This page is in Russian. You may see its English analogue.

Общеинститутский математический семинар


13 мая 1999 г. В.И.Мысовских (С.-Петербургский университет) Использование систем компьютерной алгебры для решения трудных математических проблем.


В докладе пропагандируется использование широко распространившихся в последние десятилетия систем компьютерной алгебры (символьных вычислений) для решения трудных математических проблем дискретного характера. Докладчик поделится своим опытом применения системы GAP (Groups, Algorithms and Programming) для решения долго стоявших проблем о расположении подгрупп в конечных группах. Гармоничное сочетание теоретических и компьютерно-алгебраических методов позволило автору закрыть несколько гипотез из книг B.Huppert. Endliche Gruppen I. Springer-Verlag, 1967. и K.Doerk, T.Hawkes. Finite Soluble Groups. Walter de Gruyter, 1991., а также серию проблем З.И.Боревича о полинормальных подгруппах, выдержавших 20-летнюю проверку временем. Найден эффективный вычислительный инструмент для исследования подобных задач - таблицы меток Бернсайда.

В докладе обобщается опыт работы с такими системами символьных вычислений, накопленный за три года функционирования в ПОМИ С.-Петербургского семинара по компьютерной алгебре ( см. http://gauss.pdmi.ras.ru/~vimys/seminar/). Будут указаны системы компьютерной алгебры, доступные в ПОМИ (GAP, MuPAD, Mathematica, Maple, Axiom, Pari, etc), упомянуты их особенности. M


Предыдущие заседания семинара: список докладов.