

```
poly(n+d) for preprocessing time, poly(k) \cdot polylog(n+d) for query
```

Sparse Vector Model

Database: points in R^d , every point has at most $k \ll d$ nonzero coordinates

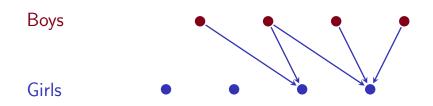
Similarity: scalar product

Constraints:

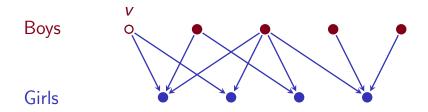
poly(n+d) for preprocessing time, $poly(k) \cdot polylog(n+d)$ for query

Open Problem: solve NN for sparse vector model within given constraints

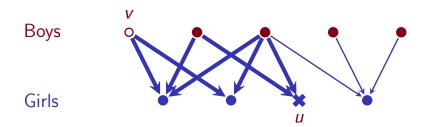
Amazon Recommendations



Amazon Recommendations



Amazon Recommendations



Amazon Nearest Neighbors

Database: Bipartite graph with n vertices, every vertex of the first part has out degree at most $k \ll n$

Query: Given a new vertex u in the first part to find a vertex u in the second part having maximal number of 3-step paths to v

Amazon Nearest Neighbors

Database: Bipartite graph with n vertices, every vertex of the first part has out degree at most $k \ll n$

Query: Given a new vertex u in the first part to find a vertex u in the second part having maximal number of 3-step paths to v

Constraints:

```
poly(n) time for preprocessing poly(k) \cdot polylog(n) for query
```

Amazon Nearest Neighbors

Database: Bipartite graph with n vertices, every vertex of the first part has out degree at most $k \ll n$

Query: Given a new vertex u in the first part to find a vertex u in the second part having maximal number of 3-step paths to v

Constraints:

poly(n) time for preprocessing $poly(k) \cdot polylog(n)$ for query

Open Problem: solve NN for Amazon model within given constraints

Conclusions

Directions for Further Research

 Extend classical NN algorithms to new data models and new search task variations

Directions for Further Research

- Extend classical NN algorithms to new data models and new search task variations
- Develop theoretical analysis of existing heuristics.
 Find subcases with provably efficient solutions

Directions for Further Research

- Extend classical NN algorithms to new data models and new search task variations
- Develop theoretical analysis of existing heuristics.
 Find subcases with provably efficient solutions
- Build complexity theory for problems with preprocessing

Call for Feedback

- Any relevant work?
- How to improve this talk for the next time?

Call for Feedback

- Any relevant work?
- How to improve this talk for the next time?
- Give my open problems to your students!

Summary

- Classic ideas: search trees, random projections, locality-sensitive hashing, inverted index
- New ideas: SEARCH class, NN for random texts, Amazon and sparse vector models
- Open problems: lower bound for inclusions with preprocessing, algorithm for 3-step similarity

Summary

- Classic ideas: search trees, random projections, locality-sensitive hashing, inverted index
- New ideas: SEARCH class, NN for random texts, Amazon and sparse vector models
- Open problems: lower bound for inclusions with preprocessing, algorithm for 3-step similarity

Thanks for your attention! Questions?

References (1/2)

Search "Lifshits" or visit http://logic.pdmi.ras.ru/~yura/

B. Hoffmann, Y. Lifshits and D. Nowotka

Maximal Intersection Queries in Randomized Graph Models

http://logic.pdmi.ras.ru/~yura/en/maxint-draft.pdf

P.N. Yianilos

Data structures and algorithms for nearest neighbor search in general metric spaces

http://www.pnylab.com/pny/papers/vptree/vptree.ps

J. Zobel and A. Moffat

Inverted files for text search engines

http://www.cs.mu.oz.au/~alistair/abstracts/zm06compsurv.html

K. Teknomo

Links to nearest neighbors implementations

http://people.revoledu.com/kardi/tutorial/KNN/resources.html

References (2/2)

J. Kleinberg

Two Algorithms for Nearest-Neighbor Search in High Dimensions

http://www.ece.tuc.gr/~vsam/csalgo/kleinberg-stoc97-nn.ps

P. Indyk and R. Motwani

Approximate nearest neighbors: towards removing the curse of dimensionality

http://theory.csail.mit.edu/~indyk/nndraft.ps

A. Andoni and P. Indyk

Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions

http://theory.lcs.mit.edu/~indyk/FOCSO6final.ps

P. Indvk

Nearest Neighbors Bibliography

http://theory.lcs.mit.edu/~indyk/bib.html